#### Green Polynomials for A2 #### W-rep key: # x[1] = [1, 1, 1] , orbit = [1, 1, 1] , A-rep = [] # x[2] = [2, 1] , orbit = [2, 1] , A-rep = [] # x[3] = [3] , orbit = [3] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 8*V[0] Z_G(x)_0 = A2 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1],[] : [3] Qxi[A2,1,1] = (x[1])*q^3 + (x[2])*q^2 + (x[2])*q + x[3] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[A2,1,1] = (x[1])*q^3 + (x[2])*q^2 + (x[2])*q + x[3] orbit #2 : [2, 1] dim = 4 A(O) = 1 , |A(O)_0| = 1 g_s = 2*V[1]+V[2]+V[0] Z_G(x)_0 = 2*GL1 # Green Polys by orbit reps #2.1 : x[2] : [2, 1],[] : [2, 1] Qxi[A2,2,1] = (x[2])*q + x[3] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = (q+1)*(q^3-1) Qxc[A2,2,1] = (x[2])*q + x[3] orbit #3 : [3] dim = 6 A(O) = 1 , |A(O)_0| = 1 g_s = V[4]+V[2] Z_G(x)_0 = GL1 # Green Polys by orbit reps #3.1 : x[3] : [3],[] : [3] Qxi[A2,3,1] = x[3] # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = q*(q^2-1)*(q^3-1) Qxc[A2,3,1] = x[3]