#### Green Polynomials for A3 #### W-rep key: # x[1] = [1, 1, 1, 1] , orbit = [1, 1, 1, 1] , A-rep = [] # x[2] = [2, 1, 1] , orbit = [2, 1, 1] , A-rep = [] # x[3] = [2, 2] , orbit = [2, 2] , A-rep = [] # x[4] = [3, 1] , orbit = [3, 1] , A-rep = [] # x[5] = [4] , orbit = [4] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 15*V[0] Z_G(x)_0 = A3 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1, 1],[] : [4] Qxi[A3,1,1] = (x[1])*q^6 + (x[2])*q^5 + (x[2]+x[3])*q^4 + (x[2]+x[4])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[A3,1,1] = (x[1])*q^6 + (x[2])*q^5 + (x[2]+x[3])*q^4 + (x[2]+x[4])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] orbit #2 : [2, 1, 1] dim = 6 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[1]+V[2]+4*V[0] Z_G(x)_0 = GL2+GL1 # Green Polys by orbit reps #2.1 : x[2] : [2, 1, 1],[] : [2, 1, 1] Qxi[A3,2,1] = (x[2])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = (q^2+q+1)*(q^4-1) Qxc[A3,2,1] = (x[2])*q^3 + (x[3]+x[4])*q^2 + (x[4])*q + x[5] orbit #3 : [2, 2] dim = 8 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[2]+3*V[0] Z_G(x)_0 = GL2 # Green Polys by orbit reps #3.1 : x[3] : [2, 2],[] : [2, 2] Qxi[A3,3,1] = (x[3])*q^2 + (x[4])*q + x[5] # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = q*(q^3-1)*(q^4-1) Qxc[A3,3,1] = (x[3])*q^2 + (x[4])*q + x[5] orbit #4 : [3, 1] dim = 10 A(O) = 1 , |A(O)_0| = 1 g_s = V[4]+3*V[2]+V[0] Z_G(x)_0 = 2*GL1 # Green Polys by orbit reps #4.1 : x[4] : [3, 1],[] : [3, 1] Qxi[A3,4,1] = (x[4])*q + x[5] # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = q^2*(q+1)*(q^3-1)*(q^4-1) Qxc[A3,4,1] = (x[4])*q + x[5] orbit #5 : [4] dim = 12 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+V[4]+V[2] Z_G(x)_0 = GL1 # Green Polys by orbit reps #5.1 : x[5] : [4],[] : [4] Qxi[A3,5,1] = x[5] # Green Polys by conj class in A(O) #5.1 : c = () |O_x_c^F| = q^3*(q^2-1)*(q^3-1)*(q^4-1) Qxc[A3,5,1] = x[5]