TII subcells for the PGL(5,R) x SU(3,2) block of PGL5 # cell#0 , |C| = 1 special orbit = [5] special rep = [5] , dim = 1 cell rep = phi[5] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[7,1] := {0} cell#1 , |C| = 4 special orbit = [4, 1] special rep = [4, 1] , dim = 4 cell rep = phi[4,1] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[6,1] := {3} tii[6,2] := {1} tii[6,3] := {0} tii[6,4] := {2} cell#2 , |C| = 4 special orbit = [4, 1] special rep = [4, 1] , dim = 4 cell rep = phi[4,1] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[6,1] := {2} tii[6,2] := {0} tii[6,3] := {1} tii[6,4] := {3} cell#3 , |C| = 5 special orbit = [3, 2] special rep = [3, 2] , dim = 5 cell rep = phi[3,2] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[5,1] := {4} tii[5,2] := {3} tii[5,3] := {2} tii[5,4] := {0} tii[5,5] := {1} cell#4 , |C| = 6 special orbit = [3, 1, 1] special rep = [3, 1, 1] , dim = 6 cell rep = phi[3,1,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[4,1] := {5} tii[4,2] := {2} tii[4,3] := {4} tii[4,4] := {0} tii[4,5] := {1} tii[4,6] := {3} cell#5 , |C| = 5 special orbit = [3, 2] special rep = [3, 2] , dim = 5 cell rep = phi[3,2] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[5,1] := {4} tii[5,2] := {1} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {0} cell#6 , |C| = 5 special orbit = [3, 2] special rep = [3, 2] , dim = 5 cell rep = phi[3,2] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[5,1] := {2} tii[5,2] := {4} tii[5,3] := {0} tii[5,4] := {1} tii[5,5] := {3} cell#7 , |C| = 5 special orbit = [2, 2, 1] special rep = [2, 2, 1] , dim = 5 cell rep = phi[2,2,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[3,1] := {4} tii[3,2] := {2} tii[3,3] := {1} tii[3,4] := {3} tii[3,5] := {0} cell#8 , |C| = 5 special orbit = [2, 2, 1] special rep = [2, 2, 1] , dim = 5 cell rep = phi[2,2,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[3,1] := {1} tii[3,2] := {3} tii[3,3] := {4} tii[3,4] := {0} tii[3,5] := {2} cell#9 , |C| = 6 special orbit = [3, 1, 1] special rep = [3, 1, 1] , dim = 6 cell rep = phi[3,1,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[4,1] := {1} tii[4,2] := {4} tii[4,3] := {5} tii[4,4] := {2} tii[4,5] := {3} tii[4,6] := {0} cell#10 , |C| = 4 special orbit = [2, 1, 1, 1] special rep = [2, 1, 1, 1] , dim = 4 cell rep = phi[2,1,1,1] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[2,1] := {3} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {0} cell#11 , |C| = 4 special orbit = [2, 1, 1, 1] special rep = [2, 1, 1, 1] , dim = 4 cell rep = phi[2,1,1,1] TII depth = 1 TII multiplicity polynomial = 4*X TII subcells: tii[2,1] := {1} tii[2,2] := {2} tii[2,3] := {0} tii[2,4] := {3} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}