TII subcells for the U(5,1) x GL(6,R) block of GL6 # cell#0 , |C| = 10 special orbit = [3, 1, 1, 1] special rep = [3, 1, 1, 1] , dim = 10 cell rep = phi[3,1,1,1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[5,1] := {0} tii[5,2] := {4} tii[5,3] := {1} tii[5,4] := {7} tii[5,5] := {5} tii[5,6] := {2} tii[5,7] := {9} tii[5,8] := {8} tii[5,9] := {6} tii[5,10] := {3} cell#1 , |C| = 5 special orbit = [2, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1] , dim = 5 cell rep = phi[2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} cell#2 , |C| = 5 special orbit = [2, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1] , dim = 5 cell rep = phi[2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {4} tii[2,2] := {3} tii[2,3] := {2} tii[2,4] := {1} tii[2,5] := {0} cell#3 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}