TII subcells for the PU(4,2) x SL(6,R) block of PGL6 # cell#0 , |C| = 5 special orbit = [5, 1] special rep = [5, 1] , dim = 5 cell rep = phi[5,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[10,1] := {0} tii[10,2] := {4} tii[10,3] := {1} tii[10,4] := {3} tii[10,5] := {2} cell#1 , |C| = 10 special orbit = [4, 1, 1] special rep = [4, 1, 1] , dim = 10 cell rep = phi[4,1,1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[8,1] := {2} tii[8,2] := {5} tii[8,3] := {0} tii[8,4] := {3} tii[8,5] := {9} tii[8,6] := {6} tii[8,7] := {7} tii[8,8] := {1} tii[8,9] := {4} tii[8,10] := {8} cell#2 , |C| = 5 special orbit = [3, 3] special rep = [3, 3] , dim = 5 cell rep = phi[3,3] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[7,1] := {4} tii[7,2] := {1} tii[7,3] := {3} tii[7,4] := {2} tii[7,5] := {0} cell#3 , |C| = 16 special orbit = [3, 2, 1] special rep = [3, 2, 1] , dim = 16 cell rep = phi[3,2,1] TII depth = 2 TII multiplicity polynomial = 16*X TII subcells: tii[6,1] := {2} tii[6,2] := {7} tii[6,3] := {6} tii[6,4] := {13} tii[6,5] := {11} tii[6,6] := {14} tii[6,7] := {15} tii[6,8] := {12} tii[6,9] := {0} tii[6,10] := {1} tii[6,11] := {5} tii[6,12] := {3} tii[6,13] := {10} tii[6,14] := {4} tii[6,15] := {9} tii[6,16] := {8} cell#4 , |C| = 10 special orbit = [4, 1, 1] special rep = [4, 1, 1] , dim = 10 cell rep = phi[4,1,1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[8,1] := {9} tii[8,2] := {5} tii[8,3] := {7} tii[8,4] := {6} tii[8,5] := {0} tii[8,6] := {3} tii[8,7] := {1} tii[8,8] := {8} tii[8,9] := {4} tii[8,10] := {2} cell#5 , |C| = 10 special orbit = [3, 1, 1, 1] special rep = [3, 1, 1, 1] , dim = 10 cell rep = phi[3,1,1,1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[5,1] := {9} tii[5,2] := {5} tii[5,3] := {7} tii[5,4] := {2} tii[5,5] := {3} tii[5,6] := {6} tii[5,7] := {0} tii[5,8] := {1} tii[5,9] := {4} tii[5,10] := {8} cell#6 , |C| = 16 special orbit = [3, 2, 1] special rep = [3, 2, 1] , dim = 16 cell rep = phi[3,2,1] TII depth = 2 TII multiplicity polynomial = 16*X TII subcells: tii[6,1] := {13} tii[6,2] := {14} tii[6,3] := {15} tii[6,4] := {10} tii[6,5] := {12} tii[6,6] := {7} tii[6,7] := {4} tii[6,8] := {1} tii[6,9] := {9} tii[6,10] := {6} tii[6,11] := {8} tii[6,12] := {11} tii[6,13] := {3} tii[6,14] := {2} tii[6,15] := {5} tii[6,16] := {0} cell#7 , |C| = 9 special orbit = [2, 2, 1, 1] special rep = [2, 2, 1, 1] , dim = 9 cell rep = phi[2,2,1,1] TII depth = 1 TII multiplicity polynomial = 9*X TII subcells: tii[3,1] := {1} tii[3,2] := {3} tii[3,3] := {4} tii[3,4] := {5} tii[3,5] := {7} tii[3,6] := {8} tii[3,7] := {0} tii[3,8] := {2} tii[3,9] := {6} cell#8 , |C| = 9 special orbit = [2, 2, 1, 1] special rep = [2, 2, 1, 1] , dim = 9 cell rep = phi[2,2,1,1] TII depth = 1 TII multiplicity polynomial = 9*X TII subcells: tii[3,1] := {8} tii[3,2] := {7} tii[3,3] := {5} tii[3,4] := {4} tii[3,5] := {2} tii[3,6] := {1} tii[3,7] := {6} tii[3,8] := {3} tii[3,9] := {0} cell#9 , |C| = 10 special orbit = [3, 1, 1, 1] special rep = [3, 1, 1, 1] , dim = 10 cell rep = phi[3,1,1,1] TII depth = 1 TII multiplicity polynomial = 10*X TII subcells: tii[5,1] := {1} tii[5,2] := {4} tii[5,3] := {7} tii[5,4] := {6} tii[5,5] := {9} tii[5,6] := {8} tii[5,7] := {2} tii[5,8] := {5} tii[5,9] := {3} tii[5,10] := {0} cell#10 , |C| = 9 special orbit = [2, 2, 1, 1] special rep = [2, 2, 1, 1] , dim = 9 cell rep = phi[2,2,1,1] TII depth = 1 TII multiplicity polynomial = 9*X TII subcells: tii[3,1] := {5} tii[3,2] := {7} tii[3,3] := {4} tii[3,4] := {8} tii[3,5] := {6} tii[3,6] := {3} tii[3,7] := {1} tii[3,8] := {2} tii[3,9] := {0} cell#11 , |C| = 5 special orbit = [2, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1] , dim = 5 cell rep = phi[2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {3} tii[2,2] := {4} tii[2,3] := {2} tii[2,4] := {1} tii[2,5] := {0} cell#12 , |C| = 5 special orbit = [2, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1] , dim = 5 cell rep = phi[2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 5*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {3} tii[2,4] := {4} tii[2,5] := {2} cell#13 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}