TII subcells for the PGL(7,R) x SU(4,3) block of PGL7 # cell#0 , |C| = 1 special orbit = [7] special rep = [7] , dim = 1 cell rep = phi[7] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[15,1] := {0} cell#1 , |C| = 6 special orbit = [6, 1] special rep = [6, 1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[14,1] := {5} tii[14,2] := {3} tii[14,3] := {1} tii[14,4] := {0} tii[14,5] := {2} tii[14,6] := {4} cell#2 , |C| = 6 special orbit = [6, 1] special rep = [6, 1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[14,1] := {4} tii[14,2] := {2} tii[14,3] := {0} tii[14,4] := {1} tii[14,5] := {3} tii[14,6] := {5} cell#3 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {13} tii[13,2] := {7} tii[13,3] := {6} tii[13,4] := {12} tii[13,5] := {11} tii[13,6] := {9} tii[13,7] := {5} tii[13,8] := {1} tii[13,9] := {3} tii[13,10] := {0} tii[13,11] := {4} tii[13,12] := {2} tii[13,13] := {8} tii[13,14] := {10} cell#4 , |C| = 15 special orbit = [5, 1, 1] special rep = [5, 1, 1] , dim = 15 cell rep = phi[5,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[12,1] := {14} tii[12,2] := {11} tii[12,3] := {7} tii[12,4] := {10} tii[12,5] := {13} tii[12,6] := {6} tii[12,7] := {2} tii[12,8] := {5} tii[12,9] := {9} tii[12,10] := {0} tii[12,11] := {1} tii[12,12] := {4} tii[12,13] := {3} tii[12,14] := {8} tii[12,15] := {12} cell#5 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {13} tii[13,2] := {8} tii[13,3] := {1} tii[13,4] := {9} tii[13,5] := {12} tii[13,6] := {11} tii[13,7] := {7} tii[13,8] := {10} tii[13,9] := {6} tii[13,10] := {3} tii[13,11] := {5} tii[13,12] := {0} tii[13,13] := {2} tii[13,14] := {4} cell#6 , |C| = 14 special orbit = [4, 3] special rep = [4, 3] , dim = 14 cell rep = phi[4,3] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[11,1] := {13} tii[11,2] := {12} tii[11,3] := {9} tii[11,4] := {3} tii[11,5] := {11} tii[11,6] := {7} tii[11,7] := {8} tii[11,8] := {4} tii[11,9] := {10} tii[11,10] := {6} tii[11,11] := {5} tii[11,12] := {1} tii[11,13] := {0} tii[11,14] := {2} cell#7 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {11} tii[13,2] := {2} tii[13,3] := {8} tii[13,4] := {13} tii[13,5] := {7} tii[13,6] := {3} tii[13,7] := {6} tii[13,8] := {10} tii[13,9] := {0} tii[13,10] := {1} tii[13,11] := {4} tii[13,12] := {5} tii[13,13] := {9} tii[13,14] := {12} cell#8 , |C| = 14 special orbit = [4, 3] special rep = [4, 3] , dim = 14 cell rep = phi[4,3] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[11,1] := {12} tii[11,2] := {13} tii[11,3] := {7} tii[11,4] := {5} tii[11,5] := {10} tii[11,6] := {9} tii[11,7] := {6} tii[11,8] := {2} tii[11,9] := {11} tii[11,10] := {8} tii[11,11] := {3} tii[11,12] := {0} tii[11,13] := {1} tii[11,14] := {4} cell#9 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {34} tii[10,2] := {20} tii[10,3] := {33} tii[10,4] := {31} tii[10,5] := {11} tii[10,6] := {22} tii[10,7] := {27} tii[10,8] := {17} tii[10,9] := {26} tii[10,10] := {5} tii[10,11] := {21} tii[10,12] := {1} tii[10,13] := {7} tii[10,14] := {30} tii[10,15] := {25} tii[10,16] := {29} tii[10,17] := {24} tii[10,18] := {32} tii[10,19] := {14} tii[10,20] := {9} tii[10,21] := {15} tii[10,22] := {18} tii[10,23] := {23} tii[10,24] := {4} tii[10,25] := {28} tii[10,26] := {10} tii[10,27] := {3} tii[10,28] := {6} tii[10,29] := {13} tii[10,30] := {0} tii[10,31] := {19} tii[10,32] := {2} tii[10,33] := {8} tii[10,34] := {12} tii[10,35] := {16} cell#10 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {26} tii[10,2] := {8} tii[10,3] := {25} tii[10,4] := {32} tii[10,5] := {1} tii[10,6] := {24} tii[10,7] := {16} tii[10,8] := {29} tii[10,9] := {34} tii[10,10] := {6} tii[10,11] := {22} tii[10,12] := {11} tii[10,13] := {19} tii[10,14] := {30} tii[10,15] := {33} tii[10,16] := {18} tii[10,17] := {10} tii[10,18] := {4} tii[10,19] := {15} tii[10,20] := {20} tii[10,21] := {3} tii[10,22] := {28} tii[10,23] := {9} tii[10,24] := {14} tii[10,25] := {17} tii[10,26] := {23} tii[10,27] := {31} tii[10,28] := {0} tii[10,29] := {2} tii[10,30] := {5} tii[10,31] := {7} tii[10,32] := {12} tii[10,33] := {21} tii[10,34] := {13} tii[10,35] := {27} cell#11 , |C| = 21 special orbit = [3, 3, 1] special rep = [3, 3, 1] , dim = 21 cell rep = phi[3,3,1] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[8,1] := {20} tii[8,2] := {15} tii[8,3] := {4} tii[8,4] := {19} tii[8,5] := {14} tii[8,6] := {18} tii[8,7] := {13} tii[8,8] := {17} tii[8,9] := {2} tii[8,10] := {12} tii[8,11] := {5} tii[8,12] := {11} tii[8,13] := {8} tii[8,14] := {3} tii[8,15] := {9} tii[8,16] := {1} tii[8,17] := {16} tii[8,18] := {10} tii[8,19] := {7} tii[8,20] := {0} tii[8,21] := {6} cell#12 , |C| = 15 special orbit = [5, 1, 1] special rep = [5, 1, 1] , dim = 15 cell rep = phi[5,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[12,1] := {11} tii[12,2] := {6} tii[12,3] := {10} tii[12,4] := {13} tii[12,5] := {14} tii[12,6] := {1} tii[12,7] := {5} tii[12,8] := {7} tii[12,9] := {12} tii[12,10] := {2} tii[12,11] := {4} tii[12,12] := {9} tii[12,13] := {0} tii[12,14] := {3} tii[12,15] := {8} cell#13 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {21} tii[10,2] := {30} tii[10,3] := {34} tii[10,4] := {14} tii[10,5] := {27} tii[10,6] := {7} tii[10,7] := {32} tii[10,8] := {11} tii[10,9] := {19} tii[10,10] := {17} tii[10,11] := {28} tii[10,12] := {8} tii[10,13] := {16} tii[10,14] := {22} tii[10,15] := {18} tii[10,16] := {13} tii[10,17] := {15} tii[10,18] := {23} tii[10,19] := {2} tii[10,20] := {6} tii[10,21] := {24} tii[10,22] := {12} tii[10,23] := {29} tii[10,24] := {0} tii[10,25] := {33} tii[10,26] := {5} tii[10,27] := {1} tii[10,28] := {20} tii[10,29] := {26} tii[10,30] := {3} tii[10,31] := {31} tii[10,32] := {10} tii[10,33] := {4} tii[10,34] := {25} tii[10,35] := {9} cell#14 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {21} tii[10,2] := {19} tii[10,3] := {20} tii[10,4] := {24} tii[10,5] := {9} tii[10,6] := {30} tii[10,7] := {10} tii[10,8] := {33} tii[10,9] := {34} tii[10,10] := {17} tii[10,11] := {7} tii[10,12] := {25} tii[10,13] := {28} tii[10,14] := {14} tii[10,15] := {16} tii[10,16] := {13} tii[10,17] := {6} tii[10,18] := {1} tii[10,19] := {27} tii[10,20] := {31} tii[10,21] := {12} tii[10,22] := {32} tii[10,23] := {5} tii[10,24] := {26} tii[10,25] := {11} tii[10,26] := {29} tii[10,27] := {23} tii[10,28] := {4} tii[10,29] := {0} tii[10,30] := {18} tii[10,31] := {3} tii[10,32] := {22} tii[10,33] := {15} tii[10,34] := {2} tii[10,35] := {8} cell#15 , |C| = 21 special orbit = [3, 2, 2] special rep = [3, 2, 2] , dim = 21 cell rep = phi[3,2,2] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[7,1] := {20} tii[7,2] := {19} tii[7,3] := {18} tii[7,4] := {16} tii[7,5] := {17} tii[7,6] := {11} tii[7,7] := {5} tii[7,8] := {9} tii[7,9] := {4} tii[7,10] := {15} tii[7,11] := {8} tii[7,12] := {13} tii[7,13] := {14} tii[7,14] := {7} tii[7,15] := {12} tii[7,16] := {6} tii[7,17] := {2} tii[7,18] := {0} tii[7,19] := {10} tii[7,20] := {1} tii[7,21] := {3} cell#16 , |C| = 20 special orbit = [4, 1, 1, 1] special rep = [4, 1, 1, 1] , dim = 20 cell rep = phi[4,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[9,1] := {19} tii[9,2] := {15} tii[9,3] := {12} tii[9,4] := {17} tii[9,5] := {9} tii[9,6] := {6} tii[9,7] := {11} tii[9,8] := {8} tii[9,9] := {14} tii[9,10] := {18} tii[9,11] := {3} tii[9,12] := {1} tii[9,13] := {5} tii[9,14] := {2} tii[9,15] := {7} tii[9,16] := {13} tii[9,17] := {0} tii[9,18] := {4} tii[9,19] := {10} tii[9,20] := {16} cell#17 , |C| = 20 special orbit = [4, 1, 1, 1] special rep = [4, 1, 1, 1] , dim = 20 cell rep = phi[4,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[9,1] := {17} tii[9,2] := {12} tii[9,3] := {15} tii[9,4] := {19} tii[9,5] := {6} tii[9,6] := {9} tii[9,7] := {14} tii[9,8] := {5} tii[9,9] := {11} tii[9,10] := {16} tii[9,11] := {1} tii[9,12] := {2} tii[9,13] := {7} tii[9,14] := {0} tii[9,15] := {4} tii[9,16] := {10} tii[9,17] := {3} tii[9,18] := {8} tii[9,19] := {13} tii[9,20] := {18} cell#18 , |C| = 14 special orbit = [4, 3] special rep = [4, 3] , dim = 14 cell rep = phi[4,3] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[11,1] := {13} tii[11,2] := {7} tii[11,3] := {10} tii[11,4] := {6} tii[11,5] := {12} tii[11,6] := {2} tii[11,7] := {11} tii[11,8] := {9} tii[11,9] := {4} tii[11,10] := {1} tii[11,11] := {8} tii[11,12] := {5} tii[11,13] := {3} tii[11,14] := {0} cell#19 , |C| = 21 special orbit = [3, 3, 1] special rep = [3, 3, 1] , dim = 21 cell rep = phi[3,3,1] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[8,1] := {20} tii[8,2] := {18} tii[8,3] := {12} tii[8,4] := {14} tii[8,5] := {11} tii[8,6] := {6} tii[8,7] := {15} tii[8,8] := {19} tii[8,9] := {9} tii[8,10] := {16} tii[8,11] := {4} tii[8,12] := {2} tii[8,13] := {17} tii[8,14] := {13} tii[8,15] := {7} tii[8,16] := {8} tii[8,17] := {3} tii[8,18] := {1} tii[8,19] := {10} tii[8,20] := {5} tii[8,21] := {0} cell#20 , |C| = 14 special orbit = [4, 3] special rep = [4, 3] , dim = 14 cell rep = phi[4,3] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[11,1] := {9} tii[11,2] := {13} tii[11,3] := {1} tii[11,4] := {7} tii[11,5] := {5} tii[11,6] := {10} tii[11,7] := {3} tii[11,8] := {6} tii[11,9] := {12} tii[11,10] := {11} tii[11,11] := {0} tii[11,12] := {2} tii[11,13] := {4} tii[11,14] := {8} cell#21 , |C| = 21 special orbit = [3, 3, 1] special rep = [3, 3, 1] , dim = 21 cell rep = phi[3,3,1] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[8,1] := {6} tii[8,2] := {13} tii[8,3] := {12} tii[8,4] := {16} tii[8,5] := {19} tii[8,6] := {20} tii[8,7] := {2} tii[8,8] := {4} tii[8,9] := {7} tii[8,10] := {1} tii[8,11] := {11} tii[8,12] := {14} tii[8,13] := {9} tii[8,14] := {5} tii[8,15] := {17} tii[8,16] := {8} tii[8,17] := {18} tii[8,18] := {15} tii[8,19] := {0} tii[8,20] := {3} tii[8,21] := {10} cell#22 , |C| = 35 special orbit = [3, 2, 1, 1] special rep = [3, 2, 1, 1] , dim = 35 cell rep = phi[3,2,1,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {22} tii[6,2] := {21} tii[6,3] := {27} tii[6,4] := {9} tii[6,5] := {33} tii[6,6] := {34} tii[6,7] := {20} tii[6,8] := {25} tii[6,9] := {18} tii[6,10] := {1} tii[6,11] := {29} tii[6,12] := {31} tii[6,13] := {23} tii[6,14] := {6} tii[6,15] := {13} tii[6,16] := {28} tii[6,17] := {17} tii[6,18] := {16} tii[6,19] := {24} tii[6,20] := {15} tii[6,21] := {11} tii[6,22] := {4} tii[6,23] := {30} tii[6,24] := {10} tii[6,25] := {32} tii[6,26] := {26} tii[6,27] := {12} tii[6,28] := {3} tii[6,29] := {19} tii[6,30] := {8} tii[6,31] := {14} tii[6,32] := {2} tii[6,33] := {0} tii[6,34] := {5} tii[6,35] := {7} cell#23 , |C| = 21 special orbit = [3, 2, 2] special rep = [3, 2, 2] , dim = 21 cell rep = phi[3,2,2] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[7,1] := {16} tii[7,2] := {20} tii[7,3] := {13} tii[7,4] := {12} tii[7,5] := {18} tii[7,6] := {5} tii[7,7] := {11} tii[7,8] := {14} tii[7,9] := {10} tii[7,10] := {8} tii[7,11] := {15} tii[7,12] := {7} tii[7,13] := {19} tii[7,14] := {3} tii[7,15] := {9} tii[7,16] := {2} tii[7,17] := {6} tii[7,18] := {1} tii[7,19] := {17} tii[7,20] := {4} tii[7,21] := {0} cell#24 , |C| = 35 special orbit = [3, 2, 1, 1] special rep = [3, 2, 1, 1] , dim = 35 cell rep = phi[3,2,1,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {21} tii[6,2] := {20} tii[6,3] := {27} tii[6,4] := {30} tii[6,5] := {14} tii[6,6] := {26} tii[6,7] := {33} tii[6,8] := {34} tii[6,9] := {19} tii[6,10] := {23} tii[6,11] := {8} tii[6,12] := {18} tii[6,13] := {1} tii[6,14] := {29} tii[6,15] := {31} tii[6,16] := {7} tii[6,17] := {17} tii[6,18] := {16} tii[6,19] := {24} tii[6,20] := {15} tii[6,21] := {11} tii[6,22] := {4} tii[6,23] := {5} tii[6,24] := {10} tii[6,25] := {13} tii[6,26] := {25} tii[6,27] := {0} tii[6,28] := {22} tii[6,29] := {3} tii[6,30] := {9} tii[6,31] := {32} tii[6,32] := {2} tii[6,33] := {12} tii[6,34] := {28} tii[6,35] := {6} cell#25 , |C| = 15 special orbit = [3, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1] , dim = 15 cell rep = phi[3,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {14} tii[5,2] := {9} tii[5,3] := {13} tii[5,4] := {5} tii[5,5] := {8} tii[5,6] := {12} tii[5,7] := {2} tii[5,8] := {4} tii[5,9] := {7} tii[5,10] := {11} tii[5,11] := {0} tii[5,12] := {1} tii[5,13] := {3} tii[5,14] := {6} tii[5,15] := {10} cell#26 , |C| = 35 special orbit = [3, 2, 1, 1] special rep = [3, 2, 1, 1] , dim = 35 cell rep = phi[3,2,1,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {33} tii[6,2] := {20} tii[6,3] := {27} tii[6,4] := {10} tii[6,5] := {23} tii[6,6] := {14} tii[6,7] := {19} tii[6,8] := {13} tii[6,9] := {34} tii[6,10] := {3} tii[6,11] := {29} tii[6,12] := {22} tii[6,13] := {32} tii[6,14] := {9} tii[6,15] := {5} tii[6,16] := {30} tii[6,17] := {31} tii[6,18] := {17} tii[6,19] := {12} tii[6,20] := {16} tii[6,21] := {28} tii[6,22] := {21} tii[6,23] := {15} tii[6,24] := {11} tii[6,25] := {7} tii[6,26] := {2} tii[6,27] := {26} tii[6,28] := {4} tii[6,29] := {24} tii[6,30] := {25} tii[6,31] := {6} tii[6,32] := {18} tii[6,33] := {0} tii[6,34] := {1} tii[6,35] := {8} cell#27 , |C| = 14 special orbit = [2, 2, 2, 1] special rep = [2, 2, 2, 1] , dim = 14 cell rep = phi[2,2,2,1] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[4,1] := {13} tii[4,2] := {10} tii[4,3] := {7} tii[4,4] := {6} tii[4,5] := {11} tii[4,6] := {9} tii[4,7] := {4} tii[4,8] := {12} tii[4,9] := {3} tii[4,10] := {1} tii[4,11] := {8} tii[4,12] := {2} tii[4,13] := {5} tii[4,14] := {0} cell#28 , |C| = 35 special orbit = [3, 2, 1, 1] special rep = [3, 2, 1, 1] , dim = 35 cell rep = phi[3,2,1,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {21} tii[6,2] := {31} tii[6,3] := {14} tii[6,4] := {25} tii[6,5] := {6} tii[6,6] := {13} tii[6,7] := {17} tii[6,8] := {12} tii[6,9] := {22} tii[6,10] := {33} tii[6,11] := {11} tii[6,12] := {20} tii[6,13] := {4} tii[6,14] := {27} tii[6,15] := {24} tii[6,16] := {9} tii[6,17] := {18} tii[6,18] := {34} tii[6,19] := {30} tii[6,20] := {32} tii[6,21] := {10} tii[6,22] := {19} tii[6,23] := {2} tii[6,24] := {28} tii[6,25] := {7} tii[6,26] := {1} tii[6,27] := {0} tii[6,28] := {23} tii[6,29] := {3} tii[6,30] := {8} tii[6,31] := {5} tii[6,32] := {16} tii[6,33] := {29} tii[6,34] := {15} tii[6,35] := {26} cell#29 , |C| = 14 special orbit = [2, 2, 2, 1] special rep = [2, 2, 2, 1] , dim = 14 cell rep = phi[2,2,2,1] TII depth = 2 TII multiplicity polynomial = 14*X TII subcells: tii[4,1] := {6} tii[4,2] := {9} tii[4,3] := {12} tii[4,4] := {13} tii[4,5] := {3} tii[4,6] := {1} tii[4,7] := {8} tii[4,8] := {2} tii[4,9] := {10} tii[4,10] := {7} tii[4,11] := {5} tii[4,12] := {11} tii[4,13] := {0} tii[4,14] := {4} cell#30 , |C| = 14 special orbit = [2, 2, 1, 1, 1] special rep = [2, 2, 1, 1, 1] , dim = 14 cell rep = phi[2,2,1,1,1] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[3,1] := {12} tii[3,2] := {8} tii[3,3] := {4} tii[3,4] := {13} tii[3,5] := {10} tii[3,6] := {11} tii[3,7] := {6} tii[3,8] := {3} tii[3,9] := {5} tii[3,10] := {2} tii[3,11] := {9} tii[3,12] := {1} tii[3,13] := {7} tii[3,14] := {0} cell#31 , |C| = 14 special orbit = [2, 2, 1, 1, 1] special rep = [2, 2, 1, 1, 1] , dim = 14 cell rep = phi[2,2,1,1,1] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[3,1] := {4} tii[3,2] := {9} tii[3,3] := {12} tii[3,4] := {3} tii[3,5] := {6} tii[3,6] := {2} tii[3,7] := {10} tii[3,8] := {13} tii[3,9] := {8} tii[3,10] := {11} tii[3,11] := {1} tii[3,12] := {7} tii[3,13] := {0} tii[3,14] := {5} cell#32 , |C| = 15 special orbit = [3, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1] , dim = 15 cell rep = phi[3,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {2} tii[5,2] := {11} tii[5,3] := {13} tii[5,4] := {5} tii[5,5] := {8} tii[5,6] := {1} tii[5,7] := {10} tii[5,8] := {12} tii[5,9] := {9} tii[5,10] := {14} tii[5,11] := {4} tii[5,12] := {6} tii[5,13] := {3} tii[5,14] := {7} tii[5,15] := {0} cell#33 , |C| = 6 special orbit = [2, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1] , dim = 6 cell rep = phi[2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {5} tii[2,2] := {2} tii[2,3] := {4} tii[2,4] := {1} tii[2,5] := {3} tii[2,6] := {0} cell#34 , |C| = 6 special orbit = [2, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1] , dim = 6 cell rep = phi[2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {2} tii[2,2] := {3} tii[2,3] := {1} tii[2,4] := {4} tii[2,5] := {0} tii[2,6] := {5} cell#35 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}