TII subcells for the SL(7,R) x PU(5,2) block of SL7 # cell#0 , |C| = 1 special orbit = [7] special rep = [7] , dim = 1 cell rep = phi[7] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[15,1] := {0} cell#1 , |C| = 6 special orbit = [6, 1] special rep = [6, 1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[14,1] := {5} tii[14,2] := {4} tii[14,3] := {3} tii[14,4] := {1} tii[14,5] := {0} tii[14,6] := {2} cell#2 , |C| = 6 special orbit = [6, 1] special rep = [6, 1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[14,1] := {2} tii[14,2] := {0} tii[14,3] := {1} tii[14,4] := {3} tii[14,5] := {4} tii[14,6] := {5} cell#3 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {13} tii[13,2] := {10} tii[13,3] := {11} tii[13,4] := {12} tii[13,5] := {9} tii[13,6] := {5} tii[13,7] := {2} tii[13,8] := {0} tii[13,9] := {8} tii[13,10] := {4} tii[13,11] := {1} tii[13,12] := {7} tii[13,13] := {3} tii[13,14] := {6} cell#4 , |C| = 15 special orbit = [5, 1, 1] special rep = [5, 1, 1] , dim = 15 cell rep = phi[5,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[12,1] := {14} tii[12,2] := {12} tii[12,3] := {10} tii[12,4] := {4} tii[12,5] := {9} tii[12,6] := {7} tii[12,7] := {2} tii[12,8] := {0} tii[12,9] := {1} tii[12,10] := {6} tii[12,11] := {3} tii[12,12] := {8} tii[12,13] := {5} tii[12,14] := {11} tii[12,15] := {13} cell#5 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {13} tii[13,2] := {10} tii[13,3] := {7} tii[13,4] := {1} tii[13,5] := {12} tii[13,6] := {11} tii[13,7] := {9} tii[13,8] := {6} tii[13,9] := {8} tii[13,10] := {5} tii[13,11] := {3} tii[13,12] := {4} tii[13,13] := {2} tii[13,14] := {0} cell#6 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {34} tii[10,2] := {29} tii[10,3] := {20} tii[10,4] := {32} tii[10,5] := {22} tii[10,6] := {31} tii[10,7] := {6} tii[10,8] := {26} tii[10,9] := {18} tii[10,10] := {28} tii[10,11] := {12} tii[10,12] := {25} tii[10,13] := {15} tii[10,14] := {21} tii[10,15] := {16} tii[10,16] := {33} tii[10,17] := {30} tii[10,18] := {24} tii[10,19] := {27} tii[10,20] := {19} tii[10,21] := {23} tii[10,22] := {10} tii[10,23] := {14} tii[10,24] := {9} tii[10,25] := {11} tii[10,26] := {3} tii[10,27] := {0} tii[10,28] := {13} tii[10,29] := {5} tii[10,30] := {17} tii[10,31] := {1} tii[10,32] := {8} tii[10,33] := {2} tii[10,34] := {4} tii[10,35] := {7} cell#7 , |C| = 14 special orbit = [5, 2] special rep = [5, 2] , dim = 14 cell rep = phi[5,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[13,1] := {2} tii[13,2] := {7} tii[13,3] := {11} tii[13,4] := {13} tii[13,5] := {0} tii[13,6] := {1} tii[13,7] := {3} tii[13,8] := {5} tii[13,9] := {4} tii[13,10] := {6} tii[13,11] := {8} tii[13,12] := {9} tii[13,13] := {10} tii[13,14] := {12} cell#8 , |C| = 35 special orbit = [4, 2, 1] special rep = [4, 2, 1] , dim = 35 cell rep = phi[4,2,1] TII depth = 2 TII multiplicity polynomial = 35*X TII subcells: tii[10,1] := {17} tii[10,2] := {15} tii[10,3] := {16} tii[10,4] := {24} tii[10,5] := {26} tii[10,6] := {14} tii[10,7] := {25} tii[10,8] := {10} tii[10,9] := {18} tii[10,10] := {30} tii[10,11] := {31} tii[10,12] := {23} tii[10,13] := {29} tii[10,14] := {33} tii[10,15] := {34} tii[10,16] := {9} tii[10,17] := {3} tii[10,18] := {0} tii[10,19] := {5} tii[10,20] := {1} tii[10,21] := {8} tii[10,22] := {6} tii[10,23] := {2} tii[10,24] := {4} tii[10,25] := {7} tii[10,26] := {12} tii[10,27] := {21} tii[10,28] := {20} tii[10,29] := {11} tii[10,30] := {13} tii[10,31] := {19} tii[10,32] := {22} tii[10,33] := {28} tii[10,34] := {27} tii[10,35] := {32} cell#9 , |C| = 21 special orbit = [3, 2, 2] special rep = [3, 2, 2] , dim = 21 cell rep = phi[3,2,2] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[7,1] := {20} tii[7,2] := {11} tii[7,3] := {19} tii[7,4] := {15} tii[7,5] := {4} tii[7,6] := {13} tii[7,7] := {7} tii[7,8] := {10} tii[7,9] := {6} tii[7,10] := {17} tii[7,11] := {12} tii[7,12] := {16} tii[7,13] := {5} tii[7,14] := {14} tii[7,15] := {18} tii[7,16] := {8} tii[7,17] := {3} tii[7,18] := {0} tii[7,19] := {1} tii[7,20] := {2} tii[7,21] := {9} cell#10 , |C| = 15 special orbit = [5, 1, 1] special rep = [5, 1, 1] , dim = 15 cell rep = phi[5,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[12,1] := {1} tii[12,2] := {6} tii[12,3] := {10} tii[12,4] := {13} tii[12,5] := {14} tii[12,6] := {4} tii[12,7] := {8} tii[12,8] := {11} tii[12,9] := {12} tii[12,10] := {2} tii[12,11] := {7} tii[12,12] := {9} tii[12,13] := {3} tii[12,14] := {5} tii[12,15] := {0} cell#11 , |C| = 20 special orbit = [4, 1, 1, 1] special rep = [4, 1, 1, 1] , dim = 20 cell rep = phi[4,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[9,1] := {19} tii[9,2] := {13} tii[9,3] := {6} tii[9,4] := {1} tii[9,5] := {18} tii[9,6] := {14} tii[9,7] := {7} tii[9,8] := {17} tii[9,9] := {15} tii[9,10] := {16} tii[9,11] := {12} tii[9,12] := {8} tii[9,13] := {3} tii[9,14] := {11} tii[9,15] := {9} tii[9,16] := {10} tii[9,17] := {5} tii[9,18] := {2} tii[9,19] := {4} tii[9,20] := {0} cell#12 , |C| = 20 special orbit = [4, 1, 1, 1] special rep = [4, 1, 1, 1] , dim = 20 cell rep = phi[4,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[9,1] := {1} tii[9,2] := {7} tii[9,3] := {15} tii[9,4] := {19} tii[9,5] := {3} tii[9,6] := {8} tii[9,7] := {10} tii[9,8] := {2} tii[9,9] := {4} tii[9,10] := {0} tii[9,11] := {6} tii[9,12] := {14} tii[9,13] := {17} tii[9,14] := {9} tii[9,15] := {11} tii[9,16] := {5} tii[9,17] := {13} tii[9,18] := {16} tii[9,19] := {12} tii[9,20] := {18} cell#13 , |C| = 15 special orbit = [3, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1] , dim = 15 cell rep = phi[3,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {14} tii[5,2] := {6} tii[5,3] := {1} tii[5,4] := {13} tii[5,5] := {8} tii[5,6] := {11} tii[5,7] := {4} tii[5,8] := {2} tii[5,9] := {3} tii[5,10] := {0} tii[5,11] := {12} tii[5,12] := {7} tii[5,13] := {10} tii[5,14] := {5} tii[5,15] := {9}