TII subcells for the SL(4,H) x PU(4,4) block of SL8 # cell#0 , |C| = 14 special orbit = [4, 4] special rep = [4, 4] , dim = 14 cell rep = phi[4,4] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[15,1] := {0} tii[15,2] := {12} tii[15,3] := {5} tii[15,4] := {13} tii[15,5] := {1} tii[15,6] := {4} tii[15,7] := {9} tii[15,8] := {11} tii[15,9] := {8} tii[15,10] := {3} tii[15,11] := {2} tii[15,12] := {6} tii[15,13] := {10} tii[15,14] := {7} cell#1 , |C| = 56 special orbit = [3, 3, 1, 1] special rep = [3, 3, 1, 1] , dim = 56 cell rep = phi[3,3,1,1] TII depth = 2 TII multiplicity polynomial = 56*X TII subcells: tii[9,1] := {37} tii[9,2] := {26} tii[9,3] := {50} tii[9,4] := {14} tii[9,5] := {27} tii[9,6] := {42} tii[9,7] := {8} tii[9,8] := {33} tii[9,9] := {2} tii[9,10] := {22} tii[9,11] := {9} tii[9,12] := {21} tii[9,13] := {35} tii[9,14] := {45} tii[9,15] := {0} tii[9,16] := {1} tii[9,17] := {7} tii[9,18] := {6} tii[9,19] := {17} tii[9,20] := {31} tii[9,21] := {54} tii[9,22] := {46} tii[9,23] := {43} tii[9,24] := {53} tii[9,25] := {30} tii[9,26] := {16} tii[9,27] := {39} tii[9,28] := {12} tii[9,29] := {49} tii[9,30] := {24} tii[9,31] := {15} tii[9,32] := {40} tii[9,33] := {28} tii[9,34] := {38} tii[9,35] := {13} tii[9,36] := {41} tii[9,37] := {51} tii[9,38] := {55} tii[9,39] := {18} tii[9,40] := {32} tii[9,41] := {3} tii[9,42] := {19} tii[9,43] := {10} tii[9,44] := {23} tii[9,45] := {20} tii[9,46] := {11} tii[9,47] := {34} tii[9,48] := {44} tii[9,49] := {36} tii[9,50] := {52} tii[9,51] := {47} tii[9,52] := {29} tii[9,53] := {5} tii[9,54] := {4} tii[9,55] := {25} tii[9,56] := {48} cell#2 , |C| = 14 special orbit = [2, 2, 2, 2] special rep = [2, 2, 2, 2] , dim = 14 cell rep = phi[2,2,2,2] TII depth = 1 TII multiplicity polynomial = 14*X TII subcells: tii[5,1] := {5} tii[5,2] := {11} tii[5,3] := {7} tii[5,4] := {12} tii[5,5] := {1} tii[5,6] := {6} tii[5,7] := {10} tii[5,8] := {3} tii[5,9] := {9} tii[5,10] := {4} tii[5,11] := {13} tii[5,12] := {8} tii[5,13] := {2} tii[5,14] := {0} cell#3 , |C| = 20 special orbit = [2, 2, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1] , dim = 20 cell rep = phi[2,2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {14} tii[3,2] := {8} tii[3,3] := {15} tii[3,4] := {4} tii[3,5] := {7} tii[3,6] := {13} tii[3,7] := {2} tii[3,8] := {5} tii[3,9] := {10} tii[3,10] := {16} tii[3,11] := {0} tii[3,12] := {1} tii[3,13] := {3} tii[3,14] := {6} tii[3,15] := {12} tii[3,16] := {17} tii[3,17] := {9} tii[3,18] := {18} tii[3,19] := {11} tii[3,20] := {19} cell#4 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}