TII subcells for the SL(8,R) x PU(5,3) block of SL8 # cell#0 , |C| = 1 special orbit = [8] special rep = [8] , dim = 1 cell rep = phi[8] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[22,1] := {0} cell#1 , |C| = 7 special orbit = [7, 1] special rep = [7, 1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[21,1] := {6} tii[21,2] := {5} tii[21,3] := {3} tii[21,4] := {2} tii[21,5] := {0} tii[21,6] := {1} tii[21,7] := {4} cell#2 , |C| = 7 special orbit = [7, 1] special rep = [7, 1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[21,1] := {4} tii[21,2] := {2} tii[21,3] := {0} tii[21,4] := {1} tii[21,5] := {3} tii[21,6] := {5} tii[21,7] := {6} cell#3 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {19} tii[20,2] := {14} tii[20,3] := {11} tii[20,4] := {12} tii[20,5] := {18} tii[20,6] := {17} tii[20,7] := {15} tii[20,8] := {10} tii[20,9] := {5} tii[20,10] := {1} tii[20,11] := {9} tii[20,12] := {3} tii[20,13] := {0} tii[20,14] := {4} tii[20,15] := {7} tii[20,16] := {2} tii[20,17] := {8} tii[20,18] := {6} tii[20,19] := {13} tii[20,20] := {16} cell#4 , |C| = 21 special orbit = [6, 1, 1] special rep = [6, 1, 1] , dim = 21 cell rep = phi[6,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[19,1] := {20} tii[19,2] := {17} tii[19,3] := {13} tii[19,4] := {9} tii[19,5] := {15} tii[19,6] := {18} tii[19,7] := {12} tii[19,8] := {6} tii[19,9] := {4} tii[19,10] := {8} tii[19,11] := {14} tii[19,12] := {2} tii[19,13] := {0} tii[19,14] := {3} tii[19,15] := {7} tii[19,16] := {1} tii[19,17] := {5} tii[19,18] := {11} tii[19,19] := {10} tii[19,20] := {16} tii[19,21] := {19} cell#5 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {19} tii[20,2] := {16} tii[20,3] := {8} tii[20,4] := {2} tii[20,5] := {12} tii[20,6] := {18} tii[20,7] := {17} tii[20,8] := {14} tii[20,9] := {11} tii[20,10] := {15} tii[20,11] := {13} tii[20,12] := {9} tii[20,13] := {6} tii[20,14] := {10} tii[20,15] := {4} tii[20,16] := {1} tii[20,17] := {5} tii[20,18] := {0} tii[20,19] := {3} tii[20,20] := {7} cell#6 , |C| = 28 special orbit = [5, 3] special rep = [5, 3] , dim = 28 cell rep = phi[5,3] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[18,1] := {27} tii[18,2] := {26} tii[18,3] := {23} tii[18,4] := {22} tii[18,5] := {15} tii[18,6] := {2} tii[18,7] := {25} tii[18,8] := {21} tii[18,9] := {20} tii[18,10] := {6} tii[18,11] := {16} tii[18,12] := {9} tii[18,13] := {24} tii[18,14] := {12} tii[18,15] := {19} tii[18,16] := {13} tii[18,17] := {18} tii[18,18] := {11} tii[18,19] := {17} tii[18,20] := {10} tii[18,21] := {4} tii[18,22] := {8} tii[18,23] := {3} tii[18,24] := {0} tii[18,25] := {14} tii[18,26] := {7} tii[18,27] := {1} tii[18,28] := {5} cell#7 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {12} tii[20,2] := {2} tii[20,3] := {10} tii[20,4] := {16} tii[20,5] := {19} tii[20,6] := {7} tii[20,7] := {3} tii[20,8] := {6} tii[20,9] := {11} tii[20,10] := {15} tii[20,11] := {0} tii[20,12] := {1} tii[20,13] := {4} tii[20,14] := {8} tii[20,15] := {5} tii[20,16] := {9} tii[20,17] := {13} tii[20,18] := {14} tii[20,19] := {17} tii[20,20] := {18} cell#8 , |C| = 28 special orbit = [5, 3] special rep = [5, 3] , dim = 28 cell rep = phi[5,3] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[18,1] := {23} tii[18,2] := {26} tii[18,3] := {27} tii[18,4] := {14} tii[18,5] := {15} tii[18,6] := {10} tii[18,7] := {19} tii[18,8] := {13} tii[18,9] := {20} tii[18,10] := {17} tii[18,11] := {6} tii[18,12] := {1} tii[18,13] := {24} tii[18,14] := {22} tii[18,15] := {18} tii[18,16] := {11} tii[18,17] := {25} tii[18,18] := {21} tii[18,19] := {8} tii[18,20] := {3} tii[18,21] := {0} tii[18,22] := {7} tii[18,23] := {2} tii[18,24] := {4} tii[18,25] := {12} tii[18,26] := {5} tii[18,27] := {9} tii[18,28] := {16} cell#9 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {63} tii[17,2] := {55} tii[17,3] := {37} tii[17,4] := {58} tii[17,5] := {62} tii[17,6] := {44} tii[17,7] := {57} tii[17,8] := {20} tii[17,9] := {54} tii[17,10] := {46} tii[17,11] := {41} tii[17,12] := {53} tii[17,13] := {33} tii[17,14] := {7} tii[17,15] := {26} tii[17,16] := {32} tii[17,17] := {12} tii[17,18] := {25} tii[17,19] := {18} tii[17,20] := {45} tii[17,21] := {10} tii[17,22] := {24} tii[17,23] := {56} tii[17,24] := {52} tii[17,25] := {61} tii[17,26] := {60} tii[17,27] := {51} tii[17,28] := {59} tii[17,29] := {47} tii[17,30] := {43} tii[17,31] := {50} tii[17,32] := {28} tii[17,33] := {39} tii[17,34] := {42} tii[17,35] := {49} tii[17,36] := {29} tii[17,37] := {17} tii[17,38] := {23} tii[17,39] := {38} tii[17,40] := {30} tii[17,41] := {6} tii[17,42] := {48} tii[17,43] := {16} tii[17,44] := {5} tii[17,45] := {36} tii[17,46] := {22} tii[17,47] := {35} tii[17,48] := {13} tii[17,49] := {9} tii[17,50] := {4} tii[17,51] := {21} tii[17,52] := {14} tii[17,53] := {0} tii[17,54] := {34} tii[17,55] := {3} tii[17,56] := {15} tii[17,57] := {1} tii[17,58] := {8} tii[17,59] := {2} tii[17,60] := {19} tii[17,61] := {11} tii[17,62] := {27} tii[17,63] := {31} tii[17,64] := {40} cell#10 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {54} tii[17,2] := {28} tii[17,3] := {27} tii[17,4] := {53} tii[17,5] := {60} tii[17,6] := {11} tii[17,7] := {51} tii[17,8] := {10} tii[17,9] := {39} tii[17,10] := {40} tii[17,11] := {50} tii[17,12] := {59} tii[17,13] := {21} tii[17,14] := {25} tii[17,15] := {8} tii[17,16] := {52} tii[17,17] := {20} tii[17,18] := {32} tii[17,19] := {34} tii[17,20] := {57} tii[17,21] := {44} tii[17,22] := {55} tii[17,23] := {62} tii[17,24] := {63} tii[17,25] := {43} tii[17,26] := {30} tii[17,27] := {17} tii[17,28] := {6} tii[17,29] := {38} tii[17,30] := {23} tii[17,31] := {15} tii[17,32] := {37} tii[17,33] := {5} tii[17,34] := {49} tii[17,35] := {16} tii[17,36] := {9} tii[17,37] := {22} tii[17,38] := {14} tii[17,39] := {29} tii[17,40] := {36} tii[17,41] := {35} tii[17,42] := {42} tii[17,43] := {48} tii[17,44] := {58} tii[17,45] := {3} tii[17,46] := {0} tii[17,47] := {4} tii[17,48] := {1} tii[17,49] := {2} tii[17,50] := {7} tii[17,51] := {12} tii[17,52] := {19} tii[17,53] := {18} tii[17,54] := {24} tii[17,55] := {31} tii[17,56] := {45} tii[17,57] := {13} tii[17,58] := {26} tii[17,59] := {33} tii[17,60] := {41} tii[17,61] := {46} tii[17,62] := {56} tii[17,63] := {47} tii[17,64] := {61} cell#11 , |C| = 70 special orbit = [4, 3, 1] special rep = [4, 3, 1] , dim = 70 cell rep = phi[4,3,1] TII depth = 2 TII multiplicity polynomial = 70*X TII subcells: tii[14,1] := {69} tii[14,2] := {65} tii[14,3] := {60} tii[14,4] := {34} tii[14,5] := {55} tii[14,6] := {10} tii[14,7] := {66} tii[14,8] := {61} tii[14,9] := {58} tii[14,10] := {31} tii[14,11] := {54} tii[14,12] := {64} tii[14,13] := {68} tii[14,14] := {59} tii[14,15] := {67} tii[14,16] := {53} tii[14,17] := {29} tii[14,18] := {63} tii[14,19] := {19} tii[14,20] := {4} tii[14,21] := {45} tii[14,22] := {52} tii[14,23] := {38} tii[14,24] := {36} tii[14,25] := {57} tii[14,26] := {7} tii[14,27] := {26} tii[14,28] := {44} tii[14,29] := {43} tii[14,30] := {18} tii[14,31] := {37} tii[14,32] := {48} tii[14,33] := {23} tii[14,34] := {32} tii[14,35] := {15} tii[14,36] := {50} tii[14,37] := {40} tii[14,38] := {41} tii[14,39] := {17} tii[14,40] := {16} tii[14,41] := {56} tii[14,42] := {6} tii[14,43] := {22} tii[14,44] := {25} tii[14,45] := {33} tii[14,46] := {3} tii[14,47] := {51} tii[14,48] := {42} tii[14,49] := {24} tii[14,50] := {46} tii[14,51] := {30} tii[14,52] := {47} tii[14,53] := {62} tii[14,54] := {14} tii[14,55] := {49} tii[14,56] := {39} tii[14,57] := {21} tii[14,58] := {13} tii[14,59] := {8} tii[14,60] := {2} tii[14,61] := {12} tii[14,62] := {0} tii[14,63] := {28} tii[14,64] := {27} tii[14,65] := {11} tii[14,66] := {1} tii[14,67] := {20} tii[14,68] := {9} tii[14,69] := {5} tii[14,70] := {35} cell#12 , |C| = 21 special orbit = [6, 1, 1] special rep = [6, 1, 1] , dim = 21 cell rep = phi[6,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[19,1] := {14} tii[19,2] := {7} tii[19,3] := {13} tii[19,4] := {17} tii[19,5] := {19} tii[19,6] := {20} tii[19,7] := {1} tii[19,8] := {6} tii[19,9] := {12} tii[19,10] := {15} tii[19,11] := {18} tii[19,12] := {3} tii[19,13] := {8} tii[19,14] := {11} tii[19,15] := {16} tii[19,16] := {2} tii[19,17] := {4} tii[19,18] := {9} tii[19,19] := {0} tii[19,20] := {5} tii[19,21] := {10} cell#13 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {29} tii[17,2] := {50} tii[17,3] := {59} tii[17,4] := {63} tii[17,5] := {20} tii[17,6] := {41} tii[17,7] := {9} tii[17,8] := {56} tii[17,9] := {19} tii[17,10] := {61} tii[17,11] := {26} tii[17,12] := {38} tii[17,13] := {30} tii[17,14] := {46} tii[17,15] := {18} tii[17,16] := {57} tii[17,17] := {21} tii[17,18] := {33} tii[17,19] := {36} tii[17,20] := {51} tii[17,21] := {22} tii[17,22] := {35} tii[17,23] := {42} tii[17,24] := {37} tii[17,25] := {17} tii[17,26] := {28} tii[17,27] := {32} tii[17,28] := {43} tii[17,29] := {3} tii[17,30] := {10} tii[17,31] := {40} tii[17,32] := {16} tii[17,33] := {44} tii[17,34] := {27} tii[17,35] := {52} tii[17,36] := {2} tii[17,37] := {6} tii[17,38] := {53} tii[17,39] := {58} tii[17,40] := {15} tii[17,41] := {0} tii[17,42] := {62} tii[17,43] := {7} tii[17,44] := {1} tii[17,45] := {31} tii[17,46] := {39} tii[17,47] := {48} tii[17,48] := {8} tii[17,49] := {49} tii[17,50] := {13} tii[17,51] := {55} tii[17,52] := {25} tii[17,53] := {4} tii[17,54] := {60} tii[17,55] := {14} tii[17,56] := {5} tii[17,57] := {34} tii[17,58] := {45} tii[17,59] := {11} tii[17,60] := {54} tii[17,61] := {24} tii[17,62] := {12} tii[17,63] := {47} tii[17,64] := {23} cell#14 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {40} tii[17,2] := {37} tii[17,3] := {38} tii[17,4] := {39} tii[17,5] := {44} tii[17,6] := {23} tii[17,7] := {53} tii[17,8] := {24} tii[17,9] := {59} tii[17,10] := {25} tii[17,11] := {62} tii[17,12] := {63} tii[17,13] := {34} tii[17,14] := {19} tii[17,15] := {46} tii[17,16] := {20} tii[17,17] := {54} tii[17,18] := {57} tii[17,19] := {30} tii[17,20] := {8} tii[17,21] := {41} tii[17,22] := {45} tii[17,23] := {18} tii[17,24] := {21} tii[17,25] := {29} tii[17,26] := {17} tii[17,27] := {7} tii[17,28] := {1} tii[17,29] := {50} tii[17,30] := {56} tii[17,31] := {28} tii[17,32] := {60} tii[17,33] := {16} tii[17,34] := {61} tii[17,35] := {6} tii[17,36] := {48} tii[17,37] := {55} tii[17,38] := {27} tii[17,39] := {15} tii[17,40] := {58} tii[17,41] := {49} tii[17,42] := {26} tii[17,43] := {52} tii[17,44] := {43} tii[17,45] := {14} tii[17,46] := {5} tii[17,47] := {0} tii[17,48] := {35} tii[17,49] := {13} tii[17,50] := {47} tii[17,51] := {4} tii[17,52] := {51} tii[17,53] := {36} tii[17,54] := {12} tii[17,55] := {42} tii[17,56] := {32} tii[17,57] := {10} tii[17,58] := {3} tii[17,59] := {31} tii[17,60] := {9} tii[17,61] := {33} tii[17,62] := {22} tii[17,63] := {2} tii[17,64] := {11} cell#15 , |C| = 56 special orbit = [4, 2, 2] special rep = [4, 2, 2] , dim = 56 cell rep = phi[4,2,2] TII depth = 2 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {55} tii[13,2] := {53} tii[13,3] := {54} tii[13,4] := {51} tii[13,5] := {50} tii[13,6] := {52} tii[13,7] := {47} tii[13,8] := {48} tii[13,9] := {37} tii[13,10] := {49} tii[13,11] := {24} tii[13,12] := {13} tii[13,13] := {33} tii[13,14] := {34} tii[13,15] := {21} tii[13,16] := {10} tii[13,17] := {22} tii[13,18] := {11} tii[13,19] := {46} tii[13,20] := {32} tii[13,21] := {19} tii[13,22] := {42} tii[13,23] := {29} tii[13,24] := {45} tii[13,25] := {43} tii[13,26] := {16} tii[13,27] := {31} tii[13,28] := {30} tii[13,29] := {44} tii[13,30] := {17} tii[13,31] := {39} tii[13,32] := {26} tii[13,33] := {41} tii[13,34] := {38} tii[13,35] := {27} tii[13,36] := {40} tii[13,37] := {25} tii[13,38] := {14} tii[13,39] := {7} tii[13,40] := {6} tii[13,41] := {2} tii[13,42] := {0} tii[13,43] := {36} tii[13,44] := {23} tii[13,45] := {12} tii[13,46] := {35} tii[13,47] := {5} tii[13,48] := {1} tii[13,49] := {20} tii[13,50] := {4} tii[13,51] := {18} tii[13,52] := {9} tii[13,53] := {3} tii[13,54] := {28} tii[13,55] := {8} tii[13,56] := {15} cell#16 , |C| = 56 special orbit = [4, 2, 2] special rep = [4, 2, 2] , dim = 56 cell rep = phi[4,2,2] TII depth = 2 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {55} tii[13,2] := {36} tii[13,3] := {54} tii[13,4] := {12} tii[13,5] := {34} tii[13,6] := {53} tii[13,7] := {51} tii[13,8] := {23} tii[13,9] := {40} tii[13,10] := {46} tii[13,11] := {32} tii[13,12] := {44} tii[13,13] := {15} tii[13,14] := {39} tii[13,15] := {8} tii[13,16] := {18} tii[13,17] := {50} tii[13,18] := {43} tii[13,19] := {48} tii[13,20] := {42} tii[13,21] := {52} tii[13,22] := {4} tii[13,23] := {1} tii[13,24] := {29} tii[13,25] := {24} tii[13,26] := {6} tii[13,27] := {41} tii[13,28] := {37} tii[13,29] := {47} tii[13,30] := {30} tii[13,31] := {5} tii[13,32] := {14} tii[13,33] := {45} tii[13,34] := {22} tii[13,35] := {38} tii[13,36] := {49} tii[13,37] := {28} tii[13,38] := {20} tii[13,39] := {33} tii[13,40] := {11} tii[13,41] := {21} tii[13,42] := {10} tii[13,43] := {16} tii[13,44] := {27} tii[13,45] := {3} tii[13,46] := {35} tii[13,47] := {9} tii[13,48] := {19} tii[13,49] := {26} tii[13,50] := {31} tii[13,51] := {0} tii[13,52] := {2} tii[13,53] := {7} tii[13,54] := {13} tii[13,55] := {17} tii[13,56] := {25} cell#17 , |C| = 28 special orbit = [5, 3] special rep = [5, 3] , dim = 28 cell rep = phi[5,3] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[18,1] := {27} tii[18,2] := {21} tii[18,3] := {9} tii[18,4] := {24} tii[18,5] := {20} tii[18,6] := {11} tii[18,7] := {26} tii[18,8] := {25} tii[18,9] := {15} tii[18,10] := {5} tii[18,11] := {23} tii[18,12] := {19} tii[18,13] := {17} tii[18,14] := {2} tii[18,15] := {13} tii[18,16] := {8} tii[18,17] := {4} tii[18,18] := {1} tii[18,19] := {22} tii[18,20] := {18} tii[18,21] := {14} tii[18,22] := {16} tii[18,23] := {12} tii[18,24] := {7} tii[18,25] := {10} tii[18,26] := {6} tii[18,27] := {3} tii[18,28] := {0} cell#18 , |C| = 70 special orbit = [4, 3, 1] special rep = [4, 3, 1] , dim = 70 cell rep = phi[4,3,1] TII depth = 2 TII multiplicity polynomial = 70*X TII subcells: tii[14,1] := {69} tii[14,2] := {57} tii[14,3] := {67} tii[14,4] := {61} tii[14,5] := {47} tii[14,6] := {46} tii[14,7] := {63} tii[14,8] := {37} tii[14,9] := {60} tii[14,10] := {18} tii[14,11] := {51} tii[14,12] := {38} tii[14,13] := {50} tii[14,14] := {45} tii[14,15] := {31} tii[14,16] := {64} tii[14,17] := {56} tii[14,18] := {68} tii[14,19] := {55} tii[14,20] := {34} tii[14,21] := {43} tii[14,22] := {65} tii[14,23] := {59} tii[14,24] := {41} tii[14,25] := {48} tii[14,26] := {22} tii[14,27] := {28} tii[14,28] := {36} tii[14,29] := {16} tii[14,30] := {11} tii[14,31] := {4} tii[14,32] := {66} tii[14,33] := {25} tii[14,34] := {62} tii[14,35] := {54} tii[14,36] := {52} tii[14,37] := {35} tii[14,38] := {39} tii[14,39] := {53} tii[14,40] := {9} tii[14,41] := {26} tii[14,42] := {40} tii[14,43] := {23} tii[14,44] := {27} tii[14,45] := {20} tii[14,46] := {33} tii[14,47] := {10} tii[14,48] := {15} tii[14,49] := {5} tii[14,50] := {24} tii[14,51] := {13} tii[14,52] := {32} tii[14,53] := {19} tii[14,54] := {7} tii[14,55] := {8} tii[14,56] := {58} tii[14,57] := {49} tii[14,58] := {44} tii[14,59] := {42} tii[14,60] := {29} tii[14,61] := {17} tii[14,62] := {21} tii[14,63] := {30} tii[14,64] := {6} tii[14,65] := {1} tii[14,66] := {12} tii[14,67] := {0} tii[14,68] := {14} tii[14,69] := {2} tii[14,70] := {3} cell#19 , |C| = 28 special orbit = [5, 3] special rep = [5, 3] , dim = 28 cell rep = phi[5,3] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[18,1] := {12} tii[18,2] := {23} tii[18,3] := {27} tii[18,4] := {2} tii[18,5] := {8} tii[18,6] := {17} tii[18,7] := {7} tii[18,8] := {3} tii[18,9] := {14} tii[18,10] := {21} tii[18,11] := {6} tii[18,12] := {10} tii[18,13] := {19} tii[18,14] := {24} tii[18,15] := {16} tii[18,16] := {20} tii[18,17] := {26} tii[18,18] := {25} tii[18,19] := {0} tii[18,20] := {1} tii[18,21] := {4} tii[18,22] := {5} tii[18,23] := {9} tii[18,24] := {13} tii[18,25] := {11} tii[18,26] := {15} tii[18,27] := {18} tii[18,28] := {22} cell#20 , |C| = 70 special orbit = [4, 3, 1] special rep = [4, 3, 1] , dim = 70 cell rep = phi[4,3,1] TII depth = 2 TII multiplicity polynomial = 70*X TII subcells: tii[14,1] := {31} tii[14,2] := {37} tii[14,3] := {46} tii[14,4] := {20} tii[14,5] := {52} tii[14,6] := {45} tii[14,7] := {56} tii[14,8] := {62} tii[14,9] := {43} tii[14,10] := {61} tii[14,11] := {49} tii[14,12] := {59} tii[14,13] := {65} tii[14,14] := {68} tii[14,15] := {69} tii[14,16] := {10} tii[14,17] := {6} tii[14,18] := {19} tii[14,19] := {7} tii[14,20] := {32} tii[14,21] := {16} tii[14,22] := {9} tii[14,23] := {3} tii[14,24] := {14} tii[14,25] := {26} tii[14,26] := {39} tii[14,27] := {23} tii[14,28] := {15} tii[14,29] := {35} tii[14,30] := {50} tii[14,31] := {57} tii[14,32] := {34} tii[14,33] := {30} tii[14,34] := {22} tii[14,35] := {12} tii[14,36] := {28} tii[14,37] := {42} tii[14,38] := {36} tii[14,39] := {11} tii[14,40] := {53} tii[14,41] := {48} tii[14,42] := {21} tii[14,43] := {29} tii[14,44] := {27} tii[14,45] := {60} tii[14,46] := {33} tii[14,47] := {63} tii[14,48] := {40} tii[14,49] := {51} tii[14,50] := {55} tii[14,51] := {44} tii[14,52] := {66} tii[14,53] := {67} tii[14,54] := {54} tii[14,55] := {64} tii[14,56] := {4} tii[14,57] := {0} tii[14,58] := {1} tii[14,59] := {2} tii[14,60] := {8} tii[14,61] := {13} tii[14,62] := {18} tii[14,63] := {5} tii[14,64] := {24} tii[14,65] := {38} tii[14,66] := {25} tii[14,67] := {47} tii[14,68] := {17} tii[14,69] := {41} tii[14,70] := {58} cell#21 , |C| = 35 special orbit = [5, 1, 1, 1] special rep = [5, 1, 1, 1] , dim = 35 cell rep = phi[5,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[16,1] := {34} tii[16,2] := {32} tii[16,3] := {29} tii[16,4] := {20} tii[16,5] := {28} tii[16,6] := {24} tii[16,7] := {18} tii[16,8] := {9} tii[16,9] := {17} tii[16,10] := {23} tii[16,11] := {19} tii[16,12] := {27} tii[16,13] := {22} tii[16,14] := {31} tii[16,15] := {33} tii[16,16] := {13} tii[16,17] := {7} tii[16,18] := {1} tii[16,19] := {6} tii[16,20] := {12} tii[16,21] := {8} tii[16,22] := {16} tii[16,23] := {11} tii[16,24] := {21} tii[16,25] := {30} tii[16,26] := {5} tii[16,27] := {2} tii[16,28] := {10} tii[16,29] := {4} tii[16,30] := {15} tii[16,31] := {26} tii[16,32] := {0} tii[16,33] := {3} tii[16,34] := {14} tii[16,35] := {25} cell#22 , |C| = 35 special orbit = [5, 1, 1, 1] special rep = [5, 1, 1, 1] , dim = 35 cell rep = phi[5,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[16,1] := {29} tii[16,2] := {20} tii[16,3] := {28} tii[16,4] := {32} tii[16,5] := {34} tii[16,6] := {9} tii[16,7] := {19} tii[16,8] := {24} tii[16,9] := {31} tii[16,10] := {10} tii[16,11] := {18} tii[16,12] := {27} tii[16,13] := {8} tii[16,14] := {17} tii[16,15] := {26} tii[16,16] := {1} tii[16,17] := {7} tii[16,18] := {12} tii[16,19] := {22} tii[16,20] := {2} tii[16,21] := {4} tii[16,22] := {15} tii[16,23] := {0} tii[16,24] := {3} tii[16,25] := {14} tii[16,26] := {6} tii[16,27] := {11} tii[16,28] := {21} tii[16,29] := {5} tii[16,30] := {16} tii[16,31] := {25} tii[16,32] := {13} tii[16,33] := {23} tii[16,34] := {30} tii[16,35] := {33} cell#23 , |C| = 42 special orbit = [3, 3, 2] special rep = [3, 3, 2] , dim = 42 cell rep = phi[3,3,2] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[10,1] := {41} tii[10,2] := {34} tii[10,3] := {21} tii[10,4] := {39} tii[10,5] := {32} tii[10,6] := {35} tii[10,7] := {11} tii[10,8] := {31} tii[10,9] := {24} tii[10,10] := {36} tii[10,11] := {28} tii[10,12] := {40} tii[10,13] := {17} tii[10,14] := {23} tii[10,15] := {37} tii[10,16] := {15} tii[10,17] := {10} tii[10,18] := {4} tii[10,19] := {30} tii[10,20] := {22} tii[10,21] := {14} tii[10,22] := {27} tii[10,23] := {19} tii[10,24] := {13} tii[10,25] := {38} tii[10,26] := {33} tii[10,27] := {6} tii[10,28] := {25} tii[10,29] := {18} tii[10,30] := {26} tii[10,31] := {2} tii[10,32] := {12} tii[10,33] := {5} tii[10,34] := {16} tii[10,35] := {29} tii[10,36] := {8} tii[10,37] := {3} tii[10,38] := {9} tii[10,39] := {1} tii[10,40] := {20} tii[10,41] := {7} tii[10,42] := {0} cell#24 , |C| = 42 special orbit = [3, 3, 2] special rep = [3, 3, 2] , dim = 42 cell rep = phi[3,3,2] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[10,1] := {24} tii[10,2] := {37} tii[10,3] := {41} tii[10,4] := {15} tii[10,5] := {4} tii[10,6] := {22} tii[10,7] := {34} tii[10,8] := {14} tii[10,9] := {21} tii[10,10] := {13} tii[10,11] := {33} tii[10,12] := {18} tii[10,13] := {39} tii[10,14] := {26} tii[10,15] := {12} tii[10,16] := {32} tii[10,17] := {35} tii[10,18] := {31} tii[10,19] := {29} tii[10,20] := {36} tii[10,21] := {40} tii[10,22] := {2} tii[10,23] := {5} tii[10,24] := {11} tii[10,25] := {8} tii[10,26] := {3} tii[10,27] := {28} tii[10,28] := {9} tii[10,29] := {17} tii[10,30] := {1} tii[10,31] := {23} tii[10,32] := {10} tii[10,33] := {30} tii[10,34] := {20} tii[10,35] := {7} tii[10,36] := {27} tii[10,37] := {19} tii[10,38] := {38} tii[10,39] := {25} tii[10,40] := {0} tii[10,41] := {6} tii[10,42] := {16} cell#25 , |C| = 90 special orbit = [4, 2, 1, 1] special rep = [4, 2, 1, 1] , dim = 90 cell rep = phi[4,2,1,1] TII depth = 2 TII multiplicity polynomial = 90*X TII subcells: tii[12,1] := {57} tii[12,2] := {55} tii[12,3] := {56} tii[12,4] := {69} tii[12,5] := {76} tii[12,6] := {45} tii[12,7] := {75} tii[12,8] := {37} tii[12,9] := {58} tii[12,10] := {82} tii[12,11] := {85} tii[12,12] := {68} tii[12,13] := {81} tii[12,14] := {88} tii[12,15] := {89} tii[12,16] := {54} tii[12,17] := {63} tii[12,18] := {31} tii[12,19] := {62} tii[12,20] := {21} tii[12,21] := {40} tii[12,22] := {14} tii[12,23] := {74} tii[12,24] := {78} tii[12,25] := {53} tii[12,26] := {8} tii[12,27] := {73} tii[12,28] := {20} tii[12,29] := {13} tii[12,30] := {84} tii[12,31] := {86} tii[12,32] := {29} tii[12,33] := {51} tii[12,34] := {48} tii[12,35] := {61} tii[12,36] := {26} tii[12,37] := {47} tii[12,38] := {10} tii[12,39] := {71} tii[12,40] := {79} tii[12,41] := {25} tii[12,42] := {46} tii[12,43] := {50} tii[12,44] := {65} tii[12,45] := {49} tii[12,46] := {36} tii[12,47] := {19} tii[12,48] := {7} tii[12,49] := {24} tii[12,50] := {35} tii[12,51] := {17} tii[12,52] := {18} tii[12,53] := {33} tii[12,54] := {23} tii[12,55] := {34} tii[12,56] := {43} tii[12,57] := {66} tii[12,58] := {6} tii[12,59] := {60} tii[12,60] := {1} tii[12,61] := {9} tii[12,62] := {38} tii[12,63] := {5} tii[12,64] := {44} tii[12,65] := {59} tii[12,66] := {16} tii[12,67] := {67} tii[12,68] := {32} tii[12,69] := {80} tii[12,70] := {0} tii[12,71] := {77} tii[12,72] := {3} tii[12,73] := {15} tii[12,74] := {87} tii[12,75] := {4} tii[12,76] := {42} tii[12,77] := {22} tii[12,78] := {30} tii[12,79] := {41} tii[12,80] := {52} tii[12,81] := {72} tii[12,82] := {2} tii[12,83] := {64} tii[12,84] := {11} tii[12,85] := {83} tii[12,86] := {28} tii[12,87] := {12} tii[12,88] := {39} tii[12,89] := {70} tii[12,90] := {27} cell#26 , |C| = 90 special orbit = [4, 2, 1, 1] special rep = [4, 2, 1, 1] , dim = 90 cell rep = phi[4,2,1,1] TII depth = 2 TII multiplicity polynomial = 90*X TII subcells: tii[12,1] := {88} tii[12,2] := {70} tii[12,3] := {47} tii[12,4] := {80} tii[12,5] := {53} tii[12,6] := {74} tii[12,7] := {24} tii[12,8] := {61} tii[12,9] := {45} tii[12,10] := {69} tii[12,11] := {34} tii[12,12] := {59} tii[12,13] := {42} tii[12,14] := {52} tii[12,15] := {43} tii[12,16] := {89} tii[12,17] := {33} tii[12,18] := {82} tii[12,19] := {8} tii[12,20] := {72} tii[12,21] := {56} tii[12,22] := {87} tii[12,23] := {50} tii[12,24] := {15} tii[12,25] := {40} tii[12,26] := {83} tii[12,27] := {21} tii[12,28] := {73} tii[12,29] := {86} tii[12,30] := {32} tii[12,31] := {22} tii[12,32] := {84} tii[12,33] := {85} tii[12,34] := {66} tii[12,35] := {7} tii[12,36] := {57} tii[12,37] := {39} tii[12,38] := {65} tii[12,39] := {20} tii[12,40] := {14} tii[12,41] := {58} tii[12,42] := {64} tii[12,43] := {38} tii[12,44] := {30} tii[12,45] := {37} tii[12,46] := {81} tii[12,47] := {71} tii[12,48] := {55} tii[12,49] := {63} tii[12,50] := {54} tii[12,51] := {46} tii[12,52] := {36} tii[12,53] := {28} tii[12,54] := {27} tii[12,55] := {29} tii[12,56] := {13} tii[12,57] := {3} tii[12,58] := {79} tii[12,59] := {35} tii[12,60] := {75} tii[12,61] := {62} tii[12,62] := {18} tii[12,63] := {78} tii[12,64] := {44} tii[12,65] := {11} tii[12,66] := {76} tii[12,67] := {26} tii[12,68] := {77} tii[12,69] := {12} tii[12,70] := {68} tii[12,71] := {17} tii[12,72] := {60} tii[12,73] := {67} tii[12,74] := {25} tii[12,75] := {51} tii[12,76] := {16} tii[12,77] := {6} tii[12,78] := {23} tii[12,79] := {1} tii[12,80] := {10} tii[12,81] := {2} tii[12,82] := {49} tii[12,83] := {5} tii[12,84] := {41} tii[12,85] := {9} tii[12,86] := {48} tii[12,87] := {31} tii[12,88] := {0} tii[12,89] := {4} tii[12,90] := {19} cell#27 , |C| = 70 special orbit = [3, 2, 2, 1] special rep = [3, 2, 2, 1] , dim = 70 cell rep = phi[3,2,2,1] TII depth = 2 TII multiplicity polynomial = 70*X TII subcells: tii[8,1] := {69} tii[8,2] := {54} tii[8,3] := {68} tii[8,4] := {63} tii[8,5] := {43} tii[8,6] := {56} tii[8,7] := {62} tii[8,8] := {27} tii[8,9] := {50} tii[8,10] := {34} tii[8,11] := {42} tii[8,12] := {33} tii[8,13] := {52} tii[8,14] := {40} tii[8,15] := {32} tii[8,16] := {64} tii[8,17] := {38} tii[8,18] := {60} tii[8,19] := {47} tii[8,20] := {53} tii[8,21] := {46} tii[8,22] := {45} tii[8,23] := {37} tii[8,24] := {66} tii[8,25] := {16} tii[8,26] := {22} tii[8,27] := {55} tii[8,28] := {65} tii[8,29] := {29} tii[8,30] := {24} tii[8,31] := {39} tii[8,32] := {23} tii[8,33] := {61} tii[8,34] := {12} tii[8,35] := {5} tii[8,36] := {15} tii[8,37] := {67} tii[8,38] := {10} tii[8,39] := {4} tii[8,40] := {58} tii[8,41] := {44} tii[8,42] := {35} tii[8,43] := {57} tii[8,44] := {28} tii[8,45] := {21} tii[8,46] := {51} tii[8,47] := {9} tii[8,48] := {26} tii[8,49] := {59} tii[8,50] := {19} tii[8,51] := {14} tii[8,52] := {20} tii[8,53] := {8} tii[8,54] := {41} tii[8,55] := {18} tii[8,56] := {48} tii[8,57] := {31} tii[8,58] := {17} tii[8,59] := {13} tii[8,60] := {6} tii[8,61] := {25} tii[8,62] := {30} tii[8,63] := {2} tii[8,64] := {0} tii[8,65] := {7} tii[8,66] := {49} tii[8,67] := {11} tii[8,68] := {1} tii[8,69] := {36} tii[8,70] := {3} cell#28 , |C| = 90 special orbit = [4, 2, 1, 1] special rep = [4, 2, 1, 1] , dim = 90 cell rep = phi[4,2,1,1] TII depth = 2 TII multiplicity polynomial = 90*X TII subcells: tii[12,1] := {47} tii[12,2] := {72} tii[12,3] := {86} tii[12,4] := {30} tii[12,5] := {59} tii[12,6] := {14} tii[12,7] := {77} tii[12,8] := {23} tii[12,9] := {40} tii[12,10] := {38} tii[12,11] := {64} tii[12,12] := {19} tii[12,13] := {37} tii[12,14] := {49} tii[12,15] := {39} tii[12,16] := {46} tii[12,17] := {71} tii[12,18] := {28} tii[12,19] := {85} tii[12,20] := {34} tii[12,21] := {51} tii[12,22] := {13} tii[12,23] := {62} tii[12,24] := {78} tii[12,25] := {44} tii[12,26] := {17} tii[12,27] := {61} tii[12,28] := {32} tii[12,29] := {12} tii[12,30] := {66} tii[12,31] := {60} tii[12,32] := {25} tii[12,33] := {42} tii[12,34] := {73} tii[12,35] := {88} tii[12,36] := {56} tii[12,37] := {70} tii[12,38] := {36} tii[12,39] := {80} tii[12,40] := {76} tii[12,41] := {53} tii[12,42] := {67} tii[12,43] := {89} tii[12,44] := {84} tii[12,45] := {87} tii[12,46] := {29} tii[12,47] := {35} tii[12,48] := {52} tii[12,49] := {4} tii[12,50] := {55} tii[12,51] := {11} tii[12,52] := {69} tii[12,53] := {24} tii[12,54] := {2} tii[12,55] := {82} tii[12,56] := {10} tii[12,57] := {3} tii[12,58] := {1} tii[12,59] := {41} tii[12,60] := {5} tii[12,61] := {15} tii[12,62] := {58} tii[12,63] := {0} tii[12,64] := {8} tii[12,65] := {74} tii[12,66] := {7} tii[12,67] := {22} tii[12,68] := {20} tii[12,69] := {9} tii[12,70] := {6} tii[12,71] := {57} tii[12,72] := {16} tii[12,73] := {31} tii[12,74] := {21} tii[12,75] := {48} tii[12,76] := {54} tii[12,77] := {68} tii[12,78] := {27} tii[12,79] := {81} tii[12,80] := {45} tii[12,81] := {26} tii[12,82] := {18} tii[12,83] := {75} tii[12,84] := {33} tii[12,85] := {43} tii[12,86] := {50} tii[12,87] := {65} tii[12,88] := {83} tii[12,89] := {63} tii[12,90] := {79} cell#29 , |C| = 90 special orbit = [4, 2, 1, 1] special rep = [4, 2, 1, 1] , dim = 90 cell rep = phi[4,2,1,1] TII depth = 2 TII multiplicity polynomial = 90*X TII subcells: tii[12,1] := {60} tii[12,2] := {58} tii[12,3] := {59} tii[12,4] := {69} tii[12,5] := {34} tii[12,6] := {82} tii[12,7] := {35} tii[12,8] := {88} tii[12,9] := {89} tii[12,10] := {56} tii[12,11] := {22} tii[12,12] := {75} tii[12,13] := {80} tii[12,14] := {42} tii[12,15] := {55} tii[12,16] := {53} tii[12,17] := {11} tii[12,18] := {73} tii[12,19] := {13} tii[12,20] := {84} tii[12,21] := {86} tii[12,22] := {63} tii[12,23] := {25} tii[12,24] := {8} tii[12,25] := {50} tii[12,26] := {78} tii[12,27] := {66} tii[12,28] := {83} tii[12,29] := {62} tii[12,30] := {20} tii[12,31] := {26} tii[12,32] := {72} tii[12,33] := {52} tii[12,34] := {47} tii[12,35] := {12} tii[12,36] := {71} tii[12,37] := {79} tii[12,38] := {61} tii[12,39] := {27} tii[12,40] := {43} tii[12,41] := {70} tii[12,42] := {46} tii[12,43] := {49} tii[12,44] := {65} tii[12,45] := {48} tii[12,46] := {38} tii[12,47] := {19} tii[12,48] := {7} tii[12,49] := {77} tii[12,50] := {37} tii[12,51] := {85} tii[12,52] := {18} tii[12,53] := {87} tii[12,54] := {76} tii[12,55] := {36} tii[12,56] := {81} tii[12,57] := {68} tii[12,58] := {40} tii[12,59] := {17} tii[12,60] := {64} tii[12,61] := {74} tii[12,62] := {6} tii[12,63] := {41} tii[12,64] := {57} tii[12,65] := {16} tii[12,66] := {54} tii[12,67] := {67} tii[12,68] := {32} tii[12,69] := {45} tii[12,70] := {21} tii[12,71] := {9} tii[12,72] := {31} tii[12,73] := {15} tii[12,74] := {33} tii[12,75] := {5} tii[12,76] := {4} tii[12,77] := {0} tii[12,78] := {28} tii[12,79] := {3} tii[12,80] := {44} tii[12,81] := {24} tii[12,82] := {39} tii[12,83] := {1} tii[12,84] := {51} tii[12,85] := {10} tii[12,86] := {30} tii[12,87] := {14} tii[12,88] := {2} tii[12,89] := {23} tii[12,90] := {29} cell#30 , |C| = 70 special orbit = [3, 2, 2, 1] special rep = [3, 2, 2, 1] , dim = 70 cell rep = phi[3,2,2,1] TII depth = 2 TII multiplicity polynomial = 70*X TII subcells: tii[8,1] := {34} tii[8,2] := {33} tii[8,3] := {32} tii[8,4] := {48} tii[8,5] := {47} tii[8,6] := {55} tii[8,7] := {51} tii[8,8] := {29} tii[8,9] := {67} tii[8,10] := {69} tii[8,11] := {45} tii[8,12] := {53} tii[8,13] := {61} tii[8,14] := {66} tii[8,15] := {68} tii[8,16] := {22} tii[8,17] := {23} tii[8,18] := {12} tii[8,19] := {5} tii[8,20] := {10} tii[8,21] := {4} tii[8,22] := {43} tii[8,23] := {57} tii[8,24] := {21} tii[8,25] := {14} tii[8,26] := {62} tii[8,27] := {9} tii[8,28] := {19} tii[8,29] := {26} tii[8,30] := {50} tii[8,31] := {20} tii[8,32] := {38} tii[8,33] := {8} tii[8,34] := {56} tii[8,35] := {42} tii[8,36] := {41} tii[8,37] := {18} tii[8,38] := {52} tii[8,39] := {40} tii[8,40] := {31} tii[8,41] := {17} tii[8,42] := {60} tii[8,43] := {37} tii[8,44] := {30} tii[8,45] := {64} tii[8,46] := {24} tii[8,47] := {54} tii[8,48] := {59} tii[8,49] := {36} tii[8,50] := {63} tii[8,51] := {16} tii[8,52] := {39} tii[8,53] := {58} tii[8,54] := {49} tii[8,55] := {65} tii[8,56] := {6} tii[8,57] := {2} tii[8,58] := {0} tii[8,59] := {35} tii[8,60] := {44} tii[8,61] := {11} tii[8,62] := {1} tii[8,63] := {28} tii[8,64] := {15} tii[8,65] := {7} tii[8,66] := {3} tii[8,67] := {25} tii[8,68] := {27} tii[8,69] := {13} tii[8,70] := {46} cell#31 , |C| = 35 special orbit = [4, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1] , dim = 35 cell rep = phi[4,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[11,1] := {34} tii[11,2] := {29} tii[11,3] := {25} tii[11,4] := {31} tii[11,5] := {21} tii[11,6] := {16} tii[11,7] := {24} tii[11,8] := {20} tii[11,9] := {28} tii[11,10] := {33} tii[11,11] := {12} tii[11,12] := {8} tii[11,13] := {15} tii[11,14] := {11} tii[11,15] := {19} tii[11,16] := {27} tii[11,17] := {7} tii[11,18] := {14} tii[11,19] := {23} tii[11,20] := {30} tii[11,21] := {4} tii[11,22] := {1} tii[11,23] := {6} tii[11,24] := {3} tii[11,25] := {10} tii[11,26] := {18} tii[11,27] := {0} tii[11,28] := {5} tii[11,29] := {13} tii[11,30] := {22} tii[11,31] := {2} tii[11,32] := {9} tii[11,33] := {17} tii[11,34] := {26} tii[11,35] := {32} cell#32 , |C| = 64 special orbit = [3, 2, 1, 1, 1] special rep = [3, 2, 1, 1, 1] , dim = 64 cell rep = phi[3,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[7,1] := {62} tii[7,2] := {42} tii[7,3] := {56} tii[7,4] := {23} tii[7,5] := {49} tii[7,6] := {33} tii[7,7] := {41} tii[7,8] := {32} tii[7,9] := {63} tii[7,10] := {10} tii[7,11] := {58} tii[7,12] := {44} tii[7,13] := {61} tii[7,14] := {22} tii[7,15] := {15} tii[7,16] := {59} tii[7,17] := {60} tii[7,18] := {39} tii[7,19] := {31} tii[7,20] := {38} tii[7,21] := {53} tii[7,22] := {2} tii[7,23] := {47} tii[7,24] := {28} tii[7,25] := {9} tii[7,26] := {52} tii[7,27] := {4} tii[7,28] := {48} tii[7,29] := {51} tii[7,30] := {46} tii[7,31] := {20} tii[7,32] := {35} tii[7,33] := {12} tii[7,34] := {19} tii[7,35] := {45} tii[7,36] := {27} tii[7,37] := {37} tii[7,38] := {26} tii[7,39] := {36} tii[7,40] := {25} tii[7,41] := {57} tii[7,42] := {43} tii[7,43] := {34} tii[7,44] := {24} tii[7,45] := {17} tii[7,46] := {7} tii[7,47] := {55} tii[7,48] := {11} tii[7,49] := {50} tii[7,50] := {16} tii[7,51] := {54} tii[7,52] := {40} tii[7,53] := {30} tii[7,54] := {3} tii[7,55] := {18} tii[7,56] := {29} tii[7,57] := {6} tii[7,58] := {14} tii[7,59] := {21} tii[7,60] := {5} tii[7,61] := {0} tii[7,62] := {1} tii[7,63] := {8} tii[7,64] := {13} cell#33 , |C| = 64 special orbit = [3, 2, 1, 1, 1] special rep = [3, 2, 1, 1, 1] , dim = 64 cell rep = phi[3,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[7,1] := {32} tii[7,2] := {31} tii[7,3] := {44} tii[7,4] := {50} tii[7,5] := {24} tii[7,6] := {42} tii[7,7] := {58} tii[7,8] := {62} tii[7,9] := {29} tii[7,10] := {35} tii[7,11] := {14} tii[7,12] := {28} tii[7,13] := {4} tii[7,14] := {46} tii[7,15] := {51} tii[7,16] := {13} tii[7,17] := {27} tii[7,18] := {26} tii[7,19] := {37} tii[7,20] := {25} tii[7,21] := {43} tii[7,22] := {49} tii[7,23] := {23} tii[7,24] := {41} tii[7,25] := {57} tii[7,26] := {10} tii[7,27] := {61} tii[7,28] := {21} tii[7,29] := {39} tii[7,30] := {3} tii[7,31] := {48} tii[7,32] := {9} tii[7,33] := {53} tii[7,34] := {47} tii[7,35] := {20} tii[7,36] := {38} tii[7,37] := {59} tii[7,38] := {63} tii[7,39] := {56} tii[7,40] := {60} tii[7,41] := {17} tii[7,42] := {7} tii[7,43] := {11} tii[7,44] := {16} tii[7,45] := {22} tii[7,46] := {40} tii[7,47] := {1} tii[7,48] := {34} tii[7,49] := {6} tii[7,50] := {55} tii[7,51] := {15} tii[7,52] := {5} tii[7,53] := {0} tii[7,54] := {18} tii[7,55] := {2} tii[7,56] := {8} tii[7,57] := {45} tii[7,58] := {19} tii[7,59] := {12} tii[7,60] := {36} tii[7,61] := {33} tii[7,62] := {54} tii[7,63] := {30} tii[7,64] := {52} cell#34 , |C| = 28 special orbit = [2, 2, 2, 1, 1] special rep = [2, 2, 2, 1, 1] , dim = 28 cell rep = phi[2,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[4,1] := {26} tii[4,2] := {16} tii[4,3] := {10} tii[4,4] := {8} tii[4,5] := {25} tii[4,6] := {19} tii[4,7] := {13} tii[4,8] := {27} tii[4,9] := {23} tii[4,10] := {24} tii[4,11] := {20} tii[4,12] := {14} tii[4,13] := {5} tii[4,14] := {22} tii[4,15] := {3} tii[4,16] := {1} tii[4,17] := {17} tii[4,18] := {11} tii[4,19] := {12} tii[4,20] := {15} tii[4,21] := {2} tii[4,22] := {9} tii[4,23] := {21} tii[4,24] := {6} tii[4,25] := {18} tii[4,26] := {7} tii[4,27] := {0} tii[4,28] := {4} cell#35 , |C| = 35 special orbit = [4, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1] , dim = 35 cell rep = phi[4,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[11,1] := {2} tii[11,2] := {15} tii[11,3] := {30} tii[11,4] := {34} tii[11,5] := {8} tii[11,6] := {20} tii[11,7] := {25} tii[11,8] := {7} tii[11,9] := {12} tii[11,10] := {1} tii[11,11] := {14} tii[11,12] := {29} tii[11,13] := {32} tii[11,14] := {21} tii[11,15] := {26} tii[11,16] := {13} tii[11,17] := {28} tii[11,18] := {31} tii[11,19] := {27} tii[11,20] := {33} tii[11,21] := {6} tii[11,22] := {19} tii[11,23] := {23} tii[11,24] := {9} tii[11,25] := {16} tii[11,26] := {5} tii[11,27] := {18} tii[11,28] := {22} tii[11,29] := {17} tii[11,30] := {24} tii[11,31] := {4} tii[11,32] := {10} tii[11,33] := {3} tii[11,34] := {11} tii[11,35] := {0} cell#36 , |C| = 21 special orbit = [3, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1] , dim = 21 cell rep = phi[3,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[6,1] := {20} tii[6,2] := {12} tii[6,3] := {2} tii[6,4] := {19} tii[6,5] := {14} tii[6,6] := {17} tii[6,7] := {10} tii[6,8] := {5} tii[6,9] := {9} tii[6,10] := {1} tii[6,11] := {18} tii[6,12] := {13} tii[6,13] := {16} tii[6,14] := {11} tii[6,15] := {15} tii[6,16] := {8} tii[6,17] := {4} tii[6,18] := {7} tii[6,19] := {3} tii[6,20] := {6} tii[6,21] := {0} cell#37 , |C| = 21 special orbit = [3, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1] , dim = 21 cell rep = phi[3,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[6,1] := {2} tii[6,2] := {14} tii[6,3] := {18} tii[6,4] := {5} tii[6,5] := {9} tii[6,6] := {1} tii[6,7] := {13} tii[6,8] := {16} tii[6,9] := {11} tii[6,10] := {19} tii[6,11] := {4} tii[6,12] := {6} tii[6,13] := {3} tii[6,14] := {7} tii[6,15] := {0} tii[6,16] := {12} tii[6,17] := {15} tii[6,18] := {10} tii[6,19] := {17} tii[6,20] := {8} tii[6,21] := {20} cell#38 , |C| = 7 special orbit = [2, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1] , dim = 7 cell rep = phi[2,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {6} tii[2,2] := {2} tii[2,3] := {5} tii[2,4] := {1} tii[2,5] := {4} tii[2,6] := {0} tii[2,7] := {3}