TII subcells for the SL(8,R) x PU(6,2) block of SL8 # cell#0 , |C| = 1 special orbit = [8] special rep = [8] , dim = 1 cell rep = phi[8] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[22,1] := {0} cell#1 , |C| = 7 special orbit = [7, 1] special rep = [7, 1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[21,1] := {6} tii[21,2] := {5} tii[21,3] := {4} tii[21,4] := {3} tii[21,5] := {1} tii[21,6] := {0} tii[21,7] := {2} cell#2 , |C| = 7 special orbit = [7, 1] special rep = [7, 1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[21,1] := {2} tii[21,2] := {0} tii[21,3] := {1} tii[21,4] := {3} tii[21,5] := {4} tii[21,6] := {5} tii[21,7] := {6} cell#3 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {19} tii[20,2] := {15} tii[20,3] := {16} tii[20,4] := {17} tii[20,5] := {18} tii[20,6] := {14} tii[20,7] := {9} tii[20,8] := {5} tii[20,9] := {2} tii[20,10] := {0} tii[20,11] := {13} tii[20,12] := {8} tii[20,13] := {4} tii[20,14] := {1} tii[20,15] := {12} tii[20,16] := {7} tii[20,17] := {3} tii[20,18] := {11} tii[20,19] := {6} tii[20,20] := {10} cell#4 , |C| = 21 special orbit = [6, 1, 1] special rep = [6, 1, 1] , dim = 21 cell rep = phi[6,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[19,1] := {20} tii[19,2] := {18} tii[19,3] := {16} tii[19,4] := {9} tii[19,5] := {4} tii[19,6] := {10} tii[19,7] := {14} tii[19,8] := {5} tii[19,9] := {1} tii[19,10] := {0} tii[19,11] := {2} tii[19,12] := {13} tii[19,13] := {7} tii[19,14] := {3} tii[19,15] := {6} tii[19,16] := {12} tii[19,17] := {8} tii[19,18] := {15} tii[19,19] := {11} tii[19,20] := {17} tii[19,21] := {19} cell#5 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {19} tii[20,2] := {16} tii[20,3] := {13} tii[20,4] := {6} tii[20,5] := {2} tii[20,6] := {18} tii[20,7] := {17} tii[20,8] := {15} tii[20,9] := {12} tii[20,10] := {9} tii[20,11] := {14} tii[20,12] := {11} tii[20,13] := {8} tii[20,14] := {5} tii[20,15] := {10} tii[20,16] := {7} tii[20,17] := {4} tii[20,18] := {3} tii[20,19] := {1} tii[20,20] := {0} cell#6 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {63} tii[17,2] := {58} tii[17,3] := {49} tii[17,4] := {23} tii[17,5] := {61} tii[17,6] := {51} tii[17,7] := {60} tii[17,8] := {31} tii[17,9] := {55} tii[17,10] := {4} tii[17,11] := {47} tii[17,12] := {35} tii[17,13] := {57} tii[17,14] := {40} tii[17,15] := {54} tii[17,16] := {16} tii[17,17] := {44} tii[17,18] := {29} tii[17,19] := {50} tii[17,20] := {25} tii[17,21] := {45} tii[17,22] := {30} tii[17,23] := {39} tii[17,24] := {32} tii[17,25] := {62} tii[17,26] := {59} tii[17,27] := {53} tii[17,28] := {43} tii[17,29] := {56} tii[17,30] := {48} tii[17,31] := {52} tii[17,32] := {37} tii[17,33] := {42} tii[17,34] := {22} tii[17,35] := {28} tii[17,36] := {36} tii[17,37] := {21} tii[17,38] := {38} tii[17,39] := {24} tii[17,40] := {9} tii[17,41] := {10} tii[17,42] := {11} tii[17,43] := {3} tii[17,44] := {0} tii[17,45] := {41} tii[17,46] := {27} tii[17,47] := {14} tii[17,48] := {46} tii[17,49] := {15} tii[17,50] := {34} tii[17,51] := {5} tii[17,52] := {19} tii[17,53] := {20} tii[17,54] := {1} tii[17,55] := {8} tii[17,56] := {2} tii[17,57] := {26} tii[17,58] := {13} tii[17,59] := {33} tii[17,60] := {6} tii[17,61] := {18} tii[17,62] := {7} tii[17,63] := {12} tii[17,64] := {17} cell#7 , |C| = 20 special orbit = [6, 2] special rep = [6, 2] , dim = 20 cell rep = phi[6,2] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[20,1] := {2} tii[20,2] := {7} tii[20,3] := {13} tii[20,4] := {17} tii[20,5] := {19} tii[20,6] := {0} tii[20,7] := {1} tii[20,8] := {3} tii[20,9] := {5} tii[20,10] := {8} tii[20,11] := {4} tii[20,12] := {6} tii[20,13] := {9} tii[20,14] := {11} tii[20,15] := {10} tii[20,16] := {12} tii[20,17] := {14} tii[20,18] := {15} tii[20,19] := {16} tii[20,20] := {18} cell#8 , |C| = 64 special orbit = [5, 2, 1] special rep = [5, 2, 1] , dim = 64 cell rep = phi[5,2,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[17,1] := {32} tii[17,2] := {29} tii[17,3] := {30} tii[17,4] := {31} tii[17,5] := {43} tii[17,6] := {46} tii[17,7] := {28} tii[17,8] := {44} tii[17,9] := {21} tii[17,10] := {45} tii[17,11] := {10} tii[17,12] := {20} tii[17,13] := {53} tii[17,14] := {55} tii[17,15] := {42} tii[17,16] := {54} tii[17,17] := {37} tii[17,18] := {47} tii[17,19] := {59} tii[17,20] := {60} tii[17,21] := {52} tii[17,22] := {58} tii[17,23] := {62} tii[17,24] := {63} tii[17,25] := {19} tii[17,26] := {9} tii[17,27] := {3} tii[17,28] := {0} tii[17,29] := {14} tii[17,30] := {5} tii[17,31] := {18} tii[17,32] := {1} tii[17,33] := {8} tii[17,34] := {4} tii[17,35] := {2} tii[17,36] := {13} tii[17,37] := {6} tii[17,38] := {17} tii[17,39] := {7} tii[17,40] := {15} tii[17,41] := {12} tii[17,42] := {16} tii[17,43] := {25} tii[17,44] := {39} tii[17,45] := {36} tii[17,46] := {24} tii[17,47] := {11} tii[17,48] := {27} tii[17,49] := {35} tii[17,50] := {22} tii[17,51] := {23} tii[17,52] := {33} tii[17,53] := {26} tii[17,54] := {34} tii[17,55] := {40} tii[17,56] := {50} tii[17,57] := {49} tii[17,58] := {38} tii[17,59] := {41} tii[17,60] := {48} tii[17,61] := {51} tii[17,62] := {57} tii[17,63] := {56} tii[17,64] := {61} cell#9 , |C| = 56 special orbit = [4, 2, 2] special rep = [4, 2, 2] , dim = 56 cell rep = phi[4,2,2] TII depth = 2 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {55} tii[13,2] := {40} tii[13,3] := {22} tii[13,4] := {54} tii[13,5] := {41} tii[13,6] := {53} tii[13,7] := {47} tii[13,8] := {26} tii[13,9] := {44} tii[13,10] := {6} tii[13,11] := {32} tii[13,12] := {20} tii[13,13] := {38} tii[13,14] := {13} tii[13,15] := {31} tii[13,16] := {17} tii[13,17] := {25} tii[13,18] := {18} tii[13,19] := {50} tii[13,20] := {42} tii[13,21] := {30} tii[13,22] := {48} tii[13,23] := {45} tii[13,24] := {28} tii[13,25] := {27} tii[13,26] := {35} tii[13,27] := {16} tii[13,28] := {39} tii[13,29] := {11} tii[13,30] := {34} tii[13,31] := {51} tii[13,32] := {43} tii[13,33] := {49} tii[13,34] := {29} tii[13,35] := {46} tii[13,36] := {52} tii[13,37] := {33} tii[13,38] := {21} tii[13,39] := {10} tii[13,40] := {9} tii[13,41] := {3} tii[13,42] := {0} tii[13,43] := {14} tii[13,44] := {5} tii[13,45] := {19} tii[13,46] := {1} tii[13,47] := {8} tii[13,48] := {2} tii[13,49] := {4} tii[13,50] := {7} tii[13,51] := {36} tii[13,52] := {24} tii[13,53] := {12} tii[13,54] := {15} tii[13,55] := {23} tii[13,56] := {37} cell#10 , |C| = 21 special orbit = [6, 1, 1] special rep = [6, 1, 1] , dim = 21 cell rep = phi[6,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[19,1] := {1} tii[19,2] := {7} tii[19,3] := {12} tii[19,4] := {16} tii[19,5] := {19} tii[19,6] := {20} tii[19,7] := {5} tii[19,8] := {10} tii[19,9] := {14} tii[19,10] := {17} tii[19,11] := {18} tii[19,12] := {2} tii[19,13] := {8} tii[19,14] := {13} tii[19,15] := {15} tii[19,16] := {3} tii[19,17] := {9} tii[19,18] := {11} tii[19,19] := {4} tii[19,20] := {6} tii[19,21] := {0} cell#11 , |C| = 35 special orbit = [5, 1, 1, 1] special rep = [5, 1, 1, 1] , dim = 35 cell rep = phi[5,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[16,1] := {34} tii[16,2] := {26} tii[16,3] := {16} tii[16,4] := {7} tii[16,5] := {1} tii[16,6] := {33} tii[16,7] := {27} tii[16,8] := {17} tii[16,9] := {8} tii[16,10] := {32} tii[16,11] := {28} tii[16,12] := {18} tii[16,13] := {31} tii[16,14] := {29} tii[16,15] := {30} tii[16,16] := {25} tii[16,17] := {19} tii[16,18] := {11} tii[16,19] := {4} tii[16,20] := {24} tii[16,21] := {20} tii[16,22] := {12} tii[16,23] := {23} tii[16,24] := {21} tii[16,25] := {22} tii[16,26] := {15} tii[16,27] := {9} tii[16,28] := {2} tii[16,29] := {14} tii[16,30] := {10} tii[16,31] := {13} tii[16,32] := {6} tii[16,33] := {3} tii[16,34] := {5} tii[16,35] := {0} cell#12 , |C| = 35 special orbit = [5, 1, 1, 1] special rep = [5, 1, 1, 1] , dim = 35 cell rep = phi[5,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[16,1] := {1} tii[16,2] := {8} tii[16,3] := {18} tii[16,4] := {29} tii[16,5] := {34} tii[16,6] := {4} tii[16,7] := {10} tii[16,8] := {19} tii[16,9] := {22} tii[16,10] := {2} tii[16,11] := {9} tii[16,12] := {13} tii[16,13] := {3} tii[16,14] := {5} tii[16,15] := {0} tii[16,16] := {7} tii[16,17] := {17} tii[16,18] := {28} tii[16,19] := {33} tii[16,20] := {12} tii[16,21] := {20} tii[16,22] := {23} tii[16,23] := {11} tii[16,24] := {14} tii[16,25] := {6} tii[16,26] := {16} tii[16,27] := {27} tii[16,28] := {31} tii[16,29] := {21} tii[16,30] := {24} tii[16,31] := {15} tii[16,32] := {26} tii[16,33] := {30} tii[16,34] := {25} tii[16,35] := {32} cell#13 , |C| = 35 special orbit = [4, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1] , dim = 35 cell rep = phi[4,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[11,1] := {34} tii[11,2] := {19} tii[11,3] := {7} tii[11,4] := {1} tii[11,5] := {33} tii[11,6] := {21} tii[11,7] := {9} tii[11,8] := {31} tii[11,9] := {24} tii[11,10] := {29} tii[11,11] := {15} tii[11,12] := {10} tii[11,13] := {3} tii[11,14] := {14} tii[11,15] := {11} tii[11,16] := {13} tii[11,17] := {5} tii[11,18] := {2} tii[11,19] := {4} tii[11,20] := {0} tii[11,21] := {32} tii[11,22] := {20} tii[11,23] := {8} tii[11,24] := {30} tii[11,25] := {23} tii[11,26] := {27} tii[11,27] := {17} tii[11,28] := {12} tii[11,29] := {16} tii[11,30] := {6} tii[11,31] := {28} tii[11,32] := {22} tii[11,33] := {26} tii[11,34] := {18} tii[11,35] := {25}