TII subcells for the SU(6,2) x PGL(8,R) block of SL8 # cell#0 , |C| = 35 special orbit = [5, 1, 1, 1] special rep = [5, 1, 1, 1] , dim = 35 cell rep = phi[5,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[16,1] := {0} tii[16,2] := {15} tii[16,3] := {1} tii[16,4] := {10} tii[16,5] := {3} tii[16,6] := {28} tii[16,7] := {17} tii[16,8] := {22} tii[16,9] := {18} tii[16,10] := {2} tii[16,11] := {11} tii[16,12] := {5} tii[16,13] := {25} tii[16,14] := {13} tii[16,15] := {7} tii[16,16] := {34} tii[16,17] := {29} tii[16,18] := {32} tii[16,19] := {30} tii[16,20] := {19} tii[16,21] := {23} tii[16,22] := {20} tii[16,23] := {31} tii[16,24] := {24} tii[16,25] := {21} tii[16,26] := {4} tii[16,27] := {12} tii[16,28] := {6} tii[16,29] := {26} tii[16,30] := {14} tii[16,31] := {8} tii[16,32] := {33} tii[16,33] := {27} tii[16,34] := {16} tii[16,35] := {9} cell#1 , |C| = 35 special orbit = [4, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1] , dim = 35 cell rep = phi[4,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[11,1] := {2} tii[11,2] := {9} tii[11,3] := {0} tii[11,4] := {5} tii[11,5] := {19} tii[11,6] := {10} tii[11,7] := {13} tii[11,8] := {1} tii[11,9] := {6} tii[11,10] := {16} tii[11,11] := {28} tii[11,12] := {20} tii[11,13] := {23} tii[11,14] := {11} tii[11,15] := {14} tii[11,16] := {22} tii[11,17] := {3} tii[11,18] := {7} tii[11,19] := {17} tii[11,20] := {26} tii[11,21] := {34} tii[11,22] := {29} tii[11,23] := {31} tii[11,24] := {21} tii[11,25] := {25} tii[11,26] := {32} tii[11,27] := {12} tii[11,28] := {15} tii[11,29] := {24} tii[11,30] := {30} tii[11,31] := {4} tii[11,32] := {8} tii[11,33] := {18} tii[11,34] := {27} tii[11,35] := {33} cell#2 , |C| = 56 special orbit = [3, 3, 1, 1] special rep = [3, 3, 1, 1] , dim = 56 cell rep = phi[3,3,1,1] TII depth = 2 TII multiplicity polynomial = 56*X TII subcells: tii[9,1] := {18} tii[9,2] := {32} tii[9,3] := {39} tii[9,4] := {43} tii[9,5] := {31} tii[9,6] := {19} tii[9,7] := {48} tii[9,8] := {50} tii[9,9] := {53} tii[9,10] := {54} tii[9,11] := {47} tii[9,12] := {36} tii[9,13] := {51} tii[9,14] := {42} tii[9,15] := {55} tii[9,16] := {52} tii[9,17] := {46} tii[9,18] := {45} tii[9,19] := {34} tii[9,20] := {22} tii[9,21] := {3} tii[9,22] := {9} tii[9,23] := {25} tii[9,24] := {5} tii[9,25] := {12} tii[9,26] := {4} tii[9,27] := {21} tii[9,28] := {44} tii[9,29] := {15} tii[9,30] := {40} tii[9,31] := {20} tii[9,32] := {27} tii[9,33] := {10} tii[9,34] := {28} tii[9,35] := {7} tii[9,36] := {26} tii[9,37] := {14} tii[9,38] := {6} tii[9,39] := {37} tii[9,40] := {29} tii[9,41] := {38} tii[9,42] := {41} tii[9,43] := {24} tii[9,44] := {17} tii[9,45] := {35} tii[9,46] := {49} tii[9,47] := {23} tii[9,48] := {11} tii[9,49] := {30} tii[9,50] := {8} tii[9,51] := {0} tii[9,52] := {13} tii[9,53] := {1} tii[9,54] := {33} tii[9,55] := {16} tii[9,56] := {2} cell#3 , |C| = 64 special orbit = [3, 2, 1, 1, 1] special rep = [3, 2, 1, 1, 1] , dim = 64 cell rep = phi[3,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[7,1] := {2} tii[7,2] := {7} tii[7,3] := {6} tii[7,4] := {15} tii[7,5] := {12} tii[7,6] := {20} tii[7,7] := {25} tii[7,8] := {14} tii[7,9] := {13} tii[7,10] := {29} tii[7,11] := {23} tii[7,12] := {35} tii[7,13] := {30} tii[7,14] := {40} tii[7,15] := {28} tii[7,16] := {41} tii[7,17] := {36} tii[7,18] := {52} tii[7,19] := {39} tii[7,20] := {27} tii[7,21] := {24} tii[7,22] := {47} tii[7,23] := {38} tii[7,24] := {49} tii[7,25] := {56} tii[7,26] := {48} tii[7,27] := {46} tii[7,28] := {57} tii[7,29] := {50} tii[7,30] := {59} tii[7,31] := {61} tii[7,32] := {62} tii[7,33] := {55} tii[7,34] := {45} tii[7,35] := {58} tii[7,36] := {51} tii[7,37] := {63} tii[7,38] := {60} tii[7,39] := {54} tii[7,40] := {44} tii[7,41] := {0} tii[7,42] := {1} tii[7,43] := {5} tii[7,44] := {3} tii[7,45] := {10} tii[7,46] := {4} tii[7,47] := {16} tii[7,48] := {9} tii[7,49] := {26} tii[7,50] := {8} tii[7,51] := {21} tii[7,52] := {11} tii[7,53] := {43} tii[7,54] := {18} tii[7,55] := {53} tii[7,56] := {42} tii[7,57] := {19} tii[7,58] := {37} tii[7,59] := {17} tii[7,60] := {22} tii[7,61] := {32} tii[7,62] := {33} tii[7,63] := {34} tii[7,64] := {31} cell#4 , |C| = 20 special orbit = [2, 2, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1] , dim = 20 cell rep = phi[2,2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {1} tii[3,2] := {3} tii[3,3] := {4} tii[3,4] := {5} tii[3,5] := {7} tii[3,6] := {9} tii[3,7] := {8} tii[3,8] := {10} tii[3,9] := {13} tii[3,10] := {15} tii[3,11] := {11} tii[3,12] := {14} tii[3,13] := {16} tii[3,14] := {18} tii[3,15] := {19} tii[3,16] := {0} tii[3,17] := {2} tii[3,18] := {6} tii[3,19] := {12} tii[3,20] := {17} cell#5 , |C| = 35 special orbit = [4, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1] , dim = 35 cell rep = phi[4,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[11,1] := {34} tii[11,2] := {28} tii[11,3] := {31} tii[11,4] := {29} tii[11,5] := {19} tii[11,6] := {24} tii[11,7] := {20} tii[11,8] := {32} tii[11,9] := {25} tii[11,10] := {21} tii[11,11] := {9} tii[11,12] := {13} tii[11,13] := {10} tii[11,14] := {22} tii[11,15] := {14} tii[11,16] := {11} tii[11,17] := {30} tii[11,18] := {23} tii[11,19] := {15} tii[11,20] := {12} tii[11,21] := {0} tii[11,22] := {5} tii[11,23] := {1} tii[11,24] := {16} tii[11,25] := {6} tii[11,26] := {2} tii[11,27] := {26} tii[11,28] := {17} tii[11,29] := {7} tii[11,30] := {3} tii[11,31] := {33} tii[11,32] := {27} tii[11,33] := {18} tii[11,34] := {8} tii[11,35] := {4} cell#6 , |C| = 21 special orbit = [3, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1] , dim = 21 cell rep = phi[3,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[6,1] := {20} tii[6,2] := {14} tii[6,3] := {16} tii[6,4] := {9} tii[6,5] := {11} tii[6,6] := {17} tii[6,7] := {5} tii[6,8] := {7} tii[6,9] := {12} tii[6,10] := {18} tii[6,11] := {2} tii[6,12] := {3} tii[6,13] := {6} tii[6,14] := {10} tii[6,15] := {15} tii[6,16] := {0} tii[6,17] := {1} tii[6,18] := {4} tii[6,19] := {8} tii[6,20] := {13} tii[6,21] := {19} cell#7 , |C| = 64 special orbit = [3, 2, 1, 1, 1] special rep = [3, 2, 1, 1, 1] , dim = 64 cell rep = phi[3,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 64*X TII subcells: tii[7,1] := {46} tii[7,2] := {49} tii[7,3] := {56} tii[7,4] := {57} tii[7,5] := {45} tii[7,6] := {30} tii[7,7] := {50} tii[7,8] := {37} tii[7,9] := {61} tii[7,10] := {62} tii[7,11] := {55} tii[7,12] := {43} tii[7,13] := {44} tii[7,14] := {58} tii[7,15] := {48} tii[7,16] := {29} tii[7,17] := {17} tii[7,18] := {51} tii[7,19] := {38} tii[7,20] := {24} tii[7,21] := {63} tii[7,22] := {52} tii[7,23] := {60} tii[7,24] := {53} tii[7,25] := {39} tii[7,26] := {54} tii[7,27] := {25} tii[7,28] := {42} tii[7,29] := {27} tii[7,30] := {41} tii[7,31] := {35} tii[7,32] := {26} tii[7,33] := {21} tii[7,34] := {11} tii[7,35] := {15} tii[7,36] := {7} tii[7,37] := {20} tii[7,38] := {10} tii[7,39] := {4} tii[7,40] := {1} tii[7,41] := {31} tii[7,42] := {22} tii[7,43] := {33} tii[7,44] := {36} tii[7,45] := {18} tii[7,46] := {12} tii[7,47] := {34} tii[7,48] := {47} tii[7,49] := {19} tii[7,50] := {23} tii[7,51] := {9} tii[7,52] := {6} tii[7,53] := {28} tii[7,54] := {59} tii[7,55] := {16} tii[7,56] := {8} tii[7,57] := {32} tii[7,58] := {3} tii[7,59] := {13} tii[7,60] := {2} tii[7,61] := {40} tii[7,62] := {14} tii[7,63] := {5} tii[7,64] := {0} cell#8 , |C| = 20 special orbit = [2, 2, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1] , dim = 20 cell rep = phi[2,2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {19} tii[3,2] := {18} tii[3,3] := {16} tii[3,4] := {15} tii[3,5] := {12} tii[3,6] := {9} tii[3,7] := {14} tii[3,8] := {11} tii[3,9] := {8} tii[3,10] := {5} tii[3,11] := {10} tii[3,12] := {7} tii[3,13] := {4} tii[3,14] := {2} tii[3,15] := {1} tii[3,16] := {17} tii[3,17] := {13} tii[3,18] := {6} tii[3,19] := {3} tii[3,20] := {0} cell#9 , |C| = 21 special orbit = [3, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1] , dim = 21 cell rep = phi[3,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {6} tii[6,4] := {5} tii[6,5] := {12} tii[6,6] := {7} tii[6,7] := {14} tii[6,8] := {17} tii[6,9] := {13} tii[6,10] := {8} tii[6,11] := {18} tii[6,12] := {20} tii[6,13] := {19} tii[6,14] := {15} tii[6,15] := {9} tii[6,16] := {10} tii[6,17] := {16} tii[6,18] := {11} tii[6,19] := {4} tii[6,20] := {2} tii[6,21] := {0} cell#10 , |C| = 20 special orbit = [2, 2, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1] , dim = 20 cell rep = phi[2,2,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {9} tii[3,2] := {13} tii[3,3] := {8} tii[3,4] := {16} tii[3,5] := {12} tii[3,6] := {7} tii[3,7] := {18} tii[3,8] := {15} tii[3,9] := {11} tii[3,10] := {6} tii[3,11] := {19} tii[3,12] := {17} tii[3,13] := {14} tii[3,14] := {10} tii[3,15] := {5} tii[3,16] := {1} tii[3,17] := {2} tii[3,18] := {3} tii[3,19] := {4} tii[3,20] := {0} cell#11 , |C| = 7 special orbit = [2, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1] , dim = 7 cell rep = phi[2,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {4} tii[2,2] := {6} tii[2,3] := {5} tii[2,4] := {3} tii[2,5] := {2} tii[2,6] := {1} tii[2,7] := {0} cell#12 , |C| = 7 special orbit = [2, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1] , dim = 7 cell rep = phi[2,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {5} tii[2,6] := {6} tii[2,7] := {4} cell#13 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}