TII subcells for the GL(9,R) x U(7,2) block of GL9 # cell#0 , |C| = 1 special orbit = [9] special rep = [9] , dim = 1 cell rep = phi[9] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[30,1] := {0} cell#1 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {7} tii[29,2] := {6} tii[29,3] := {5} tii[29,4] := {4} tii[29,5] := {3} tii[29,6] := {1} tii[29,7] := {0} tii[29,8] := {2} cell#2 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {2} tii[29,2] := {0} tii[29,3] := {1} tii[29,4] := {3} tii[29,5] := {4} tii[29,6] := {5} tii[29,7] := {6} tii[29,8] := {7} cell#3 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {26} tii[28,2] := {21} tii[28,3] := {22} tii[28,4] := {23} tii[28,5] := {24} tii[28,6] := {25} tii[28,7] := {20} tii[28,8] := {14} tii[28,9] := {9} tii[28,10] := {5} tii[28,11] := {2} tii[28,12] := {0} tii[28,13] := {19} tii[28,14] := {13} tii[28,15] := {8} tii[28,16] := {4} tii[28,17] := {1} tii[28,18] := {18} tii[28,19] := {12} tii[28,20] := {7} tii[28,21] := {3} tii[28,22] := {17} tii[28,23] := {11} tii[28,24] := {6} tii[28,25] := {16} tii[28,26] := {10} tii[28,27] := {15} cell#4 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {27} tii[27,2] := {25} tii[27,3] := {23} tii[27,4] := {16} tii[27,5] := {9} tii[27,6] := {4} tii[27,7] := {10} tii[27,8] := {21} tii[27,9] := {11} tii[27,10] := {5} tii[27,11] := {1} tii[27,12] := {0} tii[27,13] := {2} tii[27,14] := {20} tii[27,15] := {12} tii[27,16] := {6} tii[27,17] := {3} tii[27,18] := {7} tii[27,19] := {19} tii[27,20] := {14} tii[27,21] := {8} tii[27,22] := {13} tii[27,23] := {18} tii[27,24] := {15} tii[27,25] := {22} tii[27,26] := {17} tii[27,27] := {24} tii[27,28] := {26} cell#5 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {26} tii[28,2] := {23} tii[28,3] := {20} tii[28,4] := {13} tii[28,5] := {6} tii[28,6] := {2} tii[28,7] := {25} tii[28,8] := {24} tii[28,9] := {22} tii[28,10] := {19} tii[28,11] := {16} tii[28,12] := {12} tii[28,13] := {21} tii[28,14] := {18} tii[28,15] := {15} tii[28,16] := {11} tii[28,17] := {8} tii[28,18] := {17} tii[28,19] := {14} tii[28,20] := {10} tii[28,21] := {7} tii[28,22] := {9} tii[28,23] := {5} tii[28,24] := {3} tii[28,25] := {4} tii[28,26] := {1} tii[28,27] := {0} cell#6 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {104} tii[25,2] := {99} tii[25,3] := {90} tii[25,4] := {62} tii[25,5] := {24} tii[25,6] := {102} tii[25,7] := {92} tii[25,8] := {101} tii[25,9] := {72} tii[25,10] := {96} tii[25,11] := {29} tii[25,12] := {88} tii[25,13] := {5} tii[25,14] := {76} tii[25,15] := {59} tii[25,16] := {98} tii[25,17] := {81} tii[25,18] := {95} tii[25,19] := {53} tii[25,20] := {85} tii[25,21] := {14} tii[25,22] := {70} tii[25,23] := {49} tii[25,24] := {91} tii[25,25] := {65} tii[25,26] := {86} tii[25,27] := {32} tii[25,28] := {71} tii[25,29] := {50} tii[25,30] := {80} tii[25,31] := {44} tii[25,32] := {73} tii[25,33] := {52} tii[25,34] := {64} tii[25,35] := {54} tii[25,36] := {103} tii[25,37] := {100} tii[25,38] := {94} tii[25,39] := {84} tii[25,40] := {69} tii[25,41] := {97} tii[25,42] := {89} tii[25,43] := {93} tii[25,44] := {78} tii[25,45] := {83} tii[25,46] := {61} tii[25,47] := {68} tii[25,48] := {41} tii[25,49] := {48} tii[25,50] := {77} tii[25,51] := {60} tii[25,52] := {79} tii[25,53] := {39} tii[25,54] := {63} tii[25,55] := {21} tii[25,56] := {43} tii[25,57] := {40} tii[25,58] := {22} tii[25,59] := {42} tii[25,60] := {23} tii[25,61] := {9} tii[25,62] := {10} tii[25,63] := {11} tii[25,64] := {3} tii[25,65] := {0} tii[25,66] := {82} tii[25,67] := {67} tii[25,68] := {47} tii[25,69] := {28} tii[25,70] := {87} tii[25,71] := {51} tii[25,72] := {75} tii[25,73] := {30} tii[25,74] := {57} tii[25,75] := {13} tii[25,76] := {37} tii[25,77] := {58} tii[25,78] := {38} tii[25,79] := {12} tii[25,80] := {4} tii[25,81] := {19} tii[25,82] := {20} tii[25,83] := {1} tii[25,84] := {8} tii[25,85] := {2} tii[25,86] := {66} tii[25,87] := {46} tii[25,88] := {27} tii[25,89] := {74} tii[25,90] := {31} tii[25,91] := {56} tii[25,92] := {15} tii[25,93] := {35} tii[25,94] := {36} tii[25,95] := {6} tii[25,96] := {18} tii[25,97] := {7} tii[25,98] := {45} tii[25,99] := {26} tii[25,100] := {55} tii[25,101] := {16} tii[25,102] := {34} tii[25,103] := {17} tii[25,104] := {25} tii[25,105] := {33} cell#7 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {2} tii[28,2] := {7} tii[28,3] := {14} tii[28,4] := {20} tii[28,5] := {24} tii[28,6] := {26} tii[28,7] := {0} tii[28,8] := {1} tii[28,9] := {3} tii[28,10] := {5} tii[28,11] := {8} tii[28,12] := {11} tii[28,13] := {4} tii[28,14] := {6} tii[28,15] := {9} tii[28,16] := {12} tii[28,17] := {15} tii[28,18] := {10} tii[28,19] := {13} tii[28,20] := {16} tii[28,21] := {18} tii[28,22] := {17} tii[28,23] := {19} tii[28,24] := {21} tii[28,25] := {22} tii[28,26] := {23} tii[28,27] := {25} cell#8 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {53} tii[25,2] := {49} tii[25,3] := {50} tii[25,4] := {51} tii[25,5] := {52} tii[25,6] := {69} tii[25,7] := {73} tii[25,8] := {48} tii[25,9] := {70} tii[25,10] := {35} tii[25,11] := {71} tii[25,12] := {20} tii[25,13] := {72} tii[25,14] := {10} tii[25,15] := {21} tii[25,16] := {84} tii[25,17] := {87} tii[25,18] := {68} tii[25,19] := {85} tii[25,20] := {60} tii[25,21] := {86} tii[25,22] := {42} tii[25,23] := {59} tii[25,24] := {94} tii[25,25] := {96} tii[25,26] := {83} tii[25,27] := {95} tii[25,28] := {78} tii[25,29] := {88} tii[25,30] := {100} tii[25,31] := {101} tii[25,32] := {93} tii[25,33] := {99} tii[25,34] := {103} tii[25,35] := {104} tii[25,36] := {34} tii[25,37] := {19} tii[25,38] := {9} tii[25,39] := {3} tii[25,40] := {0} tii[25,41] := {28} tii[25,42] := {12} tii[25,43] := {33} tii[25,44] := {4} tii[25,45] := {18} tii[25,46] := {1} tii[25,47] := {8} tii[25,48] := {5} tii[25,49] := {2} tii[25,50] := {27} tii[25,51] := {14} tii[25,52] := {32} tii[25,53] := {6} tii[25,54] := {17} tii[25,55] := {13} tii[25,56] := {7} tii[25,57] := {26} tii[25,58] := {15} tii[25,59] := {31} tii[25,60] := {16} tii[25,61] := {29} tii[25,62] := {25} tii[25,63] := {30} tii[25,64] := {44} tii[25,65] := {64} tii[25,66] := {58} tii[25,67] := {41} tii[25,68] := {24} tii[25,69] := {11} tii[25,70] := {47} tii[25,71] := {57} tii[25,72] := {37} tii[25,73] := {40} tii[25,74] := {22} tii[25,75] := {23} tii[25,76] := {36} tii[25,77] := {46} tii[25,78] := {38} tii[25,79] := {56} tii[25,80] := {39} tii[25,81] := {54} tii[25,82] := {45} tii[25,83] := {55} tii[25,84] := {65} tii[25,85] := {80} tii[25,86] := {77} tii[25,87] := {63} tii[25,88] := {43} tii[25,89] := {67} tii[25,90] := {76} tii[25,91] := {61} tii[25,92] := {62} tii[25,93] := {74} tii[25,94] := {66} tii[25,95] := {75} tii[25,96] := {81} tii[25,97] := {91} tii[25,98] := {90} tii[25,99] := {79} tii[25,100] := {82} tii[25,101] := {89} tii[25,102] := {92} tii[25,103] := {98} tii[25,104] := {97} tii[25,105] := {102} cell#9 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {119} tii[21,2] := {97} tii[21,3] := {66} tii[21,4] := {24} tii[21,5] := {118} tii[21,6] := {99} tii[21,7] := {72} tii[21,8] := {117} tii[21,9] := {101} tii[21,10] := {116} tii[21,11] := {108} tii[21,12] := {76} tii[21,13] := {104} tii[21,14] := {37} tii[21,15] := {86} tii[21,16] := {4} tii[21,17] := {64} tii[21,18] := {41} tii[21,19] := {95} tii[21,20] := {53} tii[21,21] := {85} tii[21,22] := {17} tii[21,23] := {61} tii[21,24] := {35} tii[21,25] := {75} tii[21,26] := {29} tii[21,27] := {62} tii[21,28] := {36} tii[21,29] := {52} tii[21,30] := {38} tii[21,31] := {111} tii[21,32] := {100} tii[21,33] := {82} tii[21,34] := {60} tii[21,35] := {109} tii[21,36] := {105} tii[21,37] := {79} tii[21,38] := {78} tii[21,39] := {89} tii[21,40] := {57} tii[21,41] := {45} tii[21,42] := {70} tii[21,43] := {34} tii[21,44] := {96} tii[21,45] := {55} tii[21,46] := {88} tii[21,47] := {44} tii[21,48] := {67} tii[21,49] := {25} tii[21,50] := {77} tii[21,51] := {11} tii[21,52] := {68} tii[21,53] := {113} tii[21,54] := {102} tii[21,55] := {84} tii[21,56] := {110} tii[21,57] := {106} tii[21,58] := {81} tii[21,59] := {80} tii[21,60] := {92} tii[21,61] := {59} tii[21,62] := {98} tii[21,63] := {50} tii[21,64] := {91} tii[21,65] := {114} tii[21,66] := {103} tii[21,67] := {112} tii[21,68] := {83} tii[21,69] := {107} tii[21,70] := {115} tii[21,71] := {87} tii[21,72] := {65} tii[21,73] := {43} tii[21,74] := {23} tii[21,75] := {42} tii[21,76] := {22} tii[21,77] := {9} tii[21,78] := {10} tii[21,79] := {3} tii[21,80] := {0} tii[21,81] := {54} tii[21,82] := {31} tii[21,83] := {15} tii[21,84] := {63} tii[21,85] := {16} tii[21,86] := {40} tii[21,87] := {5} tii[21,88] := {20} tii[21,89] := {21} tii[21,90] := {1} tii[21,91] := {8} tii[21,92] := {2} tii[21,93] := {30} tii[21,94] := {14} tii[21,95] := {39} tii[21,96] := {6} tii[21,97] := {19} tii[21,98] := {7} tii[21,99] := {13} tii[21,100] := {18} tii[21,101] := {90} tii[21,102] := {71} tii[21,103] := {49} tii[21,104] := {48} tii[21,105] := {28} tii[21,106] := {12} tii[21,107] := {56} tii[21,108] := {33} tii[21,109] := {69} tii[21,110] := {26} tii[21,111] := {47} tii[21,112] := {27} tii[21,113] := {32} tii[21,114] := {46} tii[21,115] := {93} tii[21,116] := {74} tii[21,117] := {51} tii[21,118] := {58} tii[21,119] := {73} tii[21,120] := {94} cell#10 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {1} tii[27,2] := {8} tii[27,3] := {14} tii[27,4] := {19} tii[27,5] := {23} tii[27,6] := {26} tii[27,7] := {27} tii[27,8] := {6} tii[27,9] := {12} tii[27,10] := {17} tii[27,11] := {21} tii[27,12] := {24} tii[27,13] := {25} tii[27,14] := {2} tii[27,15] := {9} tii[27,16] := {15} tii[27,17] := {20} tii[27,18] := {22} tii[27,19] := {3} tii[27,20] := {10} tii[27,21] := {16} tii[27,22] := {18} tii[27,23] := {4} tii[27,24] := {11} tii[27,25] := {13} tii[27,26] := {5} tii[27,27] := {7} tii[27,28] := {0} cell#11 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {55} tii[24,2] := {45} tii[24,3] := {32} tii[24,4] := {19} tii[24,5] := {8} tii[24,6] := {1} tii[24,7] := {54} tii[24,8] := {46} tii[24,9] := {33} tii[24,10] := {20} tii[24,11] := {9} tii[24,12] := {53} tii[24,13] := {47} tii[24,14] := {34} tii[24,15] := {21} tii[24,16] := {52} tii[24,17] := {48} tii[24,18] := {35} tii[24,19] := {51} tii[24,20] := {49} tii[24,21] := {50} tii[24,22] := {44} tii[24,23] := {36} tii[24,24] := {25} tii[24,25] := {14} tii[24,26] := {5} tii[24,27] := {43} tii[24,28] := {37} tii[24,29] := {26} tii[24,30] := {15} tii[24,31] := {42} tii[24,32] := {38} tii[24,33] := {27} tii[24,34] := {41} tii[24,35] := {39} tii[24,36] := {40} tii[24,37] := {31} tii[24,38] := {22} tii[24,39] := {10} tii[24,40] := {2} tii[24,41] := {30} tii[24,42] := {23} tii[24,43] := {11} tii[24,44] := {29} tii[24,45] := {24} tii[24,46] := {28} tii[24,47] := {18} tii[24,48] := {12} tii[24,49] := {3} tii[24,50] := {17} tii[24,51] := {13} tii[24,52] := {16} tii[24,53] := {7} tii[24,54] := {4} tii[24,55] := {6} tii[24,56] := {0} cell#12 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {1} tii[24,2] := {9} tii[24,3] := {21} tii[24,4] := {35} tii[24,5] := {49} tii[24,6] := {55} tii[24,7] := {5} tii[24,8] := {12} tii[24,9] := {23} tii[24,10] := {36} tii[24,11] := {40} tii[24,12] := {2} tii[24,13] := {10} tii[24,14] := {22} tii[24,15] := {28} tii[24,16] := {3} tii[24,17] := {11} tii[24,18] := {16} tii[24,19] := {4} tii[24,20] := {6} tii[24,21] := {0} tii[24,22] := {8} tii[24,23] := {20} tii[24,24] := {34} tii[24,25] := {48} tii[24,26] := {54} tii[24,27] := {15} tii[24,28] := {25} tii[24,29] := {37} tii[24,30] := {41} tii[24,31] := {13} tii[24,32] := {24} tii[24,33] := {29} tii[24,34] := {14} tii[24,35] := {17} tii[24,36] := {7} tii[24,37] := {19} tii[24,38] := {33} tii[24,39] := {47} tii[24,40] := {53} tii[24,41] := {27} tii[24,42] := {38} tii[24,43] := {42} tii[24,44] := {26} tii[24,45] := {30} tii[24,46] := {18} tii[24,47] := {32} tii[24,48] := {46} tii[24,49] := {51} tii[24,50] := {39} tii[24,51] := {43} tii[24,52] := {31} tii[24,53] := {45} tii[24,54] := {50} tii[24,55] := {44} tii[24,56] := {52} cell#13 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {69} tii[19,2] := {44} tii[19,3] := {23} tii[19,4] := {8} tii[19,5] := {1} tii[19,6] := {68} tii[19,7] := {47} tii[19,8] := {25} tii[19,9] := {10} tii[19,10] := {66} tii[19,11] := {50} tii[19,12] := {28} tii[19,13] := {64} tii[19,14] := {54} tii[19,15] := {61} tii[19,16] := {38} tii[19,17] := {29} tii[19,18] := {13} tii[19,19] := {4} tii[19,20] := {37} tii[19,21] := {30} tii[19,22] := {14} tii[19,23] := {36} tii[19,24] := {31} tii[19,25] := {35} tii[19,26] := {19} tii[19,27] := {11} tii[19,28] := {2} tii[19,29] := {18} tii[19,30] := {12} tii[19,31] := {17} tii[19,32] := {6} tii[19,33] := {3} tii[19,34] := {5} tii[19,35] := {0} tii[19,36] := {67} tii[19,37] := {46} tii[19,38] := {24} tii[19,39] := {9} tii[19,40] := {65} tii[19,41] := {49} tii[19,42] := {27} tii[19,43] := {62} tii[19,44] := {53} tii[19,45] := {59} tii[19,46] := {41} tii[19,47] := {32} tii[19,48] := {16} tii[19,49] := {40} tii[19,50] := {33} tii[19,51] := {39} tii[19,52] := {21} tii[19,53] := {15} tii[19,54] := {20} tii[19,55] := {7} tii[19,56] := {63} tii[19,57] := {48} tii[19,58] := {26} tii[19,59] := {60} tii[19,60] := {52} tii[19,61] := {57} tii[19,62] := {43} tii[19,63] := {34} tii[19,64] := {42} tii[19,65] := {22} tii[19,66] := {58} tii[19,67] := {51} tii[19,68] := {56} tii[19,69] := {45} tii[19,70] := {55}