TII subcells for the U(6,3) x GL(9,R) block of GL9 # cell#0 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {0} tii[27,2] := {18} tii[27,3] := {1} tii[27,4] := {14} tii[27,5] := {3} tii[27,6] := {10} tii[27,7] := {5} tii[27,8] := {27} tii[27,9] := {19} tii[27,10] := {24} tii[27,11] := {20} tii[27,12] := {23} tii[27,13] := {21} tii[27,14] := {2} tii[27,15] := {15} tii[27,16] := {4} tii[27,17] := {11} tii[27,18] := {7} tii[27,19] := {26} tii[27,20] := {16} tii[27,21] := {22} tii[27,22] := {17} tii[27,23] := {6} tii[27,24] := {12} tii[27,25] := {8} tii[27,26] := {25} tii[27,27] := {13} tii[27,28] := {9} cell#1 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {6} tii[24,2] := {21} tii[24,3] := {2} tii[24,4] := {16} tii[24,5] := {0} tii[24,6] := {10} tii[24,7] := {43} tii[24,8] := {24} tii[24,9] := {32} tii[24,10] := {23} tii[24,11] := {31} tii[24,12] := {5} tii[24,13] := {17} tii[24,14] := {1} tii[24,15] := {11} tii[24,16] := {40} tii[24,17] := {19} tii[24,18] := {28} tii[24,19] := {4} tii[24,20] := {13} tii[24,21] := {37} tii[24,22] := {55} tii[24,23] := {45} tii[24,24] := {52} tii[24,25] := {44} tii[24,26] := {51} tii[24,27] := {27} tii[24,28] := {35} tii[24,29] := {25} tii[24,30] := {33} tii[24,31] := {50} tii[24,32] := {36} tii[24,33] := {46} tii[24,34] := {26} tii[24,35] := {34} tii[24,36] := {49} tii[24,37] := {8} tii[24,38] := {18} tii[24,39] := {3} tii[24,40] := {12} tii[24,41] := {41} tii[24,42] := {20} tii[24,43] := {29} tii[24,44] := {7} tii[24,45] := {14} tii[24,46] := {38} tii[24,47] := {54} tii[24,48] := {42} tii[24,49] := {48} tii[24,50] := {22} tii[24,51] := {30} tii[24,52] := {47} tii[24,53] := {9} tii[24,54] := {15} tii[24,55] := {39} tii[24,56] := {53} cell#2 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {78} tii[22,2] := {145} tii[22,3] := {70} tii[22,4] := {119} tii[22,5] := {125} tii[22,6] := {158} tii[22,7] := {153} tii[22,8] := {105} tii[22,9] := {154} tii[22,10] := {139} tii[22,11] := {160} tii[22,12] := {115} tii[22,13] := {148} tii[22,14] := {71} tii[22,15] := {81} tii[22,16] := {152} tii[22,17] := {103} tii[22,18] := {82} tii[22,19] := {161} tii[22,20] := {113} tii[22,21] := {159} tii[22,22] := {123} tii[22,23] := {155} tii[22,24] := {146} tii[22,25] := {136} tii[22,26] := {111} tii[22,27] := {73} tii[22,28] := {18} tii[22,29] := {69} tii[22,30] := {10} tii[22,31] := {42} tii[22,32] := {97} tii[22,33] := {137} tii[22,34] := {26} tii[22,35] := {102} tii[22,36] := {143} tii[22,37] := {40} tii[22,38] := {41} tii[22,39] := {28} tii[22,40] := {57} tii[22,41] := {127} tii[22,42] := {112} tii[22,43] := {22} tii[22,44] := {11} tii[22,45] := {122} tii[22,46] := {101} tii[22,47] := {37} tii[22,48] := {79} tii[22,49] := {23} tii[22,50] := {135} tii[22,51] := {35} tii[22,52] := {93} tii[22,53] := {110} tii[22,54] := {72} tii[22,55] := {20} tii[22,56] := {52} tii[22,57] := {15} tii[22,58] := {91} tii[22,59] := {134} tii[22,60] := {62} tii[22,61] := {89} tii[22,62] := {90} tii[22,63] := {64} tii[22,64] := {87} tii[22,65] := {151} tii[22,66] := {49} tii[22,67] := {99} tii[22,68] := {132} tii[22,69] := {67} tii[22,70] := {44} tii[22,71] := {121} tii[22,72] := {133} tii[22,73] := {141} tii[22,74] := {50} tii[22,75] := {120} tii[22,76] := {100} tii[22,77] := {30} tii[22,78] := {150} tii[22,79] := {66} tii[22,80] := {117} tii[22,81] := {45} tii[22,82] := {142} tii[22,83] := {131} tii[22,84] := {126} tii[22,85] := {31} tii[22,86] := {48} tii[22,87] := {106} tii[22,88] := {85} tii[22,89] := {84} tii[22,90] := {144} tii[22,91] := {46} tii[22,92] := {47} tii[22,93] := {33} tii[22,94] := {157} tii[22,95] := {13} tii[22,96] := {149} tii[22,97] := {140} tii[22,98] := {156} tii[22,99] := {36} tii[22,100] := {147} tii[22,101] := {129} tii[22,102] := {94} tii[22,103] := {128} tii[22,104] := {21} tii[22,105] := {116} tii[22,106] := {130} tii[22,107] := {53} tii[22,108] := {138} tii[22,109] := {16} tii[22,110] := {104} tii[22,111] := {83} tii[22,112] := {77} tii[22,113] := {59} tii[22,114] := {75} tii[22,115] := {39} tii[22,116] := {96} tii[22,117] := {25} tii[22,118] := {0} tii[22,119] := {12} tii[22,120] := {3} tii[22,121] := {34} tii[22,122] := {19} tii[22,123] := {1} tii[22,124] := {60} tii[22,125] := {80} tii[22,126] := {61} tii[22,127] := {5} tii[22,128] := {14} tii[22,129] := {114} tii[22,130] := {65} tii[22,131] := {98} tii[22,132] := {6} tii[22,133] := {43} tii[22,134] := {54} tii[22,135] := {124} tii[22,136] := {27} tii[22,137] := {17} tii[22,138] := {9} tii[22,139] := {76} tii[22,140] := {58} tii[22,141] := {74} tii[22,142] := {95} tii[22,143] := {2} tii[22,144] := {38} tii[22,145] := {24} tii[22,146] := {55} tii[22,147] := {7} tii[22,148] := {109} tii[22,149] := {92} tii[22,150] := {63} tii[22,151] := {108} tii[22,152] := {88} tii[22,153] := {107} tii[22,154] := {29} tii[22,155] := {118} tii[22,156] := {68} tii[22,157] := {51} tii[22,158] := {86} tii[22,159] := {32} tii[22,160] := {4} tii[22,161] := {56} tii[22,162] := {8} cell#3 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {13} tii[20,2] := {48} tii[20,3] := {9} tii[20,4] := {41} tii[20,5] := {36} tii[20,6] := {90} tii[20,7] := {70} tii[20,8] := {23} tii[20,9] := {109} tii[20,10] := {73} tii[20,11] := {143} tii[20,12] := {165} tii[20,13] := {126} tii[20,14] := {10} tii[20,15] := {87} tii[20,16] := {42} tii[20,17] := {125} tii[20,18] := {154} tii[20,19] := {33} tii[20,20] := {80} tii[20,21] := {65} tii[20,22] := {102} tii[20,23] := {116} tii[20,24] := {78} tii[20,25] := {71} tii[20,26] := {134} tii[20,27] := {111} tii[20,28] := {58} tii[20,29] := {145} tii[20,30] := {115} tii[20,31] := {168} tii[20,32] := {182} tii[20,33] := {135} tii[20,34] := {161} tii[20,35] := {25} tii[20,36] := {133} tii[20,37] := {163} tii[20,38] := {74} tii[20,39] := {162} tii[20,40] := {181} tii[20,41] := {179} tii[20,42] := {188} tii[20,43] := {146} tii[20,44] := {56} tii[20,45] := {113} tii[20,46] := {94} tii[20,47] := {169} tii[20,48] := {130} tii[20,49] := {183} tii[20,50] := {180} tii[20,51] := {147} tii[20,52] := {112} tii[20,53] := {187} tii[20,54] := {184} tii[20,55] := {177} tii[20,56] := {12} tii[20,57] := {158} tii[20,58] := {43} tii[20,59] := {178} tii[20,60] := {186} tii[20,61] := {129} tii[20,62] := {34} tii[20,63] := {81} tii[20,64] := {66} tii[20,65] := {157} tii[20,66] := {103} tii[20,67] := {175} tii[20,68] := {170} tii[20,69] := {117} tii[20,70] := {79} tii[20,71] := {185} tii[20,72] := {176} tii[20,73] := {69} tii[20,74] := {122} tii[20,75] := {108} tii[20,76] := {140} tii[20,77] := {124} tii[20,78] := {151} tii[20,79] := {121} tii[20,80] := {153} tii[20,81] := {142} tii[20,82] := {172} tii[20,83] := {150} tii[20,84] := {120} tii[20,85] := {0} tii[20,86] := {11} tii[20,87] := {3} tii[20,88] := {7} tii[20,89] := {35} tii[20,90] := {21} tii[20,91] := {67} tii[20,92] := {14} tii[20,93] := {106} tii[20,94] := {20} tii[20,95] := {138} tii[20,96] := {32} tii[20,97] := {1} tii[20,98] := {64} tii[20,99] := {5} tii[20,100] := {101} tii[20,101] := {29} tii[20,102] := {17} tii[20,103] := {59} tii[20,104] := {26} tii[20,105] := {91} tii[20,106] := {53} tii[20,107] := {128} tii[20,108] := {156} tii[20,109] := {37} tii[20,110] := {174} tii[20,111] := {52} tii[20,112] := {110} tii[20,113] := {51} tii[20,114] := {144} tii[20,115] := {15} tii[20,116] := {89} tii[20,117] := {166} tii[20,118] := {22} tii[20,119] := {127} tii[20,120] := {155} tii[20,121] := {50} tii[20,122] := {39} tii[20,123] := {173} tii[20,124] := {88} tii[20,125] := {167} tii[20,126] := {49} tii[20,127] := {68} tii[20,128] := {2} tii[20,129] := {107} tii[20,130] := {6} tii[20,131] := {139} tii[20,132] := {123} tii[20,133] := {30} tii[20,134] := {18} tii[20,135] := {152} tii[20,136] := {60} tii[20,137] := {141} tii[20,138] := {27} tii[20,139] := {82} tii[20,140] := {46} tii[20,141] := {118} tii[20,142] := {104} tii[20,143] := {44} tii[20,144] := {62} tii[20,145] := {97} tii[20,146] := {72} tii[20,147] := {96} tii[20,148] := {100} tii[20,149] := {38} tii[20,150] := {137} tii[20,151] := {57} tii[20,152] := {164} tii[20,153] := {99} tii[20,154] := {77} tii[20,155] := {136} tii[20,156] := {98} tii[20,157] := {95} tii[20,158] := {16} tii[20,159] := {132} tii[20,160] := {159} tii[20,161] := {24} tii[20,162] := {149} tii[20,163] := {55} tii[20,164] := {40} tii[20,165] := {92} tii[20,166] := {171} tii[20,167] := {54} tii[20,168] := {160} tii[20,169] := {114} tii[20,170] := {76} tii[20,171] := {148} tii[20,172] := {131} tii[20,173] := {75} tii[20,174] := {93} tii[20,175] := {4} tii[20,176] := {8} tii[20,177] := {31} tii[20,178] := {19} tii[20,179] := {61} tii[20,180] := {28} tii[20,181] := {83} tii[20,182] := {47} tii[20,183] := {119} tii[20,184] := {45} tii[20,185] := {105} tii[20,186] := {63} tii[20,187] := {85} tii[20,188] := {86} tii[20,189] := {84} cell#4 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {35} tii[16,2] := {129} tii[16,3] := {74} tii[16,4] := {88} tii[16,5] := {164} tii[16,6] := {153} tii[16,7] := {114} tii[16,8] := {186} tii[16,9] := {73} tii[16,10] := {131} tii[16,11] := {39} tii[16,12] := {59} tii[16,13] := {200} tii[16,14] := {185} tii[16,15] := {161} tii[16,16] := {122} tii[16,17] := {197} tii[16,18] := {127} tii[16,19] := {183} tii[16,20] := {156} tii[16,21] := {160} tii[16,22] := {207} tii[16,23] := {121} tii[16,24] := {175} tii[16,25] := {198} tii[16,26] := {82} tii[16,27] := {105} tii[16,28] := {128} tii[16,29] := {212} tii[16,30] := {184} tii[16,31] := {91} tii[16,32] := {206} tii[16,33] := {124} tii[16,34] := {194} tii[16,35] := {199} tii[16,36] := {182} tii[16,37] := {181} tii[16,38] := {211} tii[16,39] := {155} tii[16,40] := {192} tii[16,41] := {120} tii[16,42] := {139} tii[16,43] := {119} tii[16,44] := {214} tii[16,45] := {168} tii[16,46] := {210} tii[16,47] := {79} tii[16,48] := {203} tii[16,49] := {100} tii[16,50] := {45} tii[16,51] := {189} tii[16,52] := {167} tii[16,53] := {63} tii[16,54] := {101} tii[16,55] := {215} tii[16,56] := {213} tii[16,57] := {209} tii[16,58] := {208} tii[16,59] := {201} tii[16,60] := {187} tii[16,61] := {6} tii[16,62] := {32} tii[16,63] := {16} tii[16,64] := {51} tii[16,65] := {58} tii[16,66] := {8} tii[16,67] := {112} tii[16,68] := {14} tii[16,69] := {23} tii[16,70] := {92} tii[16,71] := {68} tii[16,72] := {7} tii[16,73] := {57} tii[16,74] := {13} tii[16,75] := {109} tii[16,76] := {67} tii[16,77] := {44} tii[16,78] := {118} tii[16,79] := {165} tii[16,80] := {98} tii[16,81] := {26} tii[16,82] := {42} tii[16,83] := {41} tii[16,84] := {89} tii[16,85] := {134} tii[16,86] := {18} tii[16,87] := {154} tii[16,88] := {53} tii[16,89] := {96} tii[16,90] := {54} tii[16,91] := {30} tii[16,92] := {75} tii[16,93] := {97} tii[16,94] := {76} tii[16,95] := {180} tii[16,96] := {10} tii[16,97] := {133} tii[16,98] := {115} tii[16,99] := {152} tii[16,100] := {95} tii[16,101] := {17} tii[16,102] := {40} tii[16,103] := {52} tii[16,104] := {163} tii[16,105] := {113} tii[16,106] := {25} tii[16,107] := {132} tii[16,108] := {38} tii[16,109] := {9} tii[16,110] := {151} tii[16,111] := {162} tii[16,112] := {130} tii[16,113] := {111} tii[16,114] := {93} tii[16,115] := {15} tii[16,116] := {36} tii[16,117] := {94} tii[16,118] := {179} tii[16,119] := {150} tii[16,120] := {110} tii[16,121] := {85} tii[16,122] := {147} tii[16,123] := {55} tii[16,124] := {83} tii[16,125] := {87} tii[16,126] := {176} tii[16,127] := {90} tii[16,128] := {149} tii[16,129] := {49} tii[16,130] := {145} tii[16,131] := {123} tii[16,132] := {66} tii[16,133] := {28} tii[16,134] := {178} tii[16,135] := {157} tii[16,136] := {148} tii[16,137] := {48} tii[16,138] := {86} tii[16,139] := {81} tii[16,140] := {125} tii[16,141] := {195} tii[16,142] := {142} tii[16,143] := {47} tii[16,144] := {65} tii[16,145] := {146} tii[16,146] := {173} tii[16,147] := {20} tii[16,148] := {56} tii[16,149] := {196} tii[16,150] := {172} tii[16,151] := {177} tii[16,152] := {174} tii[16,153] := {31} tii[16,154] := {143} tii[16,155] := {84} tii[16,156] := {141} tii[16,157] := {64} tii[16,158] := {126} tii[16,159] := {144} tii[16,160] := {11} tii[16,161] := {193} tii[16,162] := {158} tii[16,163] := {19} tii[16,164] := {171} tii[16,165] := {140} tii[16,166] := {46} tii[16,167] := {159} tii[16,168] := {80} tii[16,169] := {204} tii[16,170] := {190} tii[16,171] := {205} tii[16,172] := {169} tii[16,173] := {191} tii[16,174] := {170} tii[16,175] := {202} tii[16,176] := {136} tii[16,177] := {188} tii[16,178] := {166} tii[16,179] := {137} tii[16,180] := {138} tii[16,181] := {0} tii[16,182] := {3} tii[16,183] := {12} tii[16,184] := {24} tii[16,185] := {37} tii[16,186] := {1} tii[16,187] := {29} tii[16,188] := {70} tii[16,189] := {4} tii[16,190] := {21} tii[16,191] := {34} tii[16,192] := {33} tii[16,193] := {78} tii[16,194] := {99} tii[16,195] := {27} tii[16,196] := {135} tii[16,197] := {62} tii[16,198] := {43} tii[16,199] := {77} tii[16,200] := {2} tii[16,201] := {116} tii[16,202] := {5} tii[16,203] := {61} tii[16,204] := {22} tii[16,205] := {117} tii[16,206] := {60} tii[16,207] := {50} tii[16,208] := {71} tii[16,209] := {72} tii[16,210] := {69} tii[16,211] := {106} tii[16,212] := {108} tii[16,213] := {107} tii[16,214] := {103} tii[16,215] := {104} tii[16,216] := {102} cell#5 , |C| = 42 special orbit = [3, 3, 3] special rep = [3, 3, 3] , dim = 42 cell rep = phi[3,3,3] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[12,1] := {41} tii[12,2] := {34} tii[12,3] := {21} tii[12,4] := {40} tii[12,5] := {32} tii[12,6] := {38} tii[12,7] := {33} tii[12,8] := {25} tii[12,9] := {36} tii[12,10] := {39} tii[12,11] := {35} tii[12,12] := {12} tii[12,13] := {29} tii[12,14] := {15} tii[12,15] := {23} tii[12,16] := {16} tii[12,17] := {8} tii[12,18] := {3} tii[12,19] := {28} tii[12,20] := {22} tii[12,21] := {14} tii[12,22] := {27} tii[12,23] := {19} tii[12,24] := {11} tii[12,25] := {37} tii[12,26] := {31} tii[12,27] := {26} tii[12,28] := {18} tii[12,29] := {24} tii[12,30] := {13} tii[12,31] := {30} tii[12,32] := {4} tii[12,33] := {1} tii[12,34] := {5} tii[12,35] := {17} tii[12,36] := {10} tii[12,37] := {6} tii[12,38] := {9} tii[12,39] := {2} tii[12,40] := {20} tii[12,41] := {7} tii[12,42] := {0} cell#6 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {41} tii[11,2] := {90} tii[11,3] := {144} tii[11,4] := {72} tii[11,5] := {125} tii[11,6] := {86} tii[11,7] := {105} tii[11,8] := {161} tii[11,9] := {116} tii[11,10] := {157} tii[11,11] := {141} tii[11,12] := {158} tii[11,13] := {146} tii[11,14] := {165} tii[11,15] := {155} tii[11,16] := {167} tii[11,17] := {136} tii[11,18] := {154} tii[11,19] := {166} tii[11,20] := {160} tii[11,21] := {20} tii[11,22] := {3} tii[11,23] := {36} tii[11,24] := {89} tii[11,25] := {18} tii[11,26] := {35} tii[11,27] := {56} tii[11,28] := {11} tii[11,29] := {70} tii[11,30] := {65} tii[11,31] := {82} tii[11,32] := {23} tii[11,33] := {121} tii[11,34] := {134} tii[11,35] := {110} tii[11,36] := {52} tii[11,37] := {40} tii[11,38] := {15} tii[11,39] := {135} tii[11,40] := {66} tii[11,41] := {95} tii[11,42] := {69} tii[11,43] := {68} tii[11,44] := {96} tii[11,45] := {108} tii[11,46] := {64} tii[11,47] := {153} tii[11,48] := {80} tii[11,49] := {91} tii[11,50] := {107} tii[11,51] := {145} tii[11,52] := {54} tii[11,53] := {120} tii[11,54] := {119} tii[11,55] := {81} tii[11,56] := {63} tii[11,57] := {27} tii[11,58] := {100} tii[11,59] := {46} tii[11,60] := {79} tii[11,61] := {151} tii[11,62] := {71} tii[11,63] := {31} tii[11,64] := {101} tii[11,65] := {104} tii[11,66] := {130} tii[11,67] := {131} tii[11,68] := {103} tii[11,69] := {139} tii[11,70] := {58} tii[11,71] := {98} tii[11,72] := {164} tii[11,73] := {114} tii[11,74] := {138} tii[11,75] := {47} tii[11,76] := {126} tii[11,77] := {142} tii[11,78] := {162} tii[11,79] := {118} tii[11,80] := {85} tii[11,81] := {74} tii[11,82] := {143} tii[11,83] := {150} tii[11,84] := {149} tii[11,85] := {117} tii[11,86] := {115} tii[11,87] := {132} tii[11,88] := {99} tii[11,89] := {152} tii[11,90] := {129} tii[11,91] := {140} tii[11,92] := {102} tii[11,93] := {123} tii[11,94] := {147} tii[11,95] := {113} tii[11,96] := {159} tii[11,97] := {137} tii[11,98] := {124} tii[11,99] := {163} tii[11,100] := {148} tii[11,101] := {1} tii[11,102] := {5} tii[11,103] := {12} tii[11,104] := {10} tii[11,105] := {29} tii[11,106] := {6} tii[11,107] := {61} tii[11,108] := {9} tii[11,109] := {38} tii[11,110] := {19} tii[11,111] := {62} tii[11,112] := {2} tii[11,113] := {37} tii[11,114] := {8} tii[11,115] := {17} tii[11,116] := {34} tii[11,117] := {60} tii[11,118] := {28} tii[11,119] := {33} tii[11,120] := {26} tii[11,121] := {111} tii[11,122] := {84} tii[11,123] := {25} tii[11,124] := {7} tii[11,125] := {45} tii[11,126] := {112} tii[11,127] := {43} tii[11,128] := {83} tii[11,129] := {24} tii[11,130] := {97} tii[11,131] := {122} tii[11,132] := {32} tii[11,133] := {94} tii[11,134] := {93} tii[11,135] := {109} tii[11,136] := {55} tii[11,137] := {30} tii[11,138] := {42} tii[11,139] := {39} tii[11,140] := {78} tii[11,141] := {67} tii[11,142] := {22} tii[11,143] := {133} tii[11,144] := {92} tii[11,145] := {49} tii[11,146] := {16} tii[11,147] := {75} tii[11,148] := {48} tii[11,149] := {59} tii[11,150] := {53} tii[11,151] := {128} tii[11,152] := {88} tii[11,153] := {106} tii[11,154] := {73} tii[11,155] := {77} tii[11,156] := {50} tii[11,157] := {156} tii[11,158] := {127} tii[11,159] := {87} tii[11,160] := {76} tii[11,161] := {0} tii[11,162] := {4} tii[11,163] := {14} tii[11,164] := {21} tii[11,165] := {51} tii[11,166] := {13} tii[11,167] := {57} tii[11,168] := {44} cell#7 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {55} tii[24,2] := {43} tii[24,3] := {52} tii[24,4] := {44} tii[24,5] := {51} tii[24,6] := {45} tii[24,7] := {22} tii[24,8] := {34} tii[24,9] := {23} tii[24,10] := {31} tii[24,11] := {25} tii[24,12] := {50} tii[24,13] := {35} tii[24,14] := {46} tii[24,15] := {36} tii[24,16] := {24} tii[24,17] := {32} tii[24,18] := {26} tii[24,19] := {49} tii[24,20] := {33} tii[24,21] := {27} tii[24,22] := {0} tii[24,23] := {15} tii[24,24] := {1} tii[24,25] := {10} tii[24,26] := {3} tii[24,27] := {40} tii[24,28] := {17} tii[24,29] := {28} tii[24,30] := {18} tii[24,31] := {2} tii[24,32] := {11} tii[24,33] := {5} tii[24,34] := {37} tii[24,35] := {13} tii[24,36] := {7} tii[24,37] := {54} tii[24,38] := {41} tii[24,39] := {48} tii[24,40] := {42} tii[24,41] := {19} tii[24,42] := {29} tii[24,43] := {20} tii[24,44] := {47} tii[24,45] := {30} tii[24,46] := {21} tii[24,47] := {4} tii[24,48] := {12} tii[24,49] := {6} tii[24,50] := {38} tii[24,51] := {14} tii[24,52] := {8} tii[24,53] := {53} tii[24,54] := {39} tii[24,55] := {16} tii[24,56] := {9} cell#8 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {11} tii[14,2] := {33} tii[14,3] := {8} tii[14,4] := {29} tii[14,5] := {60} tii[14,6] := {51} tii[14,7] := {17} tii[14,8] := {78} tii[14,9] := {106} tii[14,10] := {89} tii[14,11] := {6} tii[14,12] := {58} tii[14,13] := {88} tii[14,14] := {24} tii[14,15] := {43} tii[14,16] := {52} tii[14,17] := {94} tii[14,18] := {80} tii[14,19] := {39} tii[14,20] := {110} tii[14,21] := {138} tii[14,22] := {95} tii[14,23] := {123} tii[14,24] := {18} tii[14,25] := {93} tii[14,26] := {125} tii[14,27] := {124} tii[14,28] := {152} tii[14,29] := {108} tii[14,30] := {38} tii[14,31] := {62} tii[14,32] := {136} tii[14,33] := {150} tii[14,34] := {148} tii[14,35] := {7} tii[14,36] := {122} tii[14,37] := {149} tii[14,38] := {91} tii[14,39] := {25} tii[14,40] := {44} tii[14,41] := {121} tii[14,42] := {142} tii[14,43] := {48} tii[14,44] := {73} tii[14,45] := {86} tii[14,46] := {81} tii[14,47] := {132} tii[14,48] := {111} tii[14,49] := {69} tii[14,50] := {141} tii[14,51] := {166} tii[14,52] := {159} tii[14,53] := {133} tii[14,54] := {42} tii[14,55] := {131} tii[14,56] := {161} tii[14,57] := {160} tii[14,58] := {179} tii[14,59] := {71} tii[14,60] := {139} tii[14,61] := {102} tii[14,62] := {164} tii[14,63] := {177} tii[14,64] := {163} tii[14,65] := {175} tii[14,66] := {19} tii[14,67] := {181} tii[14,68] := {157} tii[14,69] := {188} tii[14,70] := {176} tii[14,71] := {130} tii[14,72] := {162} tii[14,73] := {41} tii[14,74] := {67} tii[14,75] := {158} tii[14,76] := {180} tii[14,77] := {170} tii[14,78] := {184} tii[14,79] := {140} tii[14,80] := {68} tii[14,81] := {165} tii[14,82] := {97} tii[14,83] := {113} tii[14,84] := {178} tii[14,85] := {187} tii[14,86] := {185} tii[14,87] := {9} tii[14,88] := {173} tii[14,89] := {186} tii[14,90] := {27} tii[14,91] := {156} tii[14,92] := {46} tii[14,93] := {174} tii[14,94] := {183} tii[14,95] := {128} tii[14,96] := {50} tii[14,97] := {155} tii[14,98] := {75} tii[14,99] := {87} tii[14,100] := {168} tii[14,101] := {182} tii[14,102] := {79} tii[14,103] := {107} tii[14,104] := {119} tii[14,105] := {147} tii[14,106] := {2} tii[14,107] := {10} tii[14,108] := {5} tii[14,109] := {28} tii[14,110] := {16} tii[14,111] := {49} tii[14,112] := {12} tii[14,113] := {74} tii[14,114] := {26} tii[14,115] := {3} tii[14,116] := {45} tii[14,117] := {22} tii[14,118] := {61} tii[14,119] := {36} tii[14,120] := {90} tii[14,121] := {30} tii[14,122] := {120} tii[14,123] := {76} tii[14,124] := {35} tii[14,125] := {13} tii[14,126] := {59} tii[14,127] := {104} tii[14,128] := {34} tii[14,129] := {117} tii[14,130] := {47} tii[14,131] := {0} tii[14,132] := {72} tii[14,133] := {20} tii[14,134] := {85} tii[14,135] := {55} tii[14,136] := {127} tii[14,137] := {64} tii[14,138] := {154} tii[14,139] := {53} tii[14,140] := {172} tii[14,141] := {126} tii[14,142] := {66} tii[14,143] := {31} tii[14,144] := {96} tii[14,145] := {153} tii[14,146] := {167} tii[14,147] := {65} tii[14,148] := {109} tii[14,149] := {63} tii[14,150] := {137} tii[14,151] := {14} tii[14,152] := {92} tii[14,153] := {151} tii[14,154] := {37} tii[14,155] := {112} tii[14,156] := {171} tii[14,157] := {83} tii[14,158] := {77} tii[14,159] := {1} tii[14,160] := {105} tii[14,161] := {118} tii[14,162] := {21} tii[14,163] := {146} tii[14,164] := {56} tii[14,165] := {115} tii[14,166] := {99} tii[14,167] := {82} tii[14,168] := {101} tii[14,169] := {54} tii[14,170] := {134} tii[14,171] := {100} tii[14,172] := {103} tii[14,173] := {32} tii[14,174] := {135} tii[14,175] := {70} tii[14,176] := {145} tii[14,177] := {114} tii[14,178] := {98} tii[14,179] := {15} tii[14,180] := {129} tii[14,181] := {144} tii[14,182] := {40} tii[14,183] := {84} tii[14,184] := {169} tii[14,185] := {143} tii[14,186] := {4} tii[14,187] := {23} tii[14,188] := {57} tii[14,189] := {116} cell#9 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {11} tii[8,2] := {29} tii[8,3] := {66} tii[8,4] := {22} tii[8,5] := {49} tii[8,6] := {32} tii[8,7] := {94} tii[8,8] := {62} tii[8,9] := {50} tii[8,10] := {72} tii[8,11] := {85} tii[8,12] := {108} tii[8,13] := {118} tii[8,14] := {128} tii[8,15] := {106} tii[8,16] := {37} tii[8,17] := {76} tii[8,18] := {53} tii[8,19] := {122} tii[8,20] := {89} tii[8,21] := {77} tii[8,22] := {102} tii[8,23] := {115} tii[8,24] := {137} tii[8,25] := {78} tii[8,26] := {117} tii[8,27] := {143} tii[8,28] := {104} tii[8,29] := {126} tii[8,30] := {125} tii[8,31] := {151} tii[8,32] := {138} tii[8,33] := {135} tii[8,34] := {154} tii[8,35] := {145} tii[8,36] := {156} tii[8,37] := {152} tii[8,38] := {160} tii[8,39] := {153} tii[8,40] := {155} tii[8,41] := {158} tii[8,42] := {149} tii[8,43] := {161} tii[8,44] := {157} tii[8,45] := {148} tii[8,46] := {5} tii[8,47] := {15} tii[8,48] := {2} tii[8,49] := {3} tii[8,50] := {26} tii[8,51] := {14} tii[8,52] := {18} tii[8,53] := {6} tii[8,54] := {30} tii[8,55] := {39} tii[8,56] := {46} tii[8,57] := {9} tii[8,58] := {44} tii[8,59] := {58} tii[8,60] := {21} tii[8,61] := {16} tii[8,62] := {28} tii[8,63] := {81} tii[8,64] := {35} tii[8,65] := {45} tii[8,66] := {80} tii[8,67] := {43} tii[8,68] := {57} tii[8,69] := {38} tii[8,70] := {51} tii[8,71] := {74} tii[8,72] := {12} tii[8,73] := {87} tii[8,74] := {98} tii[8,75] := {19} tii[8,76] := {97} tii[8,77] := {36} tii[8,78] := {70} tii[8,79] := {109} tii[8,80] := {120} tii[8,81] := {31} tii[8,82] := {55} tii[8,83] := {131} tii[8,84] := {48} tii[8,85] := {141} tii[8,86] := {71} tii[8,87] := {129} tii[8,88] := {107} tii[8,89] := {73} tii[8,90] := {69} tii[8,91] := {84} tii[8,92] := {147} tii[8,93] := {40} tii[8,94] := {96} tii[8,95] := {130} tii[8,96] := {119} tii[8,97] := {86} tii[8,98] := {61} tii[8,99] := {95} tii[8,100] := {146} tii[8,101] := {93} tii[8,102] := {127} tii[8,103] := {83} tii[8,104] := {105} tii[8,105] := {82} tii[8,106] := {23} tii[8,107] := {34} tii[8,108] := {100} tii[8,109] := {56} tii[8,110] := {52} tii[8,111] := {79} tii[8,112] := {75} tii[8,113] := {101} tii[8,114] := {103} tii[8,115] := {136} tii[8,116] := {99} tii[8,117] := {64} tii[8,118] := {124} tii[8,119] := {114} tii[8,120] := {144} tii[8,121] := {116} tii[8,122] := {88} tii[8,123] := {123} tii[8,124] := {159} tii[8,125] := {121} tii[8,126] := {90} tii[8,127] := {150} tii[8,128] := {112} tii[8,129] := {134} tii[8,130] := {140} tii[8,131] := {139} tii[8,132] := {113} tii[8,133] := {142} tii[8,134] := {132} tii[8,135] := {133} tii[8,136] := {0} tii[8,137] := {1} tii[8,138] := {4} tii[8,139] := {10} tii[8,140] := {20} tii[8,141] := {8} tii[8,142] := {7} tii[8,143] := {27} tii[8,144] := {13} tii[8,145] := {47} tii[8,146] := {68} tii[8,147] := {25} tii[8,148] := {17} tii[8,149] := {92} tii[8,150] := {59} tii[8,151] := {67} tii[8,152] := {24} tii[8,153] := {42} tii[8,154] := {63} tii[8,155] := {33} tii[8,156] := {111} tii[8,157] := {41} tii[8,158] := {110} tii[8,159] := {60} tii[8,160] := {54} tii[8,161] := {65} tii[8,162] := {91} cell#10 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {69} tii[19,2] := {54} tii[19,3] := {64} tii[19,4] := {53} tii[19,5] := {63} tii[19,6] := {34} tii[19,7] := {47} tii[19,8] := {32} tii[19,9] := {45} tii[19,10] := {66} tii[19,11] := {48} tii[19,12] := {57} tii[19,13] := {33} tii[19,14] := {46} tii[19,15] := {65} tii[19,16] := {15} tii[19,17] := {23} tii[19,18] := {13} tii[19,19] := {20} tii[19,20] := {43} tii[19,21] := {24} tii[19,22] := {35} tii[19,23] := {14} tii[19,24] := {21} tii[19,25] := {41} tii[19,26] := {62} tii[19,27] := {44} tii[19,28] := {56} tii[19,29] := {25} tii[19,30] := {36} tii[19,31] := {55} tii[19,32] := {16} tii[19,33] := {22} tii[19,34] := {42} tii[19,35] := {61} tii[19,36] := {2} tii[19,37] := {9} tii[19,38] := {0} tii[19,39] := {5} tii[19,40] := {29} tii[19,41] := {10} tii[19,42] := {17} tii[19,43] := {1} tii[19,44] := {6} tii[19,45] := {26} tii[19,46] := {51} tii[19,47] := {30} tii[19,48] := {38} tii[19,49] := {11} tii[19,50] := {18} tii[19,51] := {37} tii[19,52] := {3} tii[19,53] := {7} tii[19,54] := {27} tii[19,55] := {49} tii[19,56] := {68} tii[19,57] := {52} tii[19,58] := {59} tii[19,59] := {31} tii[19,60] := {40} tii[19,61] := {60} tii[19,62] := {12} tii[19,63] := {19} tii[19,64] := {39} tii[19,65] := {58} tii[19,66] := {4} tii[19,67] := {8} tii[19,68] := {28} tii[19,69] := {50} tii[19,70] := {67} cell#11 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {131} tii[20,2] := {142} tii[20,3] := {178} tii[20,4] := {182} tii[20,5] := {158} tii[20,6] := {163} tii[20,7] := {130} tii[20,8] := {185} tii[20,9] := {93} tii[20,10] := {188} tii[20,11] := {115} tii[20,12] := {94} tii[20,13] := {143} tii[20,14] := {179} tii[20,15] := {108} tii[20,16] := {183} tii[20,17] := {133} tii[20,18] := {110} tii[20,19] := {186} tii[20,20] := {187} tii[20,21] := {177} tii[20,22] := {159} tii[20,23] := {184} tii[20,24] := {169} tii[20,25] := {176} tii[20,26] := {125} tii[20,27] := {157} tii[20,28] := {170} tii[20,29] := {128} tii[20,30] := {175} tii[20,31] := {148} tii[20,32] := {129} tii[20,33] := {127} tii[20,34] := {104} tii[20,35] := {154} tii[20,36] := {65} tii[20,37] := {89} tii[20,38] := {165} tii[20,39] := {84} tii[20,40] := {113} tii[20,41] := {66} tii[20,42] := {90} tii[20,43] := {48} tii[20,44] := {173} tii[20,45] := {174} tii[20,46] := {153} tii[20,47] := {73} tii[20,48] := {122} tii[20,49] := {49} tii[20,50] := {114} tii[20,51] := {166} tii[20,52] := {141} tii[20,53] := {74} tii[20,54] := {50} tii[20,55] := {62} tii[20,56] := {120} tii[20,57] := {30} tii[20,58] := {138} tii[20,59] := {44} tii[20,60] := {31} tii[20,61] := {9} tii[20,62] := {151} tii[20,63] := {152} tii[20,64] := {119} tii[20,65] := {17} tii[20,66] := {81} tii[20,67] := {10} tii[20,68] := {42} tii[20,69] := {139} tii[20,70] := {103} tii[20,71] := {18} tii[20,72] := {11} tii[20,73] := {172} tii[20,74] := {116} tii[20,75] := {150} tii[20,76] := {118} tii[20,77] := {117} tii[20,78] := {101} tii[20,79] := {61} tii[20,80] := {79} tii[20,81] := {41} tii[20,82] := {59} tii[20,83] := {27} tii[20,84] := {7} tii[20,85] := {98} tii[20,86] := {68} tii[20,87] := {95} tii[20,88] := {69} tii[20,89] := {100} tii[20,90] := {107} tii[20,91] := {57} tii[20,92] := {132} tii[20,93] := {77} tii[20,94] := {109} tii[20,95] := {58} tii[20,96] := {36} tii[20,97] := {160} tii[20,98] := {55} tii[20,99] := {144} tii[20,100] := {37} tii[20,101] := {99} tii[20,102] := {167} tii[20,103] := {56} tii[20,104] := {38} tii[20,105] := {92} tii[20,106] := {135} tii[20,107] := {53} tii[20,108] := {76} tii[20,109] := {149} tii[20,110] := {54} tii[20,111] := {136} tii[20,112] := {23} tii[20,113] := {70} tii[20,114] := {39} tii[20,115] := {171} tii[20,116] := {96} tii[20,117] := {24} tii[20,118] := {164} tii[20,119] := {71} tii[20,120] := {75} tii[20,121] := {137} tii[20,122] := {181} tii[20,123] := {40} tii[20,124] := {97} tii[20,125] := {25} tii[20,126] := {72} tii[20,127] := {13} tii[20,128] := {161} tii[20,129] := {20} tii[20,130] := {145} tii[20,131] := {14} tii[20,132] := {51} tii[20,133] := {162} tii[20,134] := {168} tii[20,135] := {21} tii[20,136] := {134} tii[20,137] := {15} tii[20,138] := {111} tii[20,139] := {91} tii[20,140] := {180} tii[20,141] := {52} tii[20,142] := {22} tii[20,143] := {146} tii[20,144] := {16} tii[20,145] := {87} tii[20,146] := {112} tii[20,147] := {88} tii[20,148] := {33} tii[20,149] := {147} tii[20,150] := {46} tii[20,151] := {126} tii[20,152] := {34} tii[20,153] := {86} tii[20,154] := {156} tii[20,155] := {47} tii[20,156] := {35} tii[20,157] := {0} tii[20,158] := {123} tii[20,159] := {5} tii[20,160] := {1} tii[20,161] := {105} tii[20,162] := {26} tii[20,163] := {124} tii[20,164] := {140} tii[20,165] := {85} tii[20,166] := {6} tii[20,167] := {67} tii[20,168] := {2} tii[20,169] := {60} tii[20,170] := {155} tii[20,171] := {28} tii[20,172] := {8} tii[20,173] := {106} tii[20,174] := {4} tii[20,175] := {82} tii[20,176] := {63} tii[20,177] := {83} tii[20,178] := {102} tii[20,179] := {45} tii[20,180] := {32} tii[20,181] := {80} tii[20,182] := {121} tii[20,183] := {43} tii[20,184] := {64} tii[20,185] := {19} tii[20,186] := {12} tii[20,187] := {78} tii[20,188] := {29} tii[20,189] := {3} cell#12 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {198} tii[16,2] := {105} tii[16,3] := {207} tii[16,4] := {176} tii[16,5] := {58} tii[16,6] := {184} tii[16,7] := {212} tii[16,8] := {96} tii[16,9] := {206} tii[16,10] := {119} tii[16,11] := {195} tii[16,12] := {171} tii[16,13] := {136} tii[16,14] := {95} tii[16,15] := {59} tii[16,16] := {211} tii[16,17] := {32} tii[16,18] := {193} tii[16,19] := {199} tii[16,20] := {214} tii[16,21] := {165} tii[16,22] := {68} tii[16,23] := {210} tii[16,24] := {88} tii[16,25] := {180} tii[16,26] := {203} tii[16,27] := {188} tii[16,28] := {189} tii[16,29] := {109} tii[16,30] := {190} tii[16,31] := {164} tii[16,32] := {67} tii[16,33] := {131} tii[16,34] := {33} tii[16,35] := {181} tii[16,36] := {154} tii[16,37] := {215} tii[16,38] := {114} tii[16,39] := {213} tii[16,40] := {127} tii[16,41] := {209} tii[16,42] := {201} tii[16,43] := {208} tii[16,44] := {151} tii[16,45] := {152} tii[16,46] := {113} tii[16,47] := {200} tii[16,48] := {72} tii[16,49] := {185} tii[16,50] := {186} tii[16,51] := {128} tii[16,52] := {91} tii[16,53] := {161} tii[16,54] := {129} tii[16,55] := {179} tii[16,56] := {150} tii[16,57] := {112} tii[16,58] := {111} tii[16,59] := {70} tii[16,60] := {36} tii[16,61] := {147} tii[16,62] := {83} tii[16,63] := {177} tii[16,64] := {149} tii[16,65] := {46} tii[16,66] := {146} tii[16,67] := {160} tii[16,68] := {124} tii[16,69] := {178} tii[16,70] := {65} tii[16,71] := {125} tii[16,72] := {148} tii[16,73] := {48} tii[16,74] := {106} tii[16,75] := {85} tii[16,76] := {47} tii[16,77] := {196} tii[16,78] := {141} tii[16,79] := {156} tii[16,80] := {15} tii[16,81] := {174} tii[16,82] := {158} tii[16,83] := {197} tii[16,84] := {172} tii[16,85] := {29} tii[16,86] := {175} tii[16,87] := {173} tii[16,88] := {144} tii[16,89] := {76} tii[16,90] := {140} tii[16,91] := {143} tii[16,92] := {123} tii[16,93] := {17} tii[16,94] := {100} tii[16,95] := {157} tii[16,96] := {145} tii[16,97] := {40} tii[16,98] := {159} tii[16,99] := {122} tii[16,100] := {16} tii[16,101] := {103} tii[16,102] := {82} tii[16,103] := {194} tii[16,104] := {61} tii[16,105] := {137} tii[16,106] := {170} tii[16,107] := {43} tii[16,108] := {139} tii[16,109] := {138} tii[16,110] := {120} tii[16,111] := {60} tii[16,112] := {30} tii[16,113] := {79} tii[16,114] := {78} tii[16,115] := {98} tii[16,116] := {62} tii[16,117] := {19} tii[16,118] := {77} tii[16,119] := {42} tii[16,120] := {18} tii[16,121] := {204} tii[16,122] := {3} tii[16,123] := {191} tii[16,124] := {182} tii[16,125] := {205} tii[16,126] := {12} tii[16,127] := {168} tii[16,128] := {50} tii[16,129] := {192} tii[16,130] := {5} tii[16,131] := {155} tii[16,132] := {167} tii[16,133] := {169} tii[16,134] := {21} tii[16,135] := {183} tii[16,136] := {4} tii[16,137] := {135} tii[16,138] := {118} tii[16,139] := {202} tii[16,140] := {132} tii[16,141] := {35} tii[16,142] := {110} tii[16,143] := {187} tii[16,144] := {162} tii[16,145] := {116} tii[16,146] := {24} tii[16,147] := {163} tii[16,148] := {133} tii[16,149] := {34} tii[16,150] := {89} tii[16,151] := {153} tii[16,152] := {13} tii[16,153] := {130} tii[16,154] := {52} tii[16,155] := {93} tii[16,156] := {53} tii[16,157] := {92} tii[16,158] := {75} tii[16,159] := {7} tii[16,160] := {134} tii[16,161] := {51} tii[16,162] := {166} tii[16,163] := {94} tii[16,164] := {23} tii[16,165] := {6} tii[16,166] := {57} tii[16,167] := {117} tii[16,168] := {39} tii[16,169] := {73} tii[16,170] := {54} tii[16,171] := {74} tii[16,172] := {90} tii[16,173] := {38} tii[16,174] := {26} tii[16,175] := {71} tii[16,176] := {115} tii[16,177] := {37} tii[16,178] := {14} tii[16,179] := {55} tii[16,180] := {8} tii[16,181] := {104} tii[16,182] := {84} tii[16,183] := {56} tii[16,184] := {108} tii[16,185] := {87} tii[16,186] := {107} tii[16,187] := {27} tii[16,188] := {126} tii[16,189] := {66} tii[16,190] := {49} tii[16,191] := {86} tii[16,192] := {28} tii[16,193] := {101} tii[16,194] := {80} tii[16,195] := {102} tii[16,196] := {121} tii[16,197] := {9} tii[16,198] := {64} tii[16,199] := {45} tii[16,200] := {99} tii[16,201] := {142} tii[16,202] := {63} tii[16,203] := {41} tii[16,204] := {31} tii[16,205] := {81} tii[16,206] := {10} tii[16,207] := {20} tii[16,208] := {97} tii[16,209] := {44} tii[16,210] := {11} tii[16,211] := {0} tii[16,212] := {22} tii[16,213] := {1} tii[16,214] := {69} tii[16,215] := {25} tii[16,216] := {2} cell#13 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {2} tii[19,2] := {6} tii[19,3] := {17} tii[19,4] := {33} tii[19,5] := {49} tii[19,6] := {12} tii[19,7] := {27} tii[19,8] := {46} tii[19,9] := {63} tii[19,10] := {18} tii[19,11] := {34} tii[19,12] := {50} tii[19,13] := {44} tii[19,14] := {59} tii[19,15] := {52} tii[19,16] := {29} tii[19,17] := {48} tii[19,18] := {66} tii[19,19] := {69} tii[19,20] := {28} tii[19,21] := {47} tii[19,22] := {64} tii[19,23] := {56} tii[19,24] := {67} tii[19,25] := {65} tii[19,26] := {19} tii[19,27] := {35} tii[19,28] := {51} tii[19,29] := {45} tii[19,30] := {60} tii[19,31] := {53} tii[19,32] := {62} tii[19,33] := {68} tii[19,34] := {61} tii[19,35] := {54} tii[19,36] := {11} tii[19,37] := {26} tii[19,38] := {43} tii[19,39] := {58} tii[19,40] := {10} tii[19,41] := {25} tii[19,42] := {41} tii[19,43] := {36} tii[19,44] := {55} tii[19,45] := {42} tii[19,46] := {5} tii[19,47] := {16} tii[19,48] := {30} tii[19,49] := {24} tii[19,50] := {38} tii[19,51] := {31} tii[19,52] := {40} tii[19,53] := {57} tii[19,54] := {39} tii[19,55] := {32} tii[19,56] := {1} tii[19,57] := {4} tii[19,58] := {13} tii[19,59] := {9} tii[19,60] := {21} tii[19,61] := {14} tii[19,62] := {23} tii[19,63] := {37} tii[19,64] := {22} tii[19,65] := {15} tii[19,66] := {8} tii[19,67] := {20} tii[19,68] := {7} tii[19,69] := {3} tii[19,70] := {0} cell#14 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {115} tii[14,2] := {40} tii[14,3] := {94} tii[14,4] := {148} tii[14,5] := {19} tii[14,6] := {114} tii[14,7] := {57} tii[14,8] := {149} tii[14,9] := {173} tii[14,10] := {43} tii[14,11] := {96} tii[14,12] := {82} tii[14,13] := {118} tii[14,14] := {130} tii[14,15] := {95} tii[14,16] := {169} tii[14,17] := {6} tii[14,18] := {146} tii[14,19] := {25} tii[14,20] := {170} tii[14,21] := {185} tii[14,22] := {113} tii[14,23] := {17} tii[14,24] := {51} tii[14,25] := {37} tii[14,26] := {147} tii[14,27] := {70} tii[14,28] := {171} tii[14,29] := {159} tii[14,30] := {88} tii[14,31] := {50} tii[14,32] := {179} tii[14,33] := {172} tii[14,34] := {38} tii[14,35] := {92} tii[14,36] := {73} tii[14,37] := {109} tii[14,38] := {93} tii[14,39] := {125} tii[14,40] := {91} tii[14,41] := {126} tii[14,42] := {110} tii[14,43] := {154} tii[14,44] := {124} tii[14,45] := {90} tii[14,46] := {181} tii[14,47] := {2} tii[14,48] := {167} tii[14,49] := {12} tii[14,50] := {182} tii[14,51] := {188} tii[14,52] := {9} tii[14,53] := {142} tii[14,54] := {30} tii[14,55] := {22} tii[14,56] := {168} tii[14,57] := {44} tii[14,58] := {183} tii[14,59] := {60} tii[14,60] := {177} tii[14,61] := {29} tii[14,62] := {187} tii[14,63] := {184} tii[14,64] := {108} tii[14,65] := {23} tii[14,66] := {64} tii[14,67] := {141} tii[14,68] := {47} tii[14,69] := {164} tii[14,70] := {84} tii[14,71] := {65} tii[14,72] := {153} tii[14,73] := {99} tii[14,74] := {63} tii[14,75] := {100} tii[14,76] := {174} tii[14,77] := {85} tii[14,78] := {165} tii[14,79] := {176} tii[14,80] := {133} tii[14,81] := {186} tii[14,82] := {98} tii[14,83] := {62} tii[14,84] := {175} tii[14,85] := {166} tii[14,86] := {48} tii[14,87] := {106} tii[14,88] := {87} tii[14,89] := {121} tii[14,90] := {137} tii[14,91] := {107} tii[14,92] := {105} tii[14,93] := {138} tii[14,94] := {122} tii[14,95] := {140} tii[14,96] := {162} tii[14,97] := {163} tii[14,98] := {136} tii[14,99] := {104} tii[14,100] := {139} tii[14,101] := {123} tii[14,102] := {180} tii[14,103] := {161} tii[14,104] := {135} tii[14,105] := {103} tii[14,106] := {76} tii[14,107] := {49} tii[14,108] := {75} tii[14,109] := {79} tii[14,110] := {24} tii[14,111] := {117} tii[14,112] := {39} tii[14,113] := {150} tii[14,114] := {78} tii[14,115] := {56} tii[14,116] := {116} tii[14,117] := {77} tii[14,118] := {83} tii[14,119] := {10} tii[14,120] := {120} tii[14,121] := {18} tii[14,122] := {151} tii[14,123] := {132} tii[14,124] := {42} tii[14,125] := {28} tii[14,126] := {80} tii[14,127] := {160} tii[14,128] := {41} tii[14,129] := {152} tii[14,130] := {97} tii[14,131] := {59} tii[14,132] := {131} tii[14,133] := {58} tii[14,134] := {119} tii[14,135] := {81} tii[14,136] := {74} tii[14,137] := {3} tii[14,138] := {112} tii[14,139] := {5} tii[14,140] := {143} tii[14,141] := {129} tii[14,142] := {16} tii[14,143] := {11} tii[14,144] := {35} tii[14,145] := {156} tii[14,146] := {144} tii[14,147] := {15} tii[14,148] := {158} tii[14,149] := {52} tii[14,150] := {178} tii[14,151] := {27} tii[14,152] := {89} tii[14,153] := {157} tii[14,154] := {26} tii[14,155] := {71} tii[14,156] := {145} tii[14,157] := {36} tii[14,158] := {128} tii[14,159] := {54} tii[14,160] := {155} tii[14,161] := {127} tii[14,162] := {55} tii[14,163] := {111} tii[14,164] := {53} tii[14,165] := {72} tii[14,166] := {0} tii[14,167] := {1} tii[14,168] := {8} tii[14,169] := {4} tii[14,170] := {20} tii[14,171] := {7} tii[14,172] := {31} tii[14,173] := {14} tii[14,174] := {61} tii[14,175] := {13} tii[14,176] := {45} tii[14,177] := {21} tii[14,178] := {102} tii[14,179] := {33} tii[14,180] := {134} tii[14,181] := {101} tii[14,182] := {34} tii[14,183] := {32} tii[14,184] := {86} tii[14,185] := {46} tii[14,186] := {67} tii[14,187] := {68} tii[14,188] := {69} tii[14,189] := {66} cell#15 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {112} tii[14,2] := {121} tii[14,3] := {170} tii[14,4] := {143} tii[14,5] := {149} tii[14,6] := {111} tii[14,7] := {176} tii[14,8] := {73} tii[14,9] := {96} tii[14,10] := {122} tii[14,11] := {171} tii[14,12] := {86} tii[14,13] := {114} tii[14,14] := {184} tii[14,15] := {168} tii[14,16] := {166} tii[14,17] := {173} tii[14,18] := {142} tii[14,19] := {187} tii[14,20] := {109} tii[14,21] := {129} tii[14,22] := {110} tii[14,23] := {151} tii[14,24] := {178} tii[14,25] := {119} tii[14,26] := {72} tii[14,27] := {131} tii[14,28] := {94} tii[14,29] := {38} tii[14,30] := {186} tii[14,31] := {177} tii[14,32] := {56} tii[14,33] := {95} tii[14,34] := {123} tii[14,35] := {172} tii[14,36] := {87} tii[14,37] := {115} tii[14,38] := {49} tii[14,39] := {185} tii[14,40] := {169} tii[14,41] := {76} tii[14,42] := {118} tii[14,43] := {188} tii[14,44] := {183} tii[14,45] := {167} tii[14,46] := {182} tii[14,47] := {139} tii[14,48] := {165} tii[14,49] := {175} tii[14,50] := {140} tii[14,51] := {156} tii[14,52] := {105} tii[14,53] := {141} tii[14,54] := {154} tii[14,55] := {67} tii[14,56] := {108} tii[14,57] := {88} tii[14,58] := {127} tii[14,59] := {174} tii[14,60] := {69} tii[14,61] := {153} tii[14,62] := {93} tii[14,63] := {128} tii[14,64] := {107} tii[14,65] := {84} tii[14,66] := {138} tii[14,67] := {68} tii[14,68] := {46} tii[14,69] := {90} tii[14,70] := {64} tii[14,71] := {22} tii[14,72] := {35} tii[14,73] := {164} tii[14,74] := {137} tii[14,75] := {32} tii[14,76] := {51} tii[14,77] := {65} tii[14,78] := {91} tii[14,79] := {15} tii[14,80] := {181} tii[14,81] := {25} tii[14,82] := {163} tii[14,83] := {136} tii[14,84] := {52} tii[14,85] := {92} tii[14,86] := {45} tii[14,87] := {101} tii[14,88] := {21} tii[14,89] := {30} tii[14,90] := {135} tii[14,91] := {8} tii[14,92] := {100} tii[14,93] := {13} tii[14,94] := {31} tii[14,95] := {2} tii[14,96] := {162} tii[14,97] := {4} tii[14,98] := {134} tii[14,99] := {99} tii[14,100] := {12} tii[14,101] := {29} tii[14,102] := {180} tii[14,103] := {161} tii[14,104] := {133} tii[14,105] := {98} tii[14,106] := {77} tii[14,107] := {47} tii[14,108] := {74} tii[14,109] := {81} tii[14,110] := {85} tii[14,111] := {41} tii[14,112] := {113} tii[14,113] := {57} tii[14,114] := {23} tii[14,115] := {144} tii[14,116] := {39} tii[14,117] := {79} tii[14,118] := {83} tii[14,119] := {116} tii[14,120] := {43} tii[14,121] := {130} tii[14,122] := {59} tii[14,123] := {19} tii[14,124] := {48} tii[14,125] := {157} tii[14,126] := {75} tii[14,127] := {28} tii[14,128] := {117} tii[14,129] := {58} tii[14,130] := {10} tii[14,131] := {145} tii[14,132] := {18} tii[14,133] := {147} tii[14,134] := {42} tii[14,135] := {82} tii[14,136] := {71} tii[14,137] := {152} tii[14,138] := {37} tii[14,139] := {160} tii[14,140] := {54} tii[14,141] := {17} tii[14,142] := {78} tii[14,143] := {179} tii[14,144] := {97} tii[14,145] := {27} tii[14,146] := {55} tii[14,147] := {132} tii[14,148] := {6} tii[14,149] := {24} tii[14,150] := {11} tii[14,151] := {158} tii[14,152] := {40} tii[14,153] := {26} tii[14,154] := {159} tii[14,155] := {80} tii[14,156] := {53} tii[14,157] := {120} tii[14,158] := {3} tii[14,159] := {146} tii[14,160] := {5} tii[14,161] := {16} tii[14,162] := {148} tii[14,163] := {36} tii[14,164] := {150} tii[14,165] := {70} tii[14,166] := {106} tii[14,167] := {126} tii[14,168] := {34} tii[14,169] := {155} tii[14,170] := {50} tii[14,171] := {89} tii[14,172] := {9} tii[14,173] := {124} tii[14,174] := {14} tii[14,175] := {125} tii[14,176] := {33} tii[14,177] := {66} tii[14,178] := {0} tii[14,179] := {102} tii[14,180] := {1} tii[14,181] := {7} tii[14,182] := {103} tii[14,183] := {104} tii[14,184] := {20} tii[14,185] := {44} tii[14,186] := {61} tii[14,187] := {62} tii[14,188] := {63} tii[14,189] := {60} cell#16 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {1} tii[13,2] := {4} tii[13,3] := {11} tii[13,4] := {25} tii[13,5] := {7} tii[13,6] := {19} tii[13,7] := {35} tii[13,8] := {9} tii[13,9] := {23} tii[13,10] := {32} tii[13,11] := {21} tii[13,12] := {37} tii[13,13] := {49} tii[13,14] := {20} tii[13,15] := {36} tii[13,16] := {43} tii[13,17] := {10} tii[13,18] := {24} tii[13,19] := {33} tii[13,20] := {47} tii[13,21] := {39} tii[13,22] := {50} tii[13,23] := {55} tii[13,24] := {40} tii[13,25] := {51} tii[13,26] := {53} tii[13,27] := {22} tii[13,28] := {38} tii[13,29] := {44} tii[13,30] := {52} tii[13,31] := {12} tii[13,32] := {26} tii[13,33] := {34} tii[13,34] := {48} tii[13,35] := {54} tii[13,36] := {17} tii[13,37] := {30} tii[13,38] := {46} tii[13,39] := {18} tii[13,40] := {31} tii[13,41] := {42} tii[13,42] := {6} tii[13,43] := {16} tii[13,44] := {27} tii[13,45] := {41} tii[13,46] := {3} tii[13,47] := {8} tii[13,48] := {15} tii[13,49] := {29} tii[13,50] := {45} tii[13,51] := {0} tii[13,52] := {2} tii[13,53] := {5} tii[13,54] := {14} tii[13,55] := {28} tii[13,56] := {13} cell#17 , |C| = 120 special orbit = [3, 3, 1, 1, 1] special rep = [3, 3, 1, 1, 1] , dim = 120 cell rep = phi[3,3,1,1,1] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[10,1] := {72} tii[10,2] := {90} tii[10,3] := {47} tii[10,4] := {103} tii[10,5] := {89} tii[10,6] := {69} tii[10,7] := {102} tii[10,8] := {66} tii[10,9] := {111} tii[10,10] := {44} tii[10,11] := {101} tii[10,12] := {85} tii[10,13] := {68} tii[10,14] := {43} tii[10,15] := {116} tii[10,16] := {110} tii[10,17] := {99} tii[10,18] := {100} tii[10,19] := {84} tii[10,20] := {62} tii[10,21] := {109} tii[10,22] := {80} tii[10,23] := {115} tii[10,24] := {60} tii[10,25] := {108} tii[10,26] := {95} tii[10,27] := {82} tii[10,28] := {59} tii[10,29] := {118} tii[10,30] := {33} tii[10,31] := {114} tii[10,32] := {106} tii[10,33] := {107} tii[10,34] := {55} tii[10,35] := {32} tii[10,36] := {94} tii[10,37] := {76} tii[10,38] := {77} tii[10,39] := {54} tii[10,40] := {31} tii[10,41] := {119} tii[10,42] := {117} tii[10,43] := {112} tii[10,44] := {113} tii[10,45] := {105} tii[10,46] := {92} tii[10,47] := {104} tii[10,48] := {91} tii[10,49] := {74} tii[10,50] := {52} tii[10,51] := {24} tii[10,52] := {48} tii[10,53] := {26} tii[10,54] := {23} tii[10,55] := {49} tii[10,56] := {25} tii[10,57] := {70} tii[10,58] := {29} tii[10,59] := {45} tii[10,60] := {71} tii[10,61] := {51} tii[10,62] := {21} tii[10,63] := {46} tii[10,64] := {28} tii[10,65] := {22} tii[10,66] := {73} tii[10,67] := {50} tii[10,68] := {27} tii[10,69] := {86} tii[10,70] := {17} tii[10,71] := {64} tii[10,72] := {39} tii[10,73] := {87} tii[10,74] := {40} tii[10,75] := {65} tii[10,76] := {16} tii[10,77] := {41} tii[10,78] := {63} tii[10,79] := {88} tii[10,80] := {38} tii[10,81] := {18} tii[10,82] := {67} tii[10,83] := {42} tii[10,84] := {15} tii[10,85] := {19} tii[10,86] := {20} tii[10,87] := {83} tii[10,88] := {61} tii[10,89] := {37} tii[10,90] := {14} tii[10,91] := {96} tii[10,92] := {78} tii[10,93] := {97} tii[10,94] := {56} tii[10,95] := {79} tii[10,96] := {57} tii[10,97] := {98} tii[10,98] := {34} tii[10,99] := {81} tii[10,100] := {35} tii[10,101] := {58} tii[10,102] := {36} tii[10,103] := {93} tii[10,104] := {10} tii[10,105] := {75} tii[10,106] := {53} tii[10,107] := {11} tii[10,108] := {30} tii[10,109] := {12} tii[10,110] := {13} tii[10,111] := {4} tii[10,112] := {6} tii[10,113] := {5} tii[10,114] := {8} tii[10,115] := {9} tii[10,116] := {7} tii[10,117] := {1} tii[10,118] := {2} tii[10,119] := {3} tii[10,120] := {0} cell#18 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {59} tii[7,2] := {26} tii[7,3] := {76} tii[7,4] := {16} tii[7,5] := {58} tii[7,6] := {77} tii[7,7] := {28} tii[7,8] := {43} tii[7,9] := {89} tii[7,10] := {9} tii[7,11] := {74} tii[7,12] := {90} tii[7,13] := {57} tii[7,14] := {18} tii[7,15] := {29} tii[7,16] := {75} tii[7,17] := {82} tii[7,18] := {30} tii[7,19] := {45} tii[7,20] := {51} tii[7,21] := {98} tii[7,22] := {3} tii[7,23] := {87} tii[7,24] := {99} tii[7,25] := {8} tii[7,26] := {72} tii[7,27] := {14} tii[7,28] := {88} tii[7,29] := {94} tii[7,30] := {56} tii[7,31] := {15} tii[7,32] := {73} tii[7,33] := {24} tii[7,34] := {34} tii[7,35] := {81} tii[7,36] := {95} tii[7,37] := {25} tii[7,38] := {38} tii[7,39] := {49} tii[7,40] := {63} tii[7,41] := {103} tii[7,42] := {1} tii[7,43] := {96} tii[7,44] := {104} tii[7,45] := {5} tii[7,46] := {85} tii[7,47] := {10} tii[7,48] := {97} tii[7,49] := {101} tii[7,50] := {71} tii[7,51] := {11} tii[7,52] := {19} tii[7,53] := {86} tii[7,54] := {23} tii[7,55] := {92} tii[7,56] := {102} tii[7,57] := {54} tii[7,58] := {20} tii[7,59] := {70} tii[7,60] := {31} tii[7,61] := {78} tii[7,62] := {37} tii[7,63] := {52} tii[7,64] := {91} tii[7,65] := {100} tii[7,66] := {32} tii[7,67] := {47} tii[7,68] := {53} tii[7,69] := {69} tii[7,70] := {84} tii[7,71] := {40} tii[7,72] := {33} tii[7,73] := {42} tii[7,74] := {21} tii[7,75] := {60} tii[7,76] := {41} tii[7,77] := {44} tii[7,78] := {12} tii[7,79] := {61} tii[7,80] := {27} tii[7,81] := {65} tii[7,82] := {50} tii[7,83] := {46} tii[7,84] := {6} tii[7,85] := {62} tii[7,86] := {17} tii[7,87] := {67} tii[7,88] := {35} tii[7,89] := {83} tii[7,90] := {66} tii[7,91] := {39} tii[7,92] := {2} tii[7,93] := {55} tii[7,94] := {64} tii[7,95] := {7} tii[7,96] := {80} tii[7,97] := {22} tii[7,98] := {93} tii[7,99] := {48} tii[7,100] := {79} tii[7,101] := {0} tii[7,102] := {4} tii[7,103] := {13} tii[7,104] := {36} tii[7,105] := {68} cell#19 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {161} tii[11,2] := {157} tii[11,3] := {158} tii[11,4] := {165} tii[11,5] := {134} tii[11,6] := {167} tii[11,7] := {154} tii[11,8] := {135} tii[11,9] := {166} tii[11,10] := {92} tii[11,11] := {160} tii[11,12] := {146} tii[11,13] := {153} tii[11,14] := {107} tii[11,15] := {144} tii[11,16] := {81} tii[11,17] := {119} tii[11,18] := {89} tii[11,19] := {61} tii[11,20] := {36} tii[11,21] := {151} tii[11,22] := {101} tii[11,23] := {130} tii[11,24] := {131} tii[11,25] := {103} tii[11,26] := {72} tii[11,27] := {164} tii[11,28] := {126} tii[11,29] := {138} tii[11,30] := {142} tii[11,31] := {162} tii[11,32] := {149} tii[11,33] := {143} tii[11,34] := {60} tii[11,35] := {150} tii[11,36] := {115} tii[11,37] := {117} tii[11,38] := {124} tii[11,39] := {125} tii[11,40] := {86} tii[11,41] := {132} tii[11,42] := {98} tii[11,43] := {105} tii[11,44] := {69} tii[11,45] := {152} tii[11,46] := {140} tii[11,47] := {34} tii[11,48] := {129} tii[11,49] := {116} tii[11,50] := {100} tii[11,51] := {28} tii[11,52] := {102} tii[11,53] := {13} tii[11,54] := {141} tii[11,55] := {71} tii[11,56] := {43} tii[11,57] := {147} tii[11,58] := {111} tii[11,59] := {159} tii[11,60] := {137} tii[11,61] := {112} tii[11,62] := {83} tii[11,63] := {145} tii[11,64] := {56} tii[11,65] := {123} tii[11,66] := {93} tii[11,67] := {95} tii[11,68] := {66} tii[11,69] := {120} tii[11,70] := {163} tii[11,71] := {109} tii[11,72] := {55} tii[11,73] := {91} tii[11,74] := {63} tii[11,75] := {155} tii[11,76] := {82} tii[11,77] := {78} tii[11,78] := {38} tii[11,79] := {148} tii[11,80] := {64} tii[11,81] := {136} tii[11,82] := {122} tii[11,83] := {20} tii[11,84] := {110} tii[11,85] := {52} tii[11,86] := {39} tii[11,87] := {94} tii[11,88] := {21} tii[11,89] := {19} tii[11,90] := {8} tii[11,91] := {65} tii[11,92] := {3} tii[11,93] := {133} tii[11,94] := {108} tii[11,95] := {90} tii[11,96] := {80} tii[11,97] := {62} tii[11,98] := {37} tii[11,99] := {54} tii[11,100] := {18} tii[11,101] := {75} tii[11,102] := {46} tii[11,103] := {24} tii[11,104] := {128} tii[11,105] := {88} tii[11,106] := {99} tii[11,107] := {106} tii[11,108] := {73} tii[11,109] := {77} tii[11,110] := {44} tii[11,111] := {50} tii[11,112] := {70} tii[11,113] := {79} tii[11,114] := {31} tii[11,115] := {49} tii[11,116] := {26} tii[11,117] := {104} tii[11,118] := {11} tii[11,119] := {156} tii[11,120] := {139} tii[11,121] := {51} tii[11,122] := {127} tii[11,123] := {87} tii[11,124] := {96} tii[11,125] := {114} tii[11,126] := {97} tii[11,127] := {58} tii[11,128] := {29} tii[11,129] := {45} tii[11,130] := {68} tii[11,131] := {12} tii[11,132] := {76} tii[11,133] := {4} tii[11,134] := {118} tii[11,135] := {35} tii[11,136] := {48} tii[11,137] := {85} tii[11,138] := {74} tii[11,139] := {25} tii[11,140] := {42} tii[11,141] := {1} tii[11,142] := {16} tii[11,143] := {17} tii[11,144] := {5} tii[11,145] := {57} tii[11,146] := {121} tii[11,147] := {33} tii[11,148] := {23} tii[11,149] := {40} tii[11,150] := {113} tii[11,151] := {84} tii[11,152] := {22} tii[11,153] := {67} tii[11,154] := {41} tii[11,155] := {10} tii[11,156] := {6} tii[11,157] := {32} tii[11,158] := {9} tii[11,159] := {30} tii[11,160] := {2} tii[11,161] := {47} tii[11,162] := {15} tii[11,163] := {59} tii[11,164] := {53} tii[11,165] := {27} tii[11,166] := {7} tii[11,167] := {14} tii[11,168] := {0} cell#20 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {5} tii[4,2] := {9} tii[4,3] := {12} tii[4,4] := {17} tii[4,5] := {14} tii[4,6] := {19} tii[4,7] := {24} tii[4,8] := {25} tii[4,9] := {30} tii[4,10] := {35} tii[4,11] := {21} tii[4,12] := {26} tii[4,13] := {32} tii[4,14] := {33} tii[4,15] := {38} tii[4,16] := {42} tii[4,17] := {39} tii[4,18] := {43} tii[4,19] := {46} tii[4,20] := {47} tii[4,21] := {2} tii[4,22] := {1} tii[4,23] := {7} tii[4,24] := {3} tii[4,25] := {11} tii[4,26] := {8} tii[4,27] := {18} tii[4,28] := {6} tii[4,29] := {23} tii[4,30] := {13} tii[4,31] := {28} tii[4,32] := {22} tii[4,33] := {31} tii[4,34] := {10} tii[4,35] := {36} tii[4,36] := {41} tii[4,37] := {20} tii[4,38] := {44} tii[4,39] := {29} tii[4,40] := {40} tii[4,41] := {15} tii[4,42] := {27} tii[4,43] := {37} tii[4,44] := {45} tii[4,45] := {0} tii[4,46] := {4} tii[4,47] := {16} tii[4,48] := {34} cell#21 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {162} tii[14,2] := {184} tii[14,3] := {188} tii[14,4] := {131} tii[14,5] := {168} tii[14,6] := {101} tii[14,7] := {179} tii[14,8] := {112} tii[14,9] := {102} tii[14,10] := {182} tii[14,11] := {183} tii[14,12] := {167} tii[14,13] := {142} tii[14,14] := {180} tii[14,15] := {161} tii[14,16] := {108} tii[14,17] := {157} tii[14,18] := {79} tii[14,19] := {164} tii[14,20] := {96} tii[14,21] := {80} tii[14,22] := {51} tii[14,23] := {175} tii[14,24] := {176} tii[14,25] := {156} tii[14,26] := {64} tii[14,27] := {126} tii[14,28] := {52} tii[14,29] := {98} tii[14,30] := {165} tii[14,31] := {140} tii[14,32] := {65} tii[14,33] := {53} tii[14,34] := {186} tii[14,35] := {187} tii[14,36] := {174} tii[14,37] := {154} tii[14,38] := {155} tii[14,39] := {177} tii[14,40] := {159} tii[14,41] := {125} tii[14,42] := {95} tii[14,43] := {166} tii[14,44] := {141} tii[14,45] := {111} tii[14,46] := {75} tii[14,47] := {122} tii[14,48] := {47} tii[14,49] := {136} tii[14,50] := {60} tii[14,51] := {48} tii[14,52] := {150} tii[14,53] := {25} tii[14,54] := {151} tii[14,55] := {121} tii[14,56] := {37} tii[14,57] := {90} tii[14,58] := {26} tii[14,59] := {137} tii[14,60] := {62} tii[14,61] := {106} tii[14,62] := {38} tii[14,63] := {27} tii[14,64] := {11} tii[14,65] := {172} tii[14,66] := {173} tii[14,67] := {16} tii[14,68] := {149} tii[14,69] := {12} tii[14,70] := {119} tii[14,71] := {120} tii[14,72] := {34} tii[14,73] := {152} tii[14,74] := {124} tii[14,75] := {89} tii[14,76] := {17} tii[14,77] := {59} tii[14,78] := {13} tii[14,79] := {57} tii[14,80] := {138} tii[14,81] := {35} tii[14,82] := {107} tii[14,83] := {78} tii[14,84] := {18} tii[14,85] := {14} tii[14,86] := {185} tii[14,87] := {146} tii[14,88] := {171} tii[14,89] := {147} tii[14,90] := {115} tii[14,91] := {148} tii[14,92] := {85} tii[14,93] := {118} tii[14,94] := {87} tii[14,95] := {117} tii[14,96] := {104} tii[14,97] := {86} tii[14,98] := {74} tii[14,99] := {46} tii[14,100] := {56} tii[14,101] := {33} tii[14,102] := {72} tii[14,103] := {44} tii[14,104] := {22} tii[14,105] := {9} tii[14,106] := {134} tii[14,107] := {145} tii[14,108] := {135} tii[14,109] := {69} tii[14,110] := {170} tii[14,111] := {83} tii[14,112] := {163} tii[14,113] := {70} tii[14,114] := {114} tii[14,115] := {181} tii[14,116] := {84} tii[14,117] := {71} tii[14,118] := {29} tii[14,119] := {143} tii[14,120] := {40} tii[14,121] := {132} tii[14,122] := {30} tii[14,123] := {67} tii[14,124] := {144} tii[14,125] := {160} tii[14,126] := {113} tii[14,127] := {41} tii[14,128] := {103} tii[14,129] := {31} tii[14,130] := {100} tii[14,131] := {169} tii[14,132] := {68} tii[14,133] := {133} tii[14,134] := {42} tii[14,135] := {32} tii[14,136] := {0} tii[14,137] := {127} tii[14,138] := {6} tii[14,139] := {109} tii[14,140] := {1} tii[14,141] := {20} tii[14,142] := {129} tii[14,143] := {139} tii[14,144] := {97} tii[14,145] := {7} tii[14,146] := {2} tii[14,147] := {81} tii[14,148] := {43} tii[14,149] := {130} tii[14,150] := {21} tii[14,151] := {158} tii[14,152] := {99} tii[14,153] := {8} tii[14,154] := {110} tii[14,155] := {66} tii[14,156] := {3} tii[14,157] := {54} tii[14,158] := {73} tii[14,159] := {178} tii[14,160] := {45} tii[14,161] := {23} tii[14,162] := {128} tii[14,163] := {10} tii[14,164] := {82} tii[14,165] := {5} tii[14,166] := {91} tii[14,167] := {76} tii[14,168] := {93} tii[14,169] := {105} tii[14,170] := {61} tii[14,171] := {49} tii[14,172] := {94} tii[14,173] := {123} tii[14,174] := {63} tii[14,175] := {77} tii[14,176] := {39} tii[14,177] := {28} tii[14,178] := {88} tii[14,179] := {153} tii[14,180] := {58} tii[14,181] := {36} tii[14,182] := {92} tii[14,183] := {50} tii[14,184] := {19} tii[14,185] := {15} tii[14,186] := {116} tii[14,187] := {55} tii[14,188] := {24} tii[14,189] := {4} cell#22 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {21} tii[13,2] := {39} tii[13,3] := {49} tii[13,4] := {55} tii[13,5] := {22} tii[13,6] := {40} tii[13,7] := {50} tii[13,8] := {44} tii[13,9] := {53} tii[13,10] := {51} tii[13,11] := {7} tii[13,12] := {20} tii[13,13] := {36} tii[13,14] := {27} tii[13,15] := {41} tii[13,16] := {37} tii[13,17] := {43} tii[13,18] := {52} tii[13,19] := {42} tii[13,20] := {38} tii[13,21] := {4} tii[13,22] := {12} tii[13,23] := {23} tii[13,24] := {19} tii[13,25] := {32} tii[13,26] := {24} tii[13,27] := {34} tii[13,28] := {46} tii[13,29] := {33} tii[13,30] := {25} tii[13,31] := {47} tii[13,32] := {54} tii[13,33] := {48} tii[13,34] := {35} tii[13,35] := {26} tii[13,36] := {1} tii[13,37] := {3} tii[13,38] := {8} tii[13,39] := {6} tii[13,40] := {15} tii[13,41] := {9} tii[13,42] := {17} tii[13,43] := {29} tii[13,44] := {16} tii[13,45] := {10} tii[13,46] := {30} tii[13,47] := {45} tii[13,48] := {31} tii[13,49] := {18} tii[13,50] := {11} tii[13,51] := {13} tii[13,52] := {28} tii[13,53] := {14} tii[13,54] := {5} tii[13,55] := {2} tii[13,56] := {0} cell#23 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {90} tii[7,2] := {101} tii[7,3] := {77} tii[7,4] := {95} tii[7,5] := {62} tii[7,6] := {66} tii[7,7] := {102} tii[7,8] := {94} tii[7,9] := {61} tii[7,10] := {80} tii[7,11] := {45} tii[7,12] := {48} tii[7,13] := {30} tii[7,14] := {92} tii[7,15] := {79} tii[7,16] := {34} tii[7,17] := {49} tii[7,18] := {100} tii[7,19] := {91} tii[7,20] := {78} tii[7,21] := {47} tii[7,22] := {75} tii[7,23] := {33} tii[7,24] := {41} tii[7,25] := {89} tii[7,26] := {21} tii[7,27] := {74} tii[7,28] := {27} tii[7,29] := {42} tii[7,30] := {12} tii[7,31] := {99} tii[7,32] := {16} tii[7,33] := {88} tii[7,34] := {73} tii[7,35] := {28} tii[7,36] := {43} tii[7,37] := {104} tii[7,38] := {98} tii[7,39] := {87} tii[7,40] := {72} tii[7,41] := {32} tii[7,42] := {56} tii[7,43] := {20} tii[7,44] := {24} tii[7,45] := {71} tii[7,46] := {11} tii[7,47] := {55} tii[7,48] := {14} tii[7,49] := {25} tii[7,50] := {5} tii[7,51] := {86} tii[7,52] := {70} tii[7,53] := {8} tii[7,54] := {54} tii[7,55] := {15} tii[7,56] := {26} tii[7,57] := {2} tii[7,58] := {97} tii[7,59] := {3} tii[7,60] := {85} tii[7,61] := {7} tii[7,62] := {69} tii[7,63] := {53} tii[7,64] := {13} tii[7,65] := {23} tii[7,66] := {103} tii[7,67] := {96} tii[7,68] := {84} tii[7,69] := {68} tii[7,70] := {52} tii[7,71] := {76} tii[7,72] := {81} tii[7,73] := {46} tii[7,74] := {93} tii[7,75] := {51} tii[7,76] := {67} tii[7,77] := {18} tii[7,78] := {82} tii[7,79] := {22} tii[7,80] := {83} tii[7,81] := {35} tii[7,82] := {50} tii[7,83] := {6} tii[7,84] := {63} tii[7,85] := {9} tii[7,86] := {64} tii[7,87] := {17} tii[7,88] := {65} tii[7,89] := {29} tii[7,90] := {44} tii[7,91] := {0} tii[7,92] := {57} tii[7,93] := {1} tii[7,94] := {4} tii[7,95] := {58} tii[7,96] := {10} tii[7,97] := {59} tii[7,98] := {19} tii[7,99] := {60} tii[7,100] := {31} tii[7,101] := {37} tii[7,102] := {38} tii[7,103] := {39} tii[7,104] := {40} tii[7,105] := {36} cell#24 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {153} tii[8,2] := {154} tii[8,3] := {156} tii[8,4] := {159} tii[8,5] := {160} tii[8,6] := {149} tii[8,7] := {143} tii[8,8] := {151} tii[8,9] := {131} tii[8,10] := {109} tii[8,11] := {134} tii[8,12] := {111} tii[8,13] := {122} tii[8,14] := {99} tii[8,15] := {75} tii[8,16] := {161} tii[8,17] := {146} tii[8,18] := {157} tii[8,19] := {118} tii[8,20] := {127} tii[8,21] := {147} tii[8,22] := {129} tii[8,23] := {106} tii[8,24] := {80} tii[8,25] := {155} tii[8,26] := {107} tii[8,27] := {92} tii[8,28] := {141} tii[8,29] := {119} tii[8,30] := {120} tii[8,31] := {67} tii[8,32] := {81} tii[8,33] := {44} tii[8,34] := {58} tii[8,35] := {95} tii[8,36] := {71} tii[8,37] := {70} tii[8,38] := {46} tii[8,39] := {28} tii[8,40] := {66} tii[8,41] := {42} tii[8,42] := {26} tii[8,43] := {35} tii[8,44] := {21} tii[8,45] := {11} tii[8,46] := {139} tii[8,47] := {140} tii[8,48] := {116} tii[8,49] := {90} tii[8,50] := {126} tii[8,51] := {104} tii[8,52] := {135} tii[8,53] := {136} tii[8,54] := {112} tii[8,55] := {137} tii[8,56] := {87} tii[8,57] := {113} tii[8,58] := {145} tii[8,59] := {114} tii[8,60] := {88} tii[8,61] := {138} tii[8,62] := {125} tii[8,63] := {89} tii[8,64] := {62} tii[8,65] := {40} tii[8,66] := {102} tii[8,67] := {144} tii[8,68] := {77} tii[8,69] := {53} tii[8,70] := {142} tii[8,71] := {121} tii[8,72] := {150} tii[8,73] := {84} tii[8,74] := {97} tii[8,75] := {132} tii[8,76] := {98} tii[8,77] := {110} tii[8,78] := {124} tii[8,79] := {59} tii[8,80] := {73} tii[8,81] := {152} tii[8,82] := {85} tii[8,83] := {39} tii[8,84] := {101} tii[8,85] := {49} tii[8,86] := {61} tii[8,87] := {48} tii[8,88] := {79} tii[8,89] := {74} tii[8,90] := {123} tii[8,91] := {56} tii[8,92] := {31} tii[8,93] := {133} tii[8,94] := {50} tii[8,95] := {16} tii[8,96] := {32} tii[8,97] := {86} tii[8,98] := {37} tii[8,99] := {17} tii[8,100] := {30} tii[8,101] := {100} tii[8,102] := {15} tii[8,103] := {51} tii[8,104] := {7} tii[8,105] := {3} tii[8,106] := {158} tii[8,107] := {148} tii[8,108] := {94} tii[8,109] := {130} tii[8,110] := {128} tii[8,111] := {108} tii[8,112] := {69} tii[8,113] := {83} tii[8,114] := {96} tii[8,115] := {55} tii[8,116] := {93} tii[8,117] := {105} tii[8,118] := {72} tii[8,119] := {36} tii[8,120] := {47} tii[8,121] := {57} tii[8,122] := {22} tii[8,123] := {29} tii[8,124] := {20} tii[8,125] := {68} tii[8,126] := {82} tii[8,127] := {10} tii[8,128] := {27} tii[8,129] := {4} tii[8,130] := {38} tii[8,131] := {14} tii[8,132] := {1} tii[8,133] := {43} tii[8,134] := {13} tii[8,135] := {5} tii[8,136] := {91} tii[8,137] := {65} tii[8,138] := {54} tii[8,139] := {64} tii[8,140] := {41} tii[8,141] := {117} tii[8,142] := {78} tii[8,143] := {25} tii[8,144] := {19} tii[8,145] := {52} tii[8,146] := {33} tii[8,147] := {115} tii[8,148] := {103} tii[8,149] := {18} tii[8,150] := {63} tii[8,151] := {9} tii[8,152] := {34} tii[8,153] := {6} tii[8,154] := {60} tii[8,155] := {76} tii[8,156] := {24} tii[8,157] := {23} tii[8,158] := {8} tii[8,159] := {2} tii[8,160] := {45} tii[8,161] := {12} tii[8,162] := {0} cell#25 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {47} tii[4,2] := {46} tii[4,3] := {43} tii[4,4] := {38} tii[4,5] := {41} tii[4,6] := {37} tii[4,7] := {31} tii[4,8] := {30} tii[4,9] := {24} tii[4,10] := {18} tii[4,11] := {35} tii[4,12] := {29} tii[4,13] := {23} tii[4,14] := {22} tii[4,15] := {16} tii[4,16] := {11} tii[4,17] := {20} tii[4,18] := {14} tii[4,19] := {9} tii[4,20] := {5} tii[4,21] := {45} tii[4,22] := {40} tii[4,23] := {39} tii[4,24] := {44} tii[4,25] := {33} tii[4,26] := {26} tii[4,27] := {27} tii[4,28] := {42} tii[4,29] := {21} tii[4,30] := {32} tii[4,31] := {15} tii[4,32] := {10} tii[4,33] := {13} tii[4,34] := {36} tii[4,35] := {8} tii[4,36] := {4} tii[4,37] := {25} tii[4,38] := {2} tii[4,39] := {12} tii[4,40] := {1} tii[4,41] := {28} tii[4,42] := {17} tii[4,43] := {7} tii[4,44] := {3} tii[4,45] := {34} tii[4,46] := {19} tii[4,47] := {6} tii[4,48] := {0} cell#26 , |C| = 120 special orbit = [3, 3, 1, 1, 1] special rep = [3, 3, 1, 1, 1] , dim = 120 cell rep = phi[3,3,1,1,1] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[10,1] := {26} tii[10,2] := {35} tii[10,3] := {47} tii[10,4] := {59} tii[10,5] := {84} tii[10,6] := {104} tii[10,7] := {61} tii[10,8] := {75} tii[10,9] := {86} tii[10,10] := {96} tii[10,11] := {108} tii[10,12] := {117} tii[10,13] := {112} tii[10,14] := {118} tii[10,15] := {103} tii[10,16] := {116} tii[10,17] := {119} tii[10,18] := {105} tii[10,19] := {115} tii[10,20] := {106} tii[10,21] := {34} tii[10,22] := {45} tii[10,23] := {55} tii[10,24] := {66} tii[10,25] := {82} tii[10,26] := {102} tii[10,27] := {91} tii[10,28] := {110} tii[10,29] := {78} tii[10,30] := {42} tii[10,31] := {101} tii[10,32] := {114} tii[10,33] := {79} tii[10,34] := {64} tii[10,35] := {90} tii[10,36] := {100} tii[10,37] := {80} tii[10,38] := {41} tii[10,39] := {63} tii[10,40] := {40} tii[10,41] := {99} tii[10,42] := {77} tii[10,43] := {98} tii[10,44] := {52} tii[10,45] := {76} tii[10,46] := {53} tii[10,47] := {32} tii[10,48] := {54} tii[10,49] := {31} tii[10,50] := {23} tii[10,51] := {3} tii[10,52] := {11} tii[10,53] := {30} tii[10,54] := {5} tii[10,55] := {46} tii[10,56] := {68} tii[10,57] := {18} tii[10,58] := {72} tii[10,59] := {12} tii[10,60] := {60} tii[10,61] := {94} tii[10,62] := {27} tii[10,63] := {85} tii[10,64] := {111} tii[10,65] := {71} tii[10,66] := {70} tii[10,67] := {93} tii[10,68] := {69} tii[10,69] := {36} tii[10,70] := {22} tii[10,71] := {28} tii[10,72] := {38} tii[10,73] := {89} tii[10,74] := {49} tii[10,75] := {109} tii[10,76] := {62} tii[10,77] := {97} tii[10,78] := {21} tii[10,79] := {88} tii[10,80] := {37} tii[10,81] := {74} tii[10,82] := {107} tii[10,83] := {87} tii[10,84] := {20} tii[10,85] := {113} tii[10,86] := {73} tii[10,87] := {7} tii[10,88] := {19} tii[10,89] := {6} tii[10,90] := {4} tii[10,91] := {17} tii[10,92] := {10} tii[10,93] := {58} tii[10,94] := {25} tii[10,95] := {83} tii[10,96] := {67} tii[10,97] := {57} tii[10,98] := {44} tii[10,99] := {81} tii[10,100] := {92} tii[10,101] := {56} tii[10,102] := {43} tii[10,103] := {16} tii[10,104] := {24} tii[10,105] := {33} tii[10,106] := {15} tii[10,107] := {65} tii[10,108] := {9} tii[10,109] := {29} tii[10,110] := {2} tii[10,111] := {1} tii[10,112] := {14} tii[10,113] := {50} tii[10,114] := {48} tii[10,115] := {95} tii[10,116] := {51} tii[10,117] := {8} tii[10,118] := {39} tii[10,119] := {13} tii[10,120] := {0} cell#27 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {51} tii[8,2] := {120} tii[8,3] := {108} tii[8,4] := {83} tii[8,5] := {142} tii[8,6] := {104} tii[8,7] := {138} tii[8,8] := {150} tii[8,9] := {68} tii[8,10] := {103} tii[8,11] := {143} tii[8,12] := {118} tii[8,13] := {153} tii[8,14] := {136} tii[8,15] := {107} tii[8,16] := {113} tii[8,17] := {154} tii[8,18] := {129} tii[8,19] := {95} tii[8,20] := {157} tii[8,21] := {98} tii[8,22] := {128} tii[8,23] := {155} tii[8,24] := {140} tii[8,25] := {149} tii[8,26] := {161} tii[8,27] := {125} tii[8,28] := {126} tii[8,29] := {146} tii[8,30] := {96} tii[8,31] := {93} tii[8,32] := {158} tii[8,33] := {59} tii[8,34] := {148} tii[8,35] := {127} tii[8,36] := {97} tii[8,37] := {156} tii[8,38] := {141} tii[8,39] := {116} tii[8,40] := {145} tii[8,41] := {123} tii[8,42] := {92} tii[8,43] := {112} tii[8,44] := {78} tii[8,45] := {45} tii[8,46] := {29} tii[8,47] := {90} tii[8,48] := {8} tii[8,49] := {30} tii[8,50] := {57} tii[8,51] := {32} tii[8,52] := {72} tii[8,53] := {26} tii[8,54] := {39} tii[8,55] := {135} tii[8,56] := {71} tii[8,57] := {52} tii[8,58] := {75} tii[8,59] := {121} tii[8,60] := {17} tii[8,61] := {87} tii[8,62] := {41} tii[8,63] := {88} tii[8,64] := {40} tii[8,65] := {27} tii[8,66] := {91} tii[8,67] := {74} tii[8,68] := {56} tii[8,69] := {31} tii[8,70] := {134} tii[8,71] := {101} tii[8,72] := {48} tii[8,73] := {160} tii[8,74] := {131} tii[8,75] := {84} tii[8,76] := {66} tii[8,77] := {36} tii[8,78] := {111} tii[8,79] := {151} tii[8,80] := {102} tii[8,81] := {117} tii[8,82] := {69} tii[8,83] := {133} tii[8,84] := {77} tii[8,85] := {67} tii[8,86] := {49} tii[8,87] := {144} tii[8,88] := {109} tii[8,89] := {38} tii[8,90] := {110} tii[8,91] := {76} tii[8,92] := {119} tii[8,93] := {132} tii[8,94] := {70} tii[8,95] := {86} tii[8,96] := {37} tii[8,97] := {85} tii[8,98] := {42} tii[8,99] := {25} tii[8,100] := {122} tii[8,101] := {137} tii[8,102] := {89} tii[8,103] := {73} tii[8,104] := {54} tii[8,105] := {28} tii[8,106] := {80} tii[8,107] := {114} tii[8,108] := {62} tii[8,109] := {63} tii[8,110] := {139} tii[8,111] := {99} tii[8,112] := {35} tii[8,113] := {81} tii[8,114] := {65} tii[8,115] := {60} tii[8,116] := {61} tii[8,117] := {147} tii[8,118] := {100} tii[8,119] := {34} tii[8,120] := {64} tii[8,121] := {115} tii[8,122] := {15} tii[8,123] := {47} tii[8,124] := {79} tii[8,125] := {94} tii[8,126] := {159} tii[8,127] := {46} tii[8,128] := {33} tii[8,129] := {24} tii[8,130] := {130} tii[8,131] := {82} tii[8,132] := {7} tii[8,133] := {124} tii[8,134] := {58} tii[8,135] := {23} tii[8,136] := {2} tii[8,137] := {10} tii[8,138] := {1} tii[8,139] := {6} tii[8,140] := {20} tii[8,141] := {55} tii[8,142] := {9} tii[8,143] := {12} tii[8,144] := {3} tii[8,145] := {22} tii[8,146] := {44} tii[8,147] := {106} tii[8,148] := {18} tii[8,149] := {21} tii[8,150] := {53} tii[8,151] := {14} tii[8,152] := {11} tii[8,153] := {4} tii[8,154] := {152} tii[8,155] := {43} tii[8,156] := {105} tii[8,157] := {19} tii[8,158] := {50} tii[8,159] := {13} tii[8,160] := {16} tii[8,161] := {5} tii[8,162] := {0} cell#28 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {32} tii[7,2] := {40} tii[7,3] := {51} tii[7,4] := {60} tii[7,5] := {75} tii[7,6] := {93} tii[7,7] := {80} tii[7,8] := {96} tii[7,9] := {71} tii[7,10] := {76} tii[7,11] := {91} tii[7,12] := {102} tii[7,13] := {73} tii[7,14] := {94} tii[7,15] := {103} tii[7,16] := {92} tii[7,17] := {74} tii[7,18] := {81} tii[7,19] := {97} tii[7,20] := {83} tii[7,21] := {86} tii[7,22] := {47} tii[7,23] := {100} tii[7,24] := {104} tii[7,25] := {67} tii[7,26] := {89} tii[7,27] := {87} tii[7,28] := {101} tii[7,29] := {90} tii[7,30] := {69} tii[7,31] := {58} tii[7,32] := {88} tii[7,33] := {79} tii[7,34] := {59} tii[7,35] := {70} tii[7,36] := {48} tii[7,37] := {36} tii[7,38] := {57} tii[7,39] := {37} tii[7,40] := {22} tii[7,41] := {99} tii[7,42] := {25} tii[7,43] := {84} tii[7,44] := {98} tii[7,45] := {42} tii[7,46] := {65} tii[7,47] := {63} tii[7,48] := {85} tii[7,49] := {66} tii[7,50] := {44} tii[7,51] := {34} tii[7,52] := {56} tii[7,53] := {64} tii[7,54] := {35} tii[7,55] := {45} tii[7,56] := {26} tii[7,57] := {27} tii[7,58] := {19} tii[7,59] := {46} tii[7,60] := {33} tii[7,61] := {28} tii[7,62] := {20} tii[7,63] := {9} tii[7,64] := {14} tii[7,65] := {10} tii[7,66] := {7} tii[7,67] := {18} tii[7,68] := {8} tii[7,69] := {3} tii[7,70] := {2} tii[7,71] := {17} tii[7,72] := {11} tii[7,73] := {53} tii[7,74] := {24} tii[7,75] := {77} tii[7,76] := {61} tii[7,77] := {55} tii[7,78] := {39} tii[7,79] := {78} tii[7,80] := {82} tii[7,81] := {54} tii[7,82] := {41} tii[7,83] := {49} tii[7,84] := {52} tii[7,85] := {72} tii[7,86] := {95} tii[7,87] := {50} tii[7,88] := {62} tii[7,89] := {31} tii[7,90] := {23} tii[7,91] := {15} tii[7,92] := {30} tii[7,93] := {29} tii[7,94] := {16} tii[7,95] := {68} tii[7,96] := {6} tii[7,97] := {38} tii[7,98] := {4} tii[7,99] := {12} tii[7,100] := {1} tii[7,101] := {13} tii[7,102] := {43} tii[7,103] := {21} tii[7,104] := {5} tii[7,105] := {0} cell#29 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {2} tii[7,2] := {9} tii[7,3] := {4} tii[7,4] := {16} tii[7,5] := {10} tii[7,6] := {21} tii[7,7] := {29} tii[7,8] := {50} tii[7,9] := {11} tii[7,10] := {31} tii[7,11] := {23} tii[7,12] := {40} tii[7,13] := {39} tii[7,14] := {51} tii[7,15] := {72} tii[7,16] := {60} tii[7,17] := {81} tii[7,18] := {70} tii[7,19] := {89} tii[7,20] := {71} tii[7,21] := {24} tii[7,22] := {55} tii[7,23] := {41} tii[7,24] := {62} tii[7,25] := {75} tii[7,26] := {61} tii[7,27] := {94} tii[7,28] := {83} tii[7,29] := {96} tii[7,30] := {76} tii[7,31] := {92} tii[7,32] := {95} tii[7,33] := {102} tii[7,34] := {93} tii[7,35] := {103} tii[7,36] := {97} tii[7,37] := {100} tii[7,38] := {104} tii[7,39] := {101} tii[7,40] := {91} tii[7,41] := {8} tii[7,42] := {28} tii[7,43] := {19} tii[7,44] := {36} tii[7,45] := {46} tii[7,46] := {35} tii[7,47] := {68} tii[7,48] := {57} tii[7,49] := {79} tii[7,50] := {47} tii[7,51] := {66} tii[7,52] := {87} tii[7,53] := {69} tii[7,54] := {67} tii[7,55] := {88} tii[7,56] := {80} tii[7,57] := {27} tii[7,58] := {85} tii[7,59] := {44} tii[7,60] := {99} tii[7,61] := {64} tii[7,62] := {86} tii[7,63] := {65} tii[7,64] := {56} tii[7,65] := {34} tii[7,66] := {98} tii[7,67] := {84} tii[7,68] := {63} tii[7,69] := {43} tii[7,70] := {26} tii[7,71] := {0} tii[7,72] := {1} tii[7,73] := {5} tii[7,74] := {3} tii[7,75] := {12} tii[7,76] := {20} tii[7,77] := {22} tii[7,78] := {6} tii[7,79] := {38} tii[7,80] := {30} tii[7,81] := {58} tii[7,82] := {37} tii[7,83] := {54} tii[7,84] := {17} tii[7,85] := {73} tii[7,86] := {53} tii[7,87] := {90} tii[7,88] := {52} tii[7,89] := {82} tii[7,90] := {59} tii[7,91] := {13} tii[7,92] := {32} tii[7,93] := {25} tii[7,94] := {42} tii[7,95] := {77} tii[7,96] := {33} tii[7,97] := {78} tii[7,98] := {18} tii[7,99] := {74} tii[7,100] := {7} tii[7,101] := {15} tii[7,102] := {48} tii[7,103] := {49} tii[7,104] := {45} tii[7,105] := {14} cell#30 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {37} tii[4,2] := {43} tii[4,3] := {36} tii[4,4] := {25} tii[4,5] := {46} tii[4,6] := {42} tii[4,7] := {34} tii[4,8] := {33} tii[4,9] := {22} tii[4,10] := {14} tii[4,11] := {47} tii[4,12] := {45} tii[4,13] := {40} tii[4,14] := {39} tii[4,15] := {31} tii[4,16] := {21} tii[4,17] := {38} tii[4,18] := {29} tii[4,19] := {19} tii[4,20] := {11} tii[4,21] := {27} tii[4,22] := {17} tii[4,23] := {28} tii[4,24] := {26} tii[4,25] := {18} tii[4,26] := {10} tii[4,27] := {24} tii[4,28] := {35} tii[4,29] := {15} tii[4,30] := {16} tii[4,31] := {8} tii[4,32] := {3} tii[4,33] := {30} tii[4,34] := {41} tii[4,35] := {20} tii[4,36] := {12} tii[4,37] := {23} tii[4,38] := {6} tii[4,39] := {7} tii[4,40] := {2} tii[4,41] := {44} tii[4,42] := {32} tii[4,43] := {13} tii[4,44] := {5} tii[4,45] := {9} tii[4,46] := {4} tii[4,47] := {1} tii[4,48] := {0} cell#31 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {21} tii[3,2] := {24} tii[3,3] := {26} tii[3,4] := {19} tii[3,5] := {23} tii[3,6] := {20} tii[3,7] := {17} tii[3,8] := {22} tii[3,9] := {18} tii[3,10] := {13} tii[3,11] := {11} tii[3,12] := {16} tii[3,13] := {12} tii[3,14] := {8} tii[3,15] := {5} tii[3,16] := {6} tii[3,17] := {10} tii[3,18] := {7} tii[3,19] := {4} tii[3,20] := {2} tii[3,21] := {1} tii[3,22] := {15} tii[3,23] := {25} tii[3,24] := {14} tii[3,25] := {9} tii[3,26] := {3} tii[3,27] := {0} cell#32 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {14} tii[6,2] := {21} tii[6,3] := {27} tii[6,4] := {15} tii[6,5] := {22} tii[6,6] := {24} tii[6,7] := {9} tii[6,8] := {16} tii[6,9] := {18} tii[6,10] := {25} tii[6,11] := {4} tii[6,12] := {8} tii[6,13] := {10} tii[6,14] := {17} tii[6,15] := {23} tii[6,16] := {2} tii[6,17] := {5} tii[6,18] := {7} tii[6,19] := {13} tii[6,20] := {20} tii[6,21] := {26} tii[6,22] := {0} tii[6,23] := {1} tii[6,24] := {3} tii[6,25] := {6} tii[6,26] := {12} tii[6,27] := {19} tii[6,28] := {11} cell#33 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {12} tii[4,2] := {20} tii[4,3] := {28} tii[4,4] := {17} tii[4,5] := {30} tii[4,6] := {36} tii[4,7] := {26} tii[4,8] := {43} tii[4,9] := {35} tii[4,10] := {25} tii[4,11] := {38} tii[4,12] := {41} tii[4,13] := {33} tii[4,14] := {45} tii[4,15] := {40} tii[4,16] := {32} tii[4,17] := {47} tii[4,18] := {44} tii[4,19] := {39} tii[4,20] := {31} tii[4,21] := {6} tii[4,22] := {2} tii[4,23] := {18} tii[4,24] := {5} tii[4,25] := {9} tii[4,26] := {3} tii[4,27] := {37} tii[4,28] := {11} tii[4,29] := {27} tii[4,30] := {7} tii[4,31] := {16} tii[4,32] := {8} tii[4,33] := {46} tii[4,34] := {19} tii[4,35] := {42} tii[4,36] := {34} tii[4,37] := {13} tii[4,38] := {24} tii[4,39] := {14} tii[4,40] := {15} tii[4,41] := {29} tii[4,42] := {21} tii[4,43] := {22} tii[4,44] := {23} tii[4,45] := {0} tii[4,46] := {1} tii[4,47] := {4} tii[4,48] := {10} cell#34 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {1} tii[3,2] := {2} tii[3,3] := {4} tii[3,4] := {5} tii[3,5] := {8} tii[3,6] := {11} tii[3,7] := {9} tii[3,8] := {12} tii[3,9] := {17} tii[3,10] := {21} tii[3,11] := {13} tii[3,12] := {18} tii[3,13] := {22} tii[3,14] := {25} tii[3,15] := {26} tii[3,16] := {6} tii[3,17] := {10} tii[3,18] := {16} tii[3,19] := {20} tii[3,20] := {23} tii[3,21] := {19} tii[3,22] := {0} tii[3,23] := {3} tii[3,24] := {7} tii[3,25] := {15} tii[3,26] := {24} tii[3,27] := {14} cell#35 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {8} tii[6,4] := {7} tii[6,5] := {14} tii[6,6] := {20} tii[6,7] := {12} tii[6,8] := {18} tii[6,9] := {24} tii[6,10] := {21} tii[6,11] := {19} tii[6,12] := {26} tii[6,13] := {27} tii[6,14] := {25} tii[6,15] := {22} tii[6,16] := {11} tii[6,17] := {17} tii[6,18] := {23} tii[6,19] := {16} tii[6,20] := {13} tii[6,21] := {6} tii[6,22] := {4} tii[6,23] := {10} tii[6,24] := {15} tii[6,25] := {9} tii[6,26] := {5} tii[6,27] := {2} tii[6,28] := {0} cell#36 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {3} tii[3,2] := {6} tii[3,3] := {15} tii[3,4] := {13} tii[3,5] := {20} tii[3,6] := {14} tii[3,7] := {18} tii[3,8] := {24} tii[3,9] := {19} tii[3,10] := {12} tii[3,11] := {22} tii[3,12] := {26} tii[3,13] := {23} tii[3,14] := {17} tii[3,15] := {11} tii[3,16] := {25} tii[3,17] := {21} tii[3,18] := {16} tii[3,19] := {10} tii[3,20] := {4} tii[3,21] := {2} tii[3,22] := {1} tii[3,23] := {7} tii[3,24] := {8} tii[3,25] := {9} tii[3,26] := {5} tii[3,27] := {0} cell#37 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {4} tii[2,2] := {5} tii[2,3] := {7} tii[2,4] := {6} tii[2,5] := {3} tii[2,6] := {2} tii[2,7] := {1} tii[2,8] := {0} cell#38 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {4} tii[2,5] := {6} tii[2,6] := {7} tii[2,7] := {5} tii[2,8] := {3} cell#39 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}