TII subcells for the PU(8,1) x SL(9,R) block of PGL9 # cell#0 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {0} tii[6,2] := {7} tii[6,3] := {1} tii[6,4] := {13} tii[6,5] := {8} tii[6,6] := {2} tii[6,7] := {18} tii[6,8] := {14} tii[6,9] := {9} tii[6,10] := {3} tii[6,11] := {22} tii[6,12] := {19} tii[6,13] := {15} tii[6,14] := {10} tii[6,15] := {4} tii[6,16] := {25} tii[6,17] := {23} tii[6,18] := {20} tii[6,19] := {16} tii[6,20] := {11} tii[6,21] := {5} tii[6,22] := {27} tii[6,23] := {26} tii[6,24] := {24} tii[6,25] := {21} tii[6,26] := {17} tii[6,27] := {12} tii[6,28] := {6} cell#1 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} tii[2,8] := {7} cell#2 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {7} tii[2,2] := {6} tii[2,3] := {5} tii[2,4] := {4} tii[2,5] := {3} tii[2,6] := {2} tii[2,7] := {1} tii[2,8] := {0} cell#3 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}