TII subcells for the SL(9,R) x PU(6,3) block of SL9 # cell#0 , |C| = 1 special orbit = [9] special rep = [9] , dim = 1 cell rep = phi[9] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[30,1] := {0} cell#1 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {7} tii[29,2] := {6} tii[29,3] := {5} tii[29,4] := {4} tii[29,5] := {1} tii[29,6] := {0} tii[29,7] := {2} tii[29,8] := {3} cell#2 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {4} tii[29,2] := {2} tii[29,3] := {0} tii[29,4] := {1} tii[29,5] := {3} tii[29,6] := {5} tii[29,7] := {6} tii[29,8] := {7} cell#3 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {26} tii[28,2] := {21} tii[28,3] := {17} tii[28,4] := {18} tii[28,5] := {19} tii[28,6] := {25} tii[28,7] := {24} tii[28,8] := {22} tii[28,9] := {16} tii[28,10] := {10} tii[28,11] := {5} tii[28,12] := {1} tii[28,13] := {15} tii[28,14] := {9} tii[28,15] := {3} tii[28,16] := {0} tii[28,17] := {4} tii[28,18] := {14} tii[28,19] := {7} tii[28,20] := {2} tii[28,21] := {8} tii[28,22] := {12} tii[28,23] := {6} tii[28,24] := {13} tii[28,25] := {11} tii[28,26] := {20} tii[28,27] := {23} cell#4 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {27} tii[27,2] := {25} tii[27,3] := {22} tii[27,4] := {18} tii[27,5] := {12} tii[27,6] := {17} tii[27,7] := {23} tii[27,8] := {21} tii[27,9] := {14} tii[27,10] := {11} tii[27,11] := {4} tii[27,12] := {10} tii[27,13] := {16} tii[27,14] := {7} tii[27,15] := {2} tii[27,16] := {0} tii[27,17] := {1} tii[27,18] := {8} tii[27,19] := {6} tii[27,20] := {3} tii[27,21] := {9} tii[27,22] := {15} tii[27,23] := {5} tii[27,24] := {13} tii[27,25] := {20} tii[27,26] := {19} tii[27,27] := {24} tii[27,28] := {26} cell#5 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {26} tii[28,2] := {23} tii[28,3] := {17} tii[28,4] := {12} tii[28,5] := {1} tii[28,6] := {11} tii[28,7] := {25} tii[28,8] := {24} tii[28,9] := {22} tii[28,10] := {19} tii[28,11] := {16} tii[28,12] := {20} tii[28,13] := {21} tii[28,14] := {18} tii[28,15] := {14} tii[28,16] := {10} tii[28,17] := {15} tii[28,18] := {13} tii[28,19] := {8} tii[28,20] := {4} tii[28,21] := {9} tii[28,22] := {6} tii[28,23] := {3} tii[28,24] := {7} tii[28,25] := {0} tii[28,26] := {2} tii[28,27] := {5} cell#6 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {47} tii[26,2] := {46} tii[26,3] := {43} tii[26,4] := {38} tii[26,5] := {42} tii[26,6] := {34} tii[26,7] := {15} tii[26,8] := {3} tii[26,9] := {45} tii[26,10] := {41} tii[26,11] := {40} tii[26,12] := {24} tii[26,13] := {35} tii[26,14] := {6} tii[26,15] := {27} tii[26,16] := {17} tii[26,17] := {44} tii[26,18] := {39} tii[26,19] := {31} tii[26,20] := {12} tii[26,21] := {32} tii[26,22] := {23} tii[26,23] := {37} tii[26,24] := {21} tii[26,25] := {29} tii[26,26] := {19} tii[26,27] := {30} tii[26,28] := {20} tii[26,29] := {36} tii[26,30] := {28} tii[26,31] := {18} tii[26,32] := {9} tii[26,33] := {26} tii[26,34] := {16} tii[26,35] := {8} tii[26,36] := {7} tii[26,37] := {2} tii[26,38] := {0} tii[26,39] := {33} tii[26,40] := {25} tii[26,41] := {14} tii[26,42] := {13} tii[26,43] := {5} tii[26,44] := {1} tii[26,45] := {22} tii[26,46] := {11} tii[26,47] := {4} tii[26,48] := {10} cell#7 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {12} tii[28,2] := {2} tii[28,3] := {11} tii[28,4] := {19} tii[28,5] := {23} tii[28,6] := {26} tii[28,7] := {7} tii[28,8] := {3} tii[28,9] := {6} tii[28,10] := {10} tii[28,11] := {16} tii[28,12] := {20} tii[28,13] := {0} tii[28,14] := {1} tii[28,15] := {4} tii[28,16] := {8} tii[28,17] := {13} tii[28,18] := {5} tii[28,19] := {9} tii[28,20] := {14} tii[28,21] := {17} tii[28,22] := {15} tii[28,23] := {18} tii[28,24] := {21} tii[28,25] := {22} tii[28,26] := {24} tii[28,27] := {25} cell#8 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {37} tii[26,2] := {43} tii[26,3] := {46} tii[26,4] := {47} tii[26,5] := {24} tii[26,6] := {25} tii[26,7] := {26} tii[26,8] := {18} tii[26,9] := {32} tii[26,10] := {23} tii[26,11] := {33} tii[26,12] := {34} tii[26,13] := {13} tii[26,14] := {28} tii[26,15] := {5} tii[26,16] := {1} tii[26,17] := {39} tii[26,18] := {31} tii[26,19] := {40} tii[26,20] := {36} tii[26,21] := {20} tii[26,22] := {10} tii[26,23] := {44} tii[26,24] := {42} tii[26,25] := {38} tii[26,26] := {29} tii[26,27] := {45} tii[26,28] := {41} tii[26,29] := {16} tii[26,30] := {8} tii[26,31] := {3} tii[26,32] := {0} tii[26,33] := {15} tii[26,34] := {7} tii[26,35] := {2} tii[26,36] := {14} tii[26,37] := {6} tii[26,38] := {9} tii[26,39] := {22} tii[26,40] := {12} tii[26,41] := {4} tii[26,42] := {21} tii[26,43] := {11} tii[26,44] := {17} tii[26,45] := {30} tii[26,46] := {19} tii[26,47] := {27} tii[26,48] := {35} cell#9 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {104} tii[25,2] := {99} tii[25,3] := {83} tii[25,4] := {61} tii[25,5] := {91} tii[25,6] := {103} tii[25,7] := {92} tii[25,8] := {100} tii[25,9] := {66} tii[25,10] := {98} tii[25,11] := {36} tii[25,12] := {88} tii[25,13] := {74} tii[25,14] := {75} tii[25,15] := {89} tii[25,16] := {81} tii[25,17] := {43} tii[25,18] := {73} tii[25,19] := {9} tii[25,20] := {54} tii[25,21] := {52} tii[25,22] := {32} tii[25,23] := {55} tii[25,24] := {63} tii[25,25] := {21} tii[25,26] := {50} tii[25,27] := {65} tii[25,28] := {26} tii[25,29] := {49} tii[25,30] := {42} tii[25,31] := {80} tii[25,32] := {27} tii[25,33] := {51} tii[25,34] := {93} tii[25,35] := {87} tii[25,36] := {102} tii[25,37] := {101} tii[25,38] := {96} tii[25,39] := {86} tii[25,40] := {97} tii[25,41] := {94} tii[25,42] := {90} tii[25,43] := {95} tii[25,44] := {76} tii[25,45] := {84} tii[25,46] := {58} tii[25,47] := {71} tii[25,48] := {77} tii[25,49] := {85} tii[25,50] := {78} tii[25,51] := {59} tii[25,52] := {69} tii[25,53] := {40} tii[25,54] := {48} tii[25,55] := {60} tii[25,56] := {70} tii[25,57] := {38} tii[25,58] := {19} tii[25,59] := {41} tii[25,60] := {62} tii[25,61] := {39} tii[25,62] := {6} tii[25,63] := {79} tii[25,64] := {20} tii[25,65] := {5} tii[25,66] := {82} tii[25,67] := {67} tii[25,68] := {47} tii[25,69] := {68} tii[25,70] := {56} tii[25,71] := {45} tii[25,72] := {34} tii[25,73] := {25} tii[25,74] := {16} tii[25,75] := {46} tii[25,76] := {35} tii[25,77] := {14} tii[25,78] := {3} tii[25,79] := {17} tii[25,80] := {37} tii[25,81] := {15} tii[25,82] := {0} tii[25,83] := {57} tii[25,84] := {4} tii[25,85] := {18} tii[25,86] := {22} tii[25,87] := {8} tii[25,88] := {24} tii[25,89] := {30} tii[25,90] := {1} tii[25,91] := {12} tii[25,92] := {10} tii[25,93] := {31} tii[25,94] := {2} tii[25,95] := {28} tii[25,96] := {13} tii[25,97] := {33} tii[25,98] := {7} tii[25,99] := {23} tii[25,100] := {11} tii[25,101] := {44} tii[25,102] := {29} tii[25,103] := {53} tii[25,104] := {64} tii[25,105] := {72} cell#10 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {90} tii[25,2] := {59} tii[25,3] := {55} tii[25,4] := {56} tii[25,5] := {89} tii[25,6] := {97} tii[25,7] := {30} tii[25,8] := {86} tii[25,9] := {26} tii[25,10] := {71} tii[25,11] := {27} tii[25,12] := {62} tii[25,13] := {72} tii[25,14] := {79} tii[25,15] := {91} tii[25,16] := {46} tii[25,17] := {52} tii[25,18] := {23} tii[25,19] := {51} tii[25,20] := {14} tii[25,21] := {87} tii[25,22] := {31} tii[25,23] := {50} tii[25,24] := {67} tii[25,25] := {74} tii[25,26] := {45} tii[25,27] := {98} tii[25,28] := {66} tii[25,29] := {82} tii[25,30] := {84} tii[25,31] := {101} tii[25,32] := {92} tii[25,33] := {99} tii[25,34] := {103} tii[25,35] := {104} tii[25,36] := {78} tii[25,37] := {61} tii[25,38] := {41} tii[25,39] := {20} tii[25,40] := {6} tii[25,41] := {70} tii[25,42] := {48} tii[25,43] := {39} tii[25,44] := {40} tii[25,45] := {18} tii[25,46] := {60} tii[25,47] := {5} tii[25,48] := {77} tii[25,49] := {19} tii[25,50] := {25} tii[25,51] := {16} tii[25,52] := {37} tii[25,53] := {35} tii[25,54] := {17} tii[25,55] := {57} tii[25,56] := {38} tii[25,57] := {24} tii[25,58] := {47} tii[25,59] := {36} tii[25,60] := {58} tii[25,61] := {69} tii[25,62] := {68} tii[25,63] := {76} tii[25,64] := {85} tii[25,65] := {96} tii[25,66] := {13} tii[25,67] := {3} tii[25,68] := {0} tii[25,69] := {4} tii[25,70] := {8} tii[25,71] := {11} tii[25,72] := {1} tii[25,73] := {2} tii[25,74] := {9} tii[25,75] := {12} tii[25,76] := {28} tii[25,77] := {7} tii[25,78] := {21} tii[25,79] := {10} tii[25,80] := {29} tii[25,81] := {43} tii[25,82] := {42} tii[25,83] := {49} tii[25,84] := {63} tii[25,85] := {80} tii[25,86] := {33} tii[25,87] := {15} tii[25,88] := {34} tii[25,89] := {22} tii[25,90] := {32} tii[25,91] := {44} tii[25,92] := {53} tii[25,93] := {65} tii[25,94] := {64} tii[25,95] := {73} tii[25,96] := {81} tii[25,97] := {93} tii[25,98] := {54} tii[25,99] := {75} tii[25,100] := {83} tii[25,101] := {88} tii[25,102] := {94} tii[25,103] := {100} tii[25,104] := {95} tii[25,105] := {102} cell#11 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {161} tii[22,2] := {156} tii[22,3] := {145} tii[22,4] := {149} tii[22,5] := {112} tii[22,6] := {142} tii[22,7] := {56} tii[22,8] := {118} tii[22,9] := {9} tii[22,10] := {157} tii[22,11] := {151} tii[22,12] := {147} tii[22,13] := {108} tii[22,14] := {143} tii[22,15] := {140} tii[22,16] := {55} tii[22,17] := {117} tii[22,18] := {139} tii[22,19] := {158} tii[22,20] := {152} tii[22,21] := {148} tii[22,22] := {105} tii[22,23] := {141} tii[22,24] := {155} tii[22,25] := {160} tii[22,26] := {150} tii[22,27] := {159} tii[22,28] := {138} tii[22,29] := {103} tii[22,30] := {37} tii[22,31] := {154} tii[22,32] := {80} tii[22,33] := {31} tii[22,34] := {137} tii[22,35] := {128} tii[22,36] := {2} tii[22,37] := {67} tii[22,38] := {115} tii[22,39] := {82} tii[22,40] := {114} tii[22,41] := {146} tii[22,42] := {46} tii[22,43] := {97} tii[22,44] := {100} tii[22,45] := {14} tii[22,46] := {127} tii[22,47] := {61} tii[22,48] := {101} tii[22,49] := {96} tii[22,50] := {79} tii[22,51] := {126} tii[22,52] := {20} tii[22,53] := {62} tii[22,54] := {98} tii[22,55] := {99} tii[22,56] := {45} tii[22,57] := {81} tii[22,58] := {134} tii[22,59] := {88} tii[22,60] := {109} tii[22,61] := {24} tii[22,62] := {74} tii[22,63] := {41} tii[22,64] := {136} tii[22,65] := {119} tii[22,66] := {124} tii[22,67] := {77} tii[22,68] := {76} tii[22,69] := {91} tii[22,70] := {51} tii[22,71] := {44} tii[22,72] := {85} tii[22,73] := {29} tii[22,74] := {123} tii[22,75] := {52} tii[22,76] := {19} tii[22,77] := {94} tii[22,78] := {111} tii[22,79] := {84} tii[22,80] := {42} tii[22,81] := {59} tii[22,82] := {28} tii[22,83] := {92} tii[22,84] := {10} tii[22,85] := {95} tii[22,86] := {50} tii[22,87] := {125} tii[22,88] := {30} tii[22,89] := {75} tii[22,90] := {1} tii[22,91] := {113} tii[22,92] := {60} tii[22,93] := {27} tii[22,94] := {131} tii[22,95] := {87} tii[22,96] := {106} tii[22,97] := {71} tii[22,98] := {133} tii[22,99] := {120} tii[22,100] := {121} tii[22,101] := {73} tii[22,102] := {72} tii[22,103] := {144} tii[22,104] := {86} tii[22,105] := {40} tii[22,106] := {90} tii[22,107] := {107} tii[22,108] := {26} tii[22,109] := {135} tii[22,110] := {122} tii[22,111] := {89} tii[22,112] := {129} tii[22,113] := {104} tii[22,114] := {130} tii[22,115] := {153} tii[22,116] := {70} tii[22,117] := {132} tii[22,118] := {116} tii[22,119] := {83} tii[22,120] := {49} tii[22,121] := {69} tii[22,122] := {38} tii[22,123] := {16} tii[22,124] := {47} tii[22,125] := {22} tii[22,126] := {7} tii[22,127] := {64} tii[22,128] := {34} tii[22,129] := {13} tii[22,130] := {102} tii[22,131] := {3} tii[22,132] := {65} tii[22,133] := {68} tii[22,134] := {15} tii[22,135] := {0} tii[22,136] := {36} tii[22,137] := {35} tii[22,138] := {12} tii[22,139] := {21} tii[22,140] := {6} tii[22,141] := {33} tii[22,142] := {4} tii[22,143] := {66} tii[22,144] := {63} tii[22,145] := {32} tii[22,146] := {5} tii[22,147] := {48} tii[22,148] := {54} tii[22,149] := {25} tii[22,150] := {8} tii[22,151] := {43} tii[22,152] := {18} tii[22,153] := {58} tii[22,154] := {23} tii[22,155] := {11} tii[22,156] := {93} tii[22,157] := {57} tii[22,158] := {17} tii[22,159] := {78} tii[22,160] := {53} tii[22,161] := {39} tii[22,162] := {110} cell#12 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {16} tii[27,2] := {8} tii[27,3] := {15} tii[27,4] := {21} tii[27,5] := {24} tii[27,6] := {26} tii[27,7] := {27} tii[27,8] := {1} tii[27,9] := {7} tii[27,10] := {14} tii[27,11] := {20} tii[27,12] := {22} tii[27,13] := {25} tii[27,14] := {4} tii[27,15] := {10} tii[27,16] := {17} tii[27,17] := {19} tii[27,18] := {23} tii[27,19] := {2} tii[27,20] := {9} tii[27,21] := {11} tii[27,22] := {18} tii[27,23] := {3} tii[27,24] := {5} tii[27,25] := {12} tii[27,26] := {0} tii[27,27] := {6} tii[27,28] := {13} cell#13 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {36} tii[25,2] := {68} tii[25,3] := {91} tii[25,4] := {100} tii[25,5] := {104} tii[25,6] := {25} tii[25,7] := {56} tii[25,8] := {11} tii[25,9] := {82} tii[25,10] := {24} tii[25,11] := {97} tii[25,12] := {40} tii[25,13] := {102} tii[25,14] := {49} tii[25,15] := {65} tii[25,16] := {38} tii[25,17] := {69} tii[25,18] := {21} tii[25,19] := {87} tii[25,20] := {37} tii[25,21] := {98} tii[25,22] := {42} tii[25,23] := {58} tii[25,24] := {54} tii[25,25] := {77} tii[25,26] := {39} tii[25,27] := {92} tii[25,28] := {43} tii[25,29] := {60} tii[25,30] := {63} tii[25,31] := {83} tii[25,32] := {44} tii[25,33] := {62} tii[25,34] := {71} tii[25,35] := {64} tii[25,36] := {20} tii[25,37] := {35} tii[25,38] := {51} tii[25,39] := {57} tii[25,40] := {72} tii[25,41] := {4} tii[25,42] := {13} tii[25,43] := {52} tii[25,44] := {26} tii[25,45] := {67} tii[25,46] := {34} tii[25,47] := {73} tii[25,48] := {50} tii[25,49] := {84} tii[25,50] := {2} tii[25,51] := {12} tii[25,52] := {81} tii[25,53] := {18} tii[25,54] := {85} tii[25,55] := {33} tii[25,56] := {93} tii[25,57] := {3} tii[25,58] := {7} tii[25,59] := {94} tii[25,60] := {99} tii[25,61] := {19} tii[25,62] := {0} tii[25,63] := {103} tii[25,64] := {8} tii[25,65] := {1} tii[25,66] := {41} tii[25,67] := {55} tii[25,68] := {66} tii[25,69] := {79} tii[25,70] := {9} tii[25,71] := {70} tii[25,72] := {23} tii[25,73] := {80} tii[25,74] := {31} tii[25,75] := {89} tii[25,76] := {48} tii[25,77] := {10} tii[25,78] := {16} tii[25,79] := {90} tii[25,80] := {96} tii[25,81] := {32} tii[25,82] := {5} tii[25,83] := {101} tii[25,84] := {17} tii[25,85] := {6} tii[25,86] := {53} tii[25,87] := {59} tii[25,88] := {74} tii[25,89] := {22} tii[25,90] := {75} tii[25,91] := {29} tii[25,92] := {86} tii[25,93] := {47} tii[25,94] := {14} tii[25,95] := {95} tii[25,96] := {30} tii[25,97] := {15} tii[25,98] := {61} tii[25,99] := {76} tii[25,100] := {27} tii[25,101] := {88} tii[25,102] := {46} tii[25,103] := {28} tii[25,104] := {78} tii[25,105] := {45} cell#14 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {68} tii[25,2] := {64} tii[25,3] := {65} tii[25,4] := {66} tii[25,5] := {67} tii[25,6] := {73} tii[25,7] := {44} tii[25,8] := {85} tii[25,9] := {45} tii[25,10] := {94} tii[25,11] := {46} tii[25,12] := {100} tii[25,13] := {47} tii[25,14] := {103} tii[25,15] := {104} tii[25,16] := {60} tii[25,17] := {39} tii[25,18] := {75} tii[25,19] := {40} tii[25,20] := {87} tii[25,21] := {41} tii[25,22] := {95} tii[25,23] := {98} tii[25,24] := {54} tii[25,25] := {21} tii[25,26] := {69} tii[25,27] := {22} tii[25,28] := {82} tii[25,29] := {86} tii[25,30] := {37} tii[25,31] := {11} tii[25,32] := {53} tii[25,33] := {58} tii[25,34] := {23} tii[25,35] := {28} tii[25,36] := {52} tii[25,37] := {36} tii[25,38] := {20} tii[25,39] := {8} tii[25,40] := {1} tii[25,41] := {81} tii[25,42] := {91} tii[25,43] := {51} tii[25,44] := {97} tii[25,45] := {35} tii[25,46] := {101} tii[25,47] := {19} tii[25,48] := {102} tii[25,49] := {7} tii[25,50] := {78} tii[25,51] := {89} tii[25,52] := {50} tii[25,53] := {96} tii[25,54] := {34} tii[25,55] := {99} tii[25,56] := {18} tii[25,57] := {79} tii[25,58] := {90} tii[25,59] := {49} tii[25,60] := {33} tii[25,61] := {93} tii[25,62] := {80} tii[25,63] := {48} tii[25,64] := {84} tii[25,65] := {72} tii[25,66] := {32} tii[25,67] := {17} tii[25,68] := {6} tii[25,69] := {0} tii[25,70] := {61} tii[25,71] := {31} tii[25,72] := {76} tii[25,73] := {16} tii[25,74] := {88} tii[25,75] := {5} tii[25,76] := {92} tii[25,77] := {62} tii[25,78] := {77} tii[25,79] := {30} tii[25,80] := {15} tii[25,81] := {83} tii[25,82] := {63} tii[25,83] := {29} tii[25,84] := {71} tii[25,85] := {57} tii[25,86] := {26} tii[25,87] := {13} tii[25,88] := {4} tii[25,89] := {55} tii[25,90] := {25} tii[25,91] := {70} tii[25,92] := {12} tii[25,93] := {74} tii[25,94] := {56} tii[25,95] := {24} tii[25,96] := {59} tii[25,97] := {43} tii[25,98] := {10} tii[25,99] := {2} tii[25,100] := {38} tii[25,101] := {9} tii[25,102] := {42} tii[25,103] := {27} tii[25,104] := {3} tii[25,105] := {14} cell#15 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {119} tii[21,2] := {116} tii[21,3] := {117} tii[21,4] := {118} tii[21,5] := {112} tii[21,6] := {110} tii[21,7] := {111} tii[21,8] := {114} tii[21,9] := {113} tii[21,10] := {115} tii[21,11] := {106} tii[21,12] := {107} tii[21,13] := {89} tii[21,14] := {108} tii[21,15] := {66} tii[21,16] := {109} tii[21,17] := {44} tii[21,18] := {26} tii[21,19] := {83} tii[21,20] := {84} tii[21,21] := {61} tii[21,22] := {85} tii[21,23] := {38} tii[21,24] := {21} tii[21,25] := {62} tii[21,26] := {63} tii[21,27] := {40} tii[21,28] := {22} tii[21,29] := {41} tii[21,30] := {23} tii[21,31] := {105} tii[21,32] := {82} tii[21,33] := {58} tii[21,34] := {36} tii[21,35] := {99} tii[21,36] := {77} tii[21,37] := {104} tii[21,38] := {100} tii[21,39] := {52} tii[21,40] := {81} tii[21,41] := {101} tii[21,42] := {31} tii[21,43] := {56} tii[21,44] := {78} tii[21,45] := {79} tii[21,46] := {54} tii[21,47] := {103} tii[21,48] := {32} tii[21,49] := {80} tii[21,50] := {55} tii[21,51] := {102} tii[21,52] := {33} tii[21,53] := {92} tii[21,54] := {69} tii[21,55] := {46} tii[21,56] := {97} tii[21,57] := {73} tii[21,58] := {91} tii[21,59] := {98} tii[21,60] := {48} tii[21,61] := {68} tii[21,62] := {74} tii[21,63] := {90} tii[21,64] := {49} tii[21,65] := {94} tii[21,66] := {70} tii[21,67] := {96} tii[21,68] := {93} tii[21,69] := {71} tii[21,70] := {95} tii[21,71] := {67} tii[21,72] := {45} tii[21,73] := {28} tii[21,74] := {15} tii[21,75] := {27} tii[21,76] := {14} tii[21,77] := {6} tii[21,78] := {7} tii[21,79] := {2} tii[21,80] := {0} tii[21,81] := {88} tii[21,82] := {65} tii[21,83] := {42} tii[21,84] := {43} tii[21,85] := {87} tii[21,86] := {25} tii[21,87] := {64} tii[21,88] := {12} tii[21,89] := {13} tii[21,90] := {86} tii[21,91] := {5} tii[21,92] := {1} tii[21,93] := {60} tii[21,94] := {37} tii[21,95] := {24} tii[21,96] := {59} tii[21,97] := {11} tii[21,98] := {4} tii[21,99] := {39} tii[21,100] := {10} tii[21,101] := {57} tii[21,102] := {35} tii[21,103] := {19} tii[21,104] := {20} tii[21,105] := {9} tii[21,106] := {3} tii[21,107] := {76} tii[21,108] := {51} tii[21,109] := {34} tii[21,110] := {75} tii[21,111] := {18} tii[21,112] := {8} tii[21,113] := {53} tii[21,114] := {17} tii[21,115] := {50} tii[21,116] := {30} tii[21,117] := {16} tii[21,118] := {72} tii[21,119] := {29} tii[21,120] := {47} cell#16 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {119} tii[21,2] := {106} tii[21,3] := {80} tii[21,4] := {111} tii[21,5] := {69} tii[21,6] := {24} tii[21,7] := {71} tii[21,8] := {68} tii[21,9] := {105} tii[21,10] := {118} tii[21,11] := {117} tii[21,12] := {90} tii[21,13] := {110} tii[21,14] := {54} tii[21,15] := {104} tii[21,16] := {95} tii[21,17] := {86} tii[21,18] := {103} tii[21,19] := {76} tii[21,20] := {27} tii[21,21] := {63} tii[21,22] := {75} tii[21,23] := {38} tii[21,24] := {62} tii[21,25] := {52} tii[21,26] := {94} tii[21,27] := {36} tii[21,28] := {61} tii[21,29] := {109} tii[21,30] := {102} tii[21,31] := {115} tii[21,32] := {113} tii[21,33] := {100} tii[21,34] := {112} tii[21,35] := {46} tii[21,36] := {32} tii[21,37] := {99} tii[21,38] := {6} tii[21,39] := {12} tii[21,40] := {82} tii[21,41] := {45} tii[21,42] := {31} tii[21,43] := {98} tii[21,44] := {22} tii[21,45] := {70} tii[21,46] := {10} tii[21,47] := {57} tii[21,48] := {30} tii[21,49] := {81} tii[21,50] := {91} tii[21,51] := {97} tii[21,52] := {83} tii[21,53] := {50} tii[21,54] := {26} tii[21,55] := {49} tii[21,56] := {48} tii[21,57] := {34} tii[21,58] := {8} tii[21,59] := {92} tii[21,60] := {59} tii[21,61] := {25} tii[21,62] := {107} tii[21,63] := {47} tii[21,64] := {101} tii[21,65] := {51} tii[21,66] := {73} tii[21,67] := {114} tii[21,68] := {89} tii[21,69] := {108} tii[21,70] := {116} tii[21,71] := {96} tii[21,72] := {88} tii[21,73] := {65} tii[21,74] := {87} tii[21,75] := {66} tii[21,76] := {43} tii[21,77] := {67} tii[21,78] := {21} tii[21,79] := {42} tii[21,80] := {20} tii[21,81] := {79} tii[21,82] := {56} tii[21,83] := {78} tii[21,84] := {39} tii[21,85] := {29} tii[21,86] := {19} tii[21,87] := {55} tii[21,88] := {40} tii[21,89] := {5} tii[21,90] := {77} tii[21,91] := {18} tii[21,92] := {41} tii[21,93] := {9} tii[21,94] := {28} tii[21,95] := {17} tii[21,96] := {53} tii[21,97] := {37} tii[21,98] := {64} tii[21,99] := {74} tii[21,100] := {85} tii[21,101] := {13} tii[21,102] := {4} tii[21,103] := {14} tii[21,104] := {0} tii[21,105] := {3} tii[21,106] := {16} tii[21,107] := {1} tii[21,108] := {7} tii[21,109] := {2} tii[21,110] := {23} tii[21,111] := {11} tii[21,112] := {33} tii[21,113] := {44} tii[21,114] := {58} tii[21,115] := {15} tii[21,116] := {35} tii[21,117] := {60} tii[21,118] := {72} tii[21,119] := {84} tii[21,120] := {93} cell#17 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {47} tii[26,2] := {41} tii[26,3] := {28} tii[26,4] := {13} tii[26,5] := {44} tii[26,6] := {40} tii[26,7] := {30} tii[26,8] := {19} tii[26,9] := {46} tii[26,10] := {45} tii[26,11] := {35} tii[26,12] := {22} tii[26,13] := {43} tii[26,14] := {11} tii[26,15] := {39} tii[26,16] := {34} tii[26,17] := {37} tii[26,18] := {32} tii[26,19] := {15} tii[26,20] := {5} tii[26,21] := {26} tii[26,22] := {20} tii[26,23] := {21} tii[26,24] := {3} tii[26,25] := {14} tii[26,26] := {8} tii[26,27] := {7} tii[26,28] := {2} tii[26,29] := {42} tii[26,30] := {38} tii[26,31] := {33} tii[26,32] := {27} tii[26,33] := {36} tii[26,34] := {31} tii[26,35] := {25} tii[26,36] := {24} tii[26,37] := {18} tii[26,38] := {12} tii[26,39] := {29} tii[26,40] := {23} tii[26,41] := {17} tii[26,42] := {16} tii[26,43] := {10} tii[26,44] := {6} tii[26,45] := {9} tii[26,46] := {4} tii[26,47] := {1} tii[26,48] := {0} cell#18 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {161} tii[22,2] := {149} tii[22,3] := {116} tii[22,4] := {159} tii[22,5] := {153} tii[22,6] := {138} tii[22,7] := {137} tii[22,8] := {85} tii[22,9] := {101} tii[22,10] := {155} tii[22,11] := {127} tii[22,12] := {152} tii[22,13] := {98} tii[22,14] := {58} tii[22,15] := {143} tii[22,16] := {46} tii[22,17] := {128} tii[22,18] := {109} tii[22,19] := {142} tii[22,20] := {83} tii[22,21] := {136} tii[22,22] := {44} tii[22,23] := {120} tii[22,24] := {97} tii[22,25] := {107} tii[22,26] := {96} tii[22,27] := {70} tii[22,28] := {156} tii[22,29] := {148} tii[22,30] := {118} tii[22,31] := {160} tii[22,32] := {147} tii[22,33] := {123} tii[22,34] := {157} tii[22,35] := {134} tii[22,36] := {79} tii[22,37] := {93} tii[22,38] := {151} tii[22,39] := {141} tii[22,40] := {132} tii[22,41] := {139} tii[22,42] := {104} tii[22,43] := {114} tii[22,44] := {68} tii[22,45] := {56} tii[22,46] := {125} tii[22,47] := {89} tii[22,48] := {106} tii[22,49] := {65} tii[22,50] := {78} tii[22,51] := {92} tii[22,52] := {33} tii[22,53] := {53} tii[22,54] := {31} tii[22,55] := {67} tii[22,56] := {13} tii[22,57] := {3} tii[22,58] := {158} tii[22,59] := {110} tii[22,60] := {154} tii[22,61] := {61} tii[22,62] := {146} tii[22,63] := {131} tii[22,64] := {144} tii[22,65] := {124} tii[22,66] := {129} tii[22,67] := {145} tii[22,68] := {75} tii[22,69] := {111} tii[22,70] := {38} tii[22,71] := {130} tii[22,72] := {105} tii[22,73] := {28} tii[22,74] := {87} tii[22,75] := {82} tii[22,76] := {113} tii[22,77] := {112} tii[22,78] := {100} tii[22,79] := {60} tii[22,80] := {9} tii[22,81] := {88} tii[22,82] := {122} tii[22,83] := {76} tii[22,84] := {102} tii[22,85] := {63} tii[22,86] := {37} tii[22,87] := {51} tii[22,88] := {64} tii[22,89] := {29} tii[22,90] := {77} tii[22,91] := {11} tii[22,92] := {40} tii[22,93] := {19} tii[22,94] := {108} tii[22,95] := {17} tii[22,96] := {84} tii[22,97] := {59} tii[22,98] := {121} tii[22,99] := {36} tii[22,100] := {99} tii[22,101] := {72} tii[22,102] := {23} tii[22,103] := {73} tii[22,104] := {16} tii[22,105] := {47} tii[22,106] := {74} tii[22,107] := {48} tii[22,108] := {24} tii[22,109] := {25} tii[22,110] := {49} tii[22,111] := {26} tii[22,112] := {57} tii[22,113] := {35} tii[22,114] := {71} tii[22,115] := {45} tii[22,116] := {21} tii[22,117] := {22} tii[22,118] := {150} tii[22,119] := {140} tii[22,120] := {126} tii[22,121] := {135} tii[22,122] := {119} tii[22,123] := {95} tii[22,124] := {133} tii[22,125] := {115} tii[22,126] := {91} tii[22,127] := {90} tii[22,128] := {66} tii[22,129] := {103} tii[22,130] := {117} tii[22,131] := {80} tii[22,132] := {41} tii[22,133] := {94} tii[22,134] := {42} tii[22,135] := {54} tii[22,136] := {69} tii[22,137] := {20} tii[22,138] := {6} tii[22,139] := {81} tii[22,140] := {55} tii[22,141] := {32} tii[22,142] := {34} tii[22,143] := {43} tii[22,144] := {14} tii[22,145] := {4} tii[22,146] := {15} tii[22,147] := {0} tii[22,148] := {86} tii[22,149] := {62} tii[22,150] := {39} tii[22,151] := {50} tii[22,152] := {27} tii[22,153] := {52} tii[22,154] := {18} tii[22,155] := {10} tii[22,156] := {30} tii[22,157] := {12} tii[22,158] := {1} tii[22,159] := {2} tii[22,160] := {5} tii[22,161] := {7} tii[22,162] := {8} cell#19 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {13} tii[26,2] := {31} tii[26,3] := {43} tii[26,4] := {47} tii[26,5] := {2} tii[26,6] := {10} tii[26,7] := {20} tii[26,8] := {32} tii[26,9] := {7} tii[26,10] := {3} tii[26,11] := {18} tii[26,12] := {27} tii[26,13] := {6} tii[26,14] := {37} tii[26,15] := {11} tii[26,16] := {16} tii[26,17] := {25} tii[26,18] := {19} tii[26,19] := {34} tii[26,20] := {41} tii[26,21] := {24} tii[26,22] := {29} tii[26,23] := {39} tii[26,24] := {44} tii[26,25] := {36} tii[26,26] := {40} tii[26,27] := {46} tii[26,28] := {45} tii[26,29] := {0} tii[26,30] := {1} tii[26,31] := {4} tii[26,32] := {8} tii[26,33] := {5} tii[26,34] := {9} tii[26,35] := {14} tii[26,36] := {15} tii[26,37] := {21} tii[26,38] := {26} tii[26,39] := {12} tii[26,40] := {17} tii[26,41] := {22} tii[26,42] := {23} tii[26,43] := {28} tii[26,44] := {33} tii[26,45] := {30} tii[26,46] := {35} tii[26,47] := {38} tii[26,48] := {42} cell#20 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {70} tii[22,2] := {96} tii[22,3] := {107} tii[22,4] := {101} tii[22,5] := {51} tii[22,6] := {120} tii[22,7] := {50} tii[22,8] := {128} tii[22,9] := {98} tii[22,10] := {119} tii[22,11] := {137} tii[22,12] := {94} tii[22,13] := {102} tii[22,14] := {144} tii[22,15] := {69} tii[22,16] := {136} tii[22,17] := {93} tii[22,18] := {114} tii[22,19] := {148} tii[22,20] := {154} tii[22,21] := {134} tii[22,22] := {153} tii[22,23] := {141} tii[22,24] := {151} tii[22,25] := {157} tii[22,26] := {160} tii[22,27] := {161} tii[22,28] := {28} tii[22,29] := {29} tii[22,30] := {19} tii[22,31] := {48} tii[22,32] := {22} tii[22,33] := {21} tii[22,34] := {27} tii[22,35] := {49} tii[22,36] := {71} tii[22,37] := {40} tii[22,38] := {11} tii[22,39] := {2} tii[22,40] := {38} tii[22,41] := {73} tii[22,42] := {45} tii[22,43] := {17} tii[22,44] := {62} tii[22,45] := {97} tii[22,46] := {47} tii[22,47] := {37} tii[22,48] := {25} tii[22,49] := {58} tii[22,50] := {60} tii[22,51] := {86} tii[22,52] := {109} tii[22,53] := {82} tii[22,54] := {105} tii[22,55] := {61} tii[22,56] := {127} tii[22,57] := {138} tii[22,58] := {79} tii[22,59] := {78} tii[22,60] := {56} tii[22,61] := {68} tii[22,62] := {34} tii[22,63] := {15} tii[22,64] := {66} tii[22,65] := {100} tii[22,66] := {42} tii[22,67] := {31} tii[22,68] := {75} tii[22,69] := {65} tii[22,70] := {92} tii[22,71] := {14} tii[22,72] := {77} tii[22,73] := {121} tii[22,74] := {88} tii[22,75] := {54} tii[22,76] := {32} tii[22,77] := {20} tii[22,78] := {90} tii[22,79] := {113} tii[22,80] := {130} tii[22,81] := {41} tii[22,82] := {30} tii[22,83] := {106} tii[22,84] := {52} tii[22,85] := {64} tii[22,86] := {91} tii[22,87] := {125} tii[22,88] := {63} tii[22,89] := {142} tii[22,90] := {74} tii[22,91] := {149} tii[22,92] := {87} tii[22,93] := {110} tii[22,94] := {123} tii[22,95] := {118} tii[22,96] := {104} tii[22,97] := {81} tii[22,98] := {116} tii[22,99] := {133} tii[22,100] := {126} tii[22,101] := {80} tii[22,102] := {145} tii[22,103] := {140} tii[22,104] := {117} tii[22,105] := {103} tii[22,106] := {115} tii[22,107] := {152} tii[22,108] := {122} tii[22,109] := {155} tii[22,110] := {131} tii[22,111] := {143} tii[22,112] := {147} tii[22,113] := {135} tii[22,114] := {158} tii[22,115] := {159} tii[22,116] := {146} tii[22,117] := {156} tii[22,118] := {13} tii[22,119] := {4} tii[22,120] := {0} tii[22,121] := {12} tii[22,122] := {3} tii[22,123] := {6} tii[22,124] := {8} tii[22,125] := {1} tii[22,126] := {9} tii[22,127] := {5} tii[22,128] := {16} tii[22,129] := {7} tii[22,130] := {26} tii[22,131] := {23} tii[22,132] := {36} tii[22,133] := {10} tii[22,134] := {35} tii[22,135] := {44} tii[22,136] := {18} tii[22,137] := {57} tii[22,138] := {83} tii[22,139] := {24} tii[22,140] := {46} tii[22,141] := {59} tii[22,142] := {72} tii[22,143] := {39} tii[22,144] := {84} tii[22,145] := {108} tii[22,146] := {85} tii[22,147] := {124} tii[22,148] := {55} tii[22,149] := {33} tii[22,150] := {43} tii[22,151] := {53} tii[22,152] := {76} tii[22,153] := {89} tii[22,154] := {67} tii[22,155] := {99} tii[22,156] := {111} tii[22,157] := {129} tii[22,158] := {112} tii[22,159] := {139} tii[22,160] := {95} tii[22,161] := {132} tii[22,162] := {150} cell#21 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {167} tii[17,2] := {153} tii[17,3] := {160} tii[17,4] := {114} tii[17,5] := {140} tii[17,6] := {108} tii[17,7] := {151} tii[17,8] := {119} tii[17,9] := {165} tii[17,10] := {137} tii[17,11] := {158} tii[17,12] := {135} tii[17,13] := {161} tii[17,14] := {100} tii[17,15] := {126} tii[17,16] := {157} tii[17,17] := {83} tii[17,18] := {54} tii[17,19] := {145} tii[17,20] := {127} tii[17,21] := {144} tii[17,22] := {45} tii[17,23] := {134} tii[17,24] := {110} tii[17,25] := {162} tii[17,26] := {150} tii[17,27] := {152} tii[17,28] := {166} tii[17,29] := {125} tii[17,30] := {142} tii[17,31] := {93} tii[17,32] := {82} tii[17,33] := {132} tii[17,34] := {163} tii[17,35] := {49} tii[17,36] := {120} tii[17,37] := {155} tii[17,38] := {92} tii[17,39] := {99} tii[17,40] := {122} tii[17,41] := {138} tii[17,42] := {70} tii[17,43] := {53} tii[17,44] := {71} tii[17,45] := {109} tii[17,46] := {41} tii[17,47] := {116} tii[17,48] := {80} tii[17,49] := {28} tii[17,50] := {11} tii[17,51] := {156} tii[17,52] := {63} tii[17,53] := {141} tii[17,54] := {118} tii[17,55] := {136} tii[17,56] := {88} tii[17,57] := {96} tii[17,58] := {123} tii[17,59] := {117} tii[17,60] := {61} tii[17,61] := {94} tii[17,62] := {90} tii[17,63] := {67} tii[17,64] := {79} tii[17,65] := {38} tii[17,66] := {143} tii[17,67] := {121} tii[17,68] := {91} tii[17,69] := {149} tii[17,70] := {113} tii[17,71] := {130} tii[17,72] := {87} tii[17,73] := {105} tii[17,74] := {77} tii[17,75] := {59} tii[17,76] := {34} tii[17,77] := {164} tii[17,78] := {102} tii[17,79] := {159} tii[17,80] := {148} tii[17,81] := {146} tii[17,82] := {73} tii[17,83] := {115} tii[17,84] := {128} tii[17,85] := {31} tii[17,86] := {57} tii[17,87] := {147} tii[17,88] := {46} tii[17,89] := {103} tii[17,90] := {89} tii[17,91] := {20} tii[17,92] := {129} tii[17,93] := {12} tii[17,94] := {104} tii[17,95] := {85} tii[17,96] := {58} tii[17,97] := {76} tii[17,98] := {112} tii[17,99] := {4} tii[17,100] := {47} tii[17,101] := {101} tii[17,102] := {72} tii[17,103] := {74} tii[17,104] := {44} tii[17,105] := {21} tii[17,106] := {111} tii[17,107] := {84} tii[17,108] := {55} tii[17,109] := {30} tii[17,110] := {7} tii[17,111] := {56} tii[17,112] := {19} tii[17,113] := {124} tii[17,114] := {154} tii[17,115] := {97} tii[17,116] := {26} tii[17,117] := {139} tii[17,118] := {66} tii[17,119] := {51} tii[17,120] := {68} tii[17,121] := {133} tii[17,122] := {27} tii[17,123] := {39} tii[17,124] := {16} tii[17,125] := {98} tii[17,126] := {62} tii[17,127] := {69} tii[17,128] := {35} tii[17,129] := {42} tii[17,130] := {81} tii[17,131] := {43} tii[17,132] := {52} tii[17,133] := {50} tii[17,134] := {107} tii[17,135] := {18} tii[17,136] := {24} tii[17,137] := {17} tii[17,138] := {6} tii[17,139] := {25} tii[17,140] := {29} tii[17,141] := {40} tii[17,142] := {3} tii[17,143] := {95} tii[17,144] := {64} tii[17,145] := {36} tii[17,146] := {37} tii[17,147] := {65} tii[17,148] := {15} tii[17,149] := {131} tii[17,150] := {106} tii[17,151] := {78} tii[17,152] := {86} tii[17,153] := {48} tii[17,154] := {23} tii[17,155] := {60} tii[17,156] := {14} tii[17,157] := {22} tii[17,158] := {75} tii[17,159] := {8} tii[17,160] := {2} tii[17,161] := {13} tii[17,162] := {32} tii[17,163] := {0} tii[17,164] := {33} tii[17,165] := {1} tii[17,166] := {9} tii[17,167] := {10} tii[17,168] := {5} cell#22 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {55} tii[24,2] := {53} tii[24,3] := {50} tii[24,4] := {41} tii[24,5] := {27} tii[24,6] := {42} tii[24,7] := {47} tii[24,8] := {37} tii[24,9] := {24} tii[24,10] := {10} tii[24,11] := {25} tii[24,12] := {46} tii[24,13] := {39} tii[24,14] := {26} tii[24,15] := {38} tii[24,16] := {45} tii[24,17] := {40} tii[24,18] := {49} tii[24,19] := {44} tii[24,20] := {52} tii[24,21] := {54} tii[24,22] := {32} tii[24,23] := {20} tii[24,24] := {7} tii[24,25] := {1} tii[24,26] := {8} tii[24,27] := {31} tii[24,28] := {22} tii[24,29] := {9} tii[24,30] := {21} tii[24,31] := {30} tii[24,32] := {23} tii[24,33] := {36} tii[24,34] := {29} tii[24,35] := {43} tii[24,36] := {51} tii[24,37] := {19} tii[24,38] := {13} tii[24,39] := {3} tii[24,40] := {12} tii[24,41] := {18} tii[24,42] := {14} tii[24,43] := {28} tii[24,44] := {17} tii[24,45] := {35} tii[24,46] := {48} tii[24,47] := {5} tii[24,48] := {2} tii[24,49] := {11} tii[24,50] := {4} tii[24,51] := {15} tii[24,52] := {33} tii[24,53] := {0} tii[24,54] := {6} tii[24,55] := {16} tii[24,56] := {34} cell#23 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {122} tii[20,2] := {119} tii[20,3] := {120} tii[20,4] := {121} tii[20,5] := {144} tii[20,6] := {156} tii[20,7] := {104} tii[20,8] := {154} tii[20,9] := {87} tii[20,10] := {155} tii[20,11] := {54} tii[20,12] := {86} tii[20,13] := {168} tii[20,14] := {175} tii[20,15] := {143} tii[20,16] := {174} tii[20,17] := {127} tii[20,18] := {157} tii[20,19] := {181} tii[20,20] := {184} tii[20,21] := {167} tii[20,22] := {180} tii[20,23] := {187} tii[20,24] := {188} tii[20,25] := {118} tii[20,26] := {135} tii[20,27] := {79} tii[20,28] := {133} tii[20,29] := {61} tii[20,30] := {134} tii[20,31] := {33} tii[20,32] := {60} tii[20,33] := {45} tii[20,34] := {153} tii[20,35] := {162} tii[20,36] := {117} tii[20,37] := {31} tii[20,38] := {161} tii[20,39] := {99} tii[20,40] := {10} tii[20,41] := {136} tii[20,42] := {30} tii[20,43] := {44} tii[20,44] := {173} tii[20,45] := {177} tii[20,46] := {152} tii[20,47] := {32} tii[20,48] := {172} tii[20,49] := {59} tii[20,50] := {43} tii[20,51] := {183} tii[20,52] := {185} tii[20,53] := {76} tii[20,54] := {114} tii[20,55] := {108} tii[20,56] := {130} tii[20,57] := {70} tii[20,58] := {129} tii[20,59] := {57} tii[20,60] := {91} tii[20,61] := {37} tii[20,62] := {147} tii[20,63] := {160} tii[20,64] := {107} tii[20,65] := {28} tii[20,66] := {146} tii[20,67] := {56} tii[20,68] := {36} tii[20,69] := {170} tii[20,70] := {178} tii[20,71] := {68} tii[20,72] := {105} tii[20,73] := {111} tii[20,74] := {132} tii[20,75] := {72} tii[20,76] := {110} tii[20,77] := {38} tii[20,78] := {149} tii[20,79] := {164} tii[20,80] := {71} tii[20,81] := {109} tii[20,82] := {113} tii[20,83] := {139} tii[20,84] := {112} tii[20,85] := {85} tii[20,86] := {53} tii[20,87] := {27} tii[20,88] := {8} tii[20,89] := {67} tii[20,90] := {84} tii[20,91] := {49} tii[20,92] := {52} tii[20,93] := {25} tii[20,94] := {26} tii[20,95] := {48} tii[20,96] := {66} tii[20,97] := {83} tii[20,98] := {50} tii[20,99] := {51} tii[20,100] := {81} tii[20,101] := {65} tii[20,102] := {82} tii[20,103] := {101} tii[20,104] := {140} tii[20,105] := {24} tii[20,106] := {126} tii[20,107] := {13} tii[20,108] := {2} tii[20,109] := {90} tii[20,110] := {12} tii[20,111] := {55} tii[20,112] := {23} tii[20,113] := {103} tii[20,114] := {14} tii[20,115] := {125} tii[20,116] := {88} tii[20,117] := {35} tii[20,118] := {89} tii[20,119] := {123} tii[20,120] := {22} tii[20,121] := {102} tii[20,122] := {124} tii[20,123] := {47} tii[20,124] := {141} tii[20,125] := {80} tii[20,126] := {165} tii[20,127] := {5} tii[20,128] := {159} tii[20,129] := {1} tii[20,130] := {128} tii[20,131] := {11} tii[20,132] := {4} tii[20,133] := {142} tii[20,134] := {158} tii[20,135] := {20} tii[20,136] := {166} tii[20,137] := {46} tii[20,138] := {179} tii[20,139] := {0} tii[20,140] := {176} tii[20,141] := {6} tii[20,142] := {21} tii[20,143] := {186} tii[20,144] := {7} tii[20,145] := {98} tii[20,146] := {64} tii[20,147] := {34} tii[20,148] := {78} tii[20,149] := {97} tii[20,150] := {62} tii[20,151] := {63} tii[20,152] := {95} tii[20,153] := {77} tii[20,154] := {96} tii[20,155] := {115} tii[20,156] := {150} tii[20,157] := {17} tii[20,158] := {138} tii[20,159] := {9} tii[20,160] := {29} tii[20,161] := {100} tii[20,162] := {16} tii[20,163] := {116} tii[20,164] := {137} tii[20,165] := {151} tii[20,166] := {41} tii[20,167] := {171} tii[20,168] := {75} tii[20,169] := {3} tii[20,170] := {163} tii[20,171] := {18} tii[20,172] := {42} tii[20,173] := {182} tii[20,174] := {19} tii[20,175] := {93} tii[20,176] := {58} tii[20,177] := {69} tii[20,178] := {92} tii[20,179] := {106} tii[20,180] := {145} tii[20,181] := {15} tii[20,182] := {131} tii[20,183] := {39} tii[20,184] := {169} tii[20,185] := {74} tii[20,186] := {40} tii[20,187] := {94} tii[20,188] := {148} tii[20,189] := {73} cell#24 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {187} tii[20,2] := {164} tii[20,3] := {133} tii[20,4] := {72} tii[20,5] := {177} tii[20,6] := {141} tii[20,7] := {169} tii[20,8] := {96} tii[20,9] := {152} tii[20,10] := {35} tii[20,11] := {130} tii[20,12] := {100} tii[20,13] := {163} tii[20,14] := {112} tii[20,15] := {149} tii[20,16] := {65} tii[20,17] := {125} tii[20,18] := {94} tii[20,19] := {140} tii[20,20] := {81} tii[20,21] := {127} tii[20,22] := {95} tii[20,23] := {111} tii[20,24] := {97} tii[20,25] := {188} tii[20,26] := {109} tii[20,27] := {179} tii[20,28] := {60} tii[20,29] := {166} tii[20,30] := {10} tii[20,31] := {144} tii[20,32] := {116} tii[20,33] := {186} tii[20,34] := {137} tii[20,35] := {79} tii[20,36] := {122} tii[20,37] := {180} tii[20,38] := {30} tii[20,39] := {89} tii[20,40] := {167} tii[20,41] := {58} tii[20,42] := {145} tii[20,43] := {185} tii[20,44] := {108} tii[20,45] := {47} tii[20,46] := {91} tii[20,47] := {181} tii[20,48] := {59} tii[20,49] := {168} tii[20,50] := {184} tii[20,51] := {78} tii[20,52] := {61} tii[20,53] := {182} tii[20,54] := {183} tii[20,55] := {159} tii[20,56] := {57} tii[20,57] := {146} tii[20,58] := {19} tii[20,59] := {120} tii[20,60] := {88} tii[20,61] := {158} tii[20,62] := {87} tii[20,63] := {27} tii[20,64] := {75} tii[20,65] := {147} tii[20,66] := {44} tii[20,67] := {121} tii[20,68] := {157} tii[20,69] := {56} tii[20,70] := {45} tii[20,71] := {148} tii[20,72] := {156} tii[20,73] := {119} tii[20,74] := {7} tii[20,75] := {104} tii[20,76] := {74} tii[20,77] := {118} tii[20,78] := {26} tii[20,79] := {18} tii[20,80] := {105} tii[20,81] := {117} tii[20,82] := {54} tii[20,83] := {43} tii[20,84] := {53} tii[20,85] := {178} tii[20,86] := {165} tii[20,87] := {143} tii[20,88] := {115} tii[20,89] := {155} tii[20,90] := {142} tii[20,91] := {132} tii[20,92] := {114} tii[20,93] := {102} tii[20,94] := {84} tii[20,95] := {71} tii[20,96] := {101} tii[20,97] := {103} tii[20,98] := {70} tii[20,99] := {73} tii[20,100] := {40} tii[20,101] := {41} tii[20,102] := {42} tii[20,103] := {17} tii[20,104] := {3} tii[20,105] := {176} tii[20,106] := {113} tii[20,107] := {170} tii[20,108] := {153} tii[20,109] := {83} tii[20,110] := {131} tii[20,111] := {52} tii[20,112] := {175} tii[20,113] := {129} tii[20,114] := {171} tii[20,115] := {64} tii[20,116] := {99} tii[20,117] := {154} tii[20,118] := {36} tii[20,119] := {68} tii[20,120] := {174} tii[20,121] := {69} tii[20,122] := {15} tii[20,123] := {172} tii[20,124] := {39} tii[20,125] := {173} tii[20,126] := {16} tii[20,127] := {162} tii[20,128] := {82} tii[20,129] := {150} tii[20,130] := {51} tii[20,131] := {126} tii[20,132] := {161} tii[20,133] := {98} tii[20,134] := {37} tii[20,135] := {151} tii[20,136] := {67} tii[20,137] := {160} tii[20,138] := {38} tii[20,139] := {139} tii[20,140] := {50} tii[20,141] := {128} tii[20,142] := {138} tii[20,143] := {66} tii[20,144] := {110} tii[20,145] := {80} tii[20,146] := {49} tii[20,147] := {24} tii[20,148] := {93} tii[20,149] := {29} tii[20,150] := {63} tii[20,151] := {11} tii[20,152] := {33} tii[20,153] := {34} tii[20,154] := {1} tii[20,155] := {14} tii[20,156] := {2} tii[20,157] := {136} tii[20,158] := {48} tii[20,159] := {123} tii[20,160] := {90} tii[20,161] := {23} tii[20,162] := {135} tii[20,163] := {62} tii[20,164] := {12} tii[20,165] := {32} tii[20,166] := {124} tii[20,167] := {13} tii[20,168] := {134} tii[20,169] := {107} tii[20,170] := {22} tii[20,171] := {92} tii[20,172] := {106} tii[20,173] := {31} tii[20,174] := {77} tii[20,175] := {28} tii[20,176] := {9} tii[20,177] := {46} tii[20,178] := {5} tii[20,179] := {21} tii[20,180] := {6} tii[20,181] := {86} tii[20,182] := {8} tii[20,183] := {76} tii[20,184] := {20} tii[20,185] := {85} tii[20,186] := {55} tii[20,187] := {0} tii[20,188] := {4} tii[20,189] := {25} cell#25 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {215} tii[15,2] := {191} tii[15,3] := {146} tii[15,4] := {214} tii[15,5] := {192} tii[15,6] := {213} tii[15,7] := {206} tii[15,8] := {172} tii[15,9] := {118} tii[15,10] := {195} tii[15,11] := {205} tii[15,12] := {135} tii[15,13] := {184} tii[15,14] := {173} tii[15,15] := {73} tii[15,16] := {152} tii[15,17] := {116} tii[15,18] := {170} tii[15,19] := {204} tii[15,20] := {93} tii[15,21] := {151} tii[15,22] := {113} tii[15,23] := {134} tii[15,24] := {114} tii[15,25] := {188} tii[15,26] := {129} tii[15,27] := {166} tii[15,28] := {187} tii[15,29] := {89} tii[15,30] := {149} tii[15,31] := {108} tii[15,32] := {128} tii[15,33] := {107} tii[15,34] := {159} tii[15,35] := {131} tii[15,36] := {111} tii[15,37] := {207} tii[15,38] := {161} tii[15,39] := {201} tii[15,40] := {100} tii[15,41] := {178} tii[15,42] := {144} tii[15,43] := {189} tii[15,44] := {124} tii[15,45] := {177} tii[15,46] := {141} tii[15,47] := {160} tii[15,48] := {142} tii[15,49] := {176} tii[15,50] := {158} tii[15,51] := {210} tii[15,52] := {99} tii[15,53] := {121} tii[15,54] := {193} tii[15,55] := {49} tii[15,56] := {81} tii[15,57] := {165} tii[15,58] := {208} tii[15,59] := {140} tii[15,60] := {123} tii[15,61] := {61} tii[15,62] := {122} tii[15,63] := {202} tii[15,64] := {85} tii[15,65] := {163} tii[15,66] := {162} tii[15,67] := {82} tii[15,68] := {181} tii[15,69] := {52} tii[15,70] := {127} tii[15,71] := {98} tii[15,72] := {190} tii[15,73] := {53} tii[15,74] := {105} tii[15,75] := {83} tii[15,76] := {180} tii[15,77] := {28} tii[15,78] := {13} tii[15,79] := {97} tii[15,80] := {211} tii[15,81] := {80} tii[15,82] := {32} tii[15,83] := {194} tii[15,84] := {46} tii[15,85] := {209} tii[15,86] := {60} tii[15,87] := {48} tii[15,88] := {164} tii[15,89] := {203} tii[15,90] := {47} tii[15,91] := {23} tii[15,92] := {10} tii[15,93] := {33} tii[15,94] := {212} tii[15,95] := {24} tii[15,96] := {11} tii[15,97] := {198} tii[15,98] := {174} tii[15,99] := {139} tii[15,100] := {153} tii[15,101] := {196} tii[15,102] := {117} tii[15,103] := {137} tii[15,104] := {136} tii[15,105] := {185} tii[15,106] := {77} tii[15,107] := {96} tii[15,108] := {155} tii[15,109] := {76} tii[15,110] := {171} tii[15,111] := {78} tii[15,112] := {45} tii[15,113] := {154} tii[15,114] := {21} tii[15,115] := {133} tii[15,116] := {199} tii[15,117] := {112} tii[15,118] := {94} tii[15,119] := {56} tii[15,120] := {70} tii[15,121] := {175} tii[15,122] := {59} tii[15,123] := {197} tii[15,124] := {115} tii[15,125] := {72} tii[15,126] := {92} tii[15,127] := {138} tii[15,128] := {42} tii[15,129] := {186} tii[15,130] := {40} tii[15,131] := {75} tii[15,132] := {71} tii[15,133] := {18} tii[15,134] := {43} tii[15,135] := {57} tii[15,136] := {200} tii[15,137] := {41} tii[15,138] := {58} tii[15,139] := {74} tii[15,140] := {19} tii[15,141] := {168} tii[15,142] := {130} tii[15,143] := {109} tii[15,144] := {167} tii[15,145] := {90} tii[15,146] := {67} tii[15,147] := {150} tii[15,148] := {37} tii[15,149] := {91} tii[15,150] := {169} tii[15,151] := {69} tii[15,152] := {55} tii[15,153] := {66} tii[15,154] := {38} tii[15,155] := {132} tii[15,156] := {68} tii[15,157] := {179} tii[15,158] := {145} tii[15,159] := {104} tii[15,160] := {103} tii[15,161] := {65} tii[15,162] := {36} tii[15,163] := {86} tii[15,164] := {54} tii[15,165] := {125} tii[15,166] := {29} tii[15,167] := {88} tii[15,168] := {143} tii[15,169] := {30} tii[15,170] := {63} tii[15,171] := {15} tii[15,172] := {102} tii[15,173] := {7} tii[15,174] := {64} tii[15,175] := {14} tii[15,176] := {6} tii[15,177] := {87} tii[15,178] := {101} tii[15,179] := {2} tii[15,180] := {0} tii[15,181] := {62} tii[15,182] := {35} tii[15,183] := {84} tii[15,184] := {182} tii[15,185] := {25} tii[15,186] := {51} tii[15,187] := {148} tii[15,188] := {106} tii[15,189] := {26} tii[15,190] := {27} tii[15,191] := {126} tii[15,192] := {34} tii[15,193] := {12} tii[15,194] := {50} tii[15,195] := {147} tii[15,196] := {5} tii[15,197] := {1} tii[15,198] := {16} tii[15,199] := {183} tii[15,200] := {22} tii[15,201] := {4} tii[15,202] := {156} tii[15,203] := {120} tii[15,204] := {79} tii[15,205] := {44} tii[15,206] := {95} tii[15,207] := {20} tii[15,208] := {119} tii[15,209] := {9} tii[15,210] := {3} tii[15,211] := {31} tii[15,212] := {157} tii[15,213] := {39} tii[15,214] := {8} tii[15,215] := {110} tii[15,216] := {17} cell#26 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {124} tii[17,2] := {110} tii[17,3] := {155} tii[17,4] := {146} tii[17,5] := {116} tii[17,6] := {153} tii[17,7] := {163} tii[17,8] := {167} tii[17,9] := {92} tii[17,10] := {80} tii[17,11] := {41} tii[17,12] := {11} tii[17,13] := {117} tii[17,14] := {61} tii[17,15] := {94} tii[17,16] := {90} tii[17,17] := {38} tii[17,18] := {114} tii[17,19] := {79} tii[17,20] := {108} tii[17,21] := {119} tii[17,22] := {151} tii[17,23] := {91} tii[17,24] := {118} tii[17,25] := {76} tii[17,26] := {34} tii[17,27] := {145} tii[17,28] := {101} tii[17,29] := {89} tii[17,30] := {128} tii[17,31] := {125} tii[17,32] := {137} tii[17,33] := {58} tii[17,34] := {74} tii[17,35] := {73} tii[17,36] := {112} tii[17,37] := {46} tii[17,38] := {135} tii[17,39] := {70} tii[17,40] := {143} tii[17,41] := {84} tii[17,42] := {160} tii[17,43] := {122} tii[17,44] := {55} tii[17,45] := {123} tii[17,46] := {83} tii[17,47] := {56} tii[17,48] := {142} tii[17,49] := {141} tii[17,50] := {134} tii[17,51] := {139} tii[17,52] := {107} tii[17,53] := {133} tii[17,54] := {150} tii[17,55] := {159} tii[17,56] := {130} tii[17,57] := {165} tii[17,58] := {148} tii[17,59] := {105} tii[17,60] := {106} tii[17,61] := {158} tii[17,62] := {129} tii[17,63] := {161} tii[17,64] := {138} tii[17,65] := {157} tii[17,66] := {154} tii[17,67] := {162} tii[17,68] := {166} tii[17,69] := {20} tii[17,70] := {4} tii[17,71] := {43} tii[17,72] := {7} tii[17,73] := {30} tii[17,74] := {54} tii[17,75] := {19} tii[17,76] := {44} tii[17,77] := {66} tii[17,78] := {27} tii[17,79] := {39} tii[17,80] := {16} tii[17,81] := {68} tii[17,82] := {35} tii[17,83] := {50} tii[17,84] := {52} tii[17,85] := {93} tii[17,86] := {17} tii[17,87] := {18} tii[17,88] := {24} tii[17,89] := {82} tii[17,90] := {25} tii[17,91] := {49} tii[17,92] := {6} tii[17,93] := {120} tii[17,94] := {29} tii[17,95] := {40} tii[17,96] := {69} tii[17,97] := {53} tii[17,98] := {3} tii[17,99] := {109} tii[17,100] := {28} tii[17,101] := {64} tii[17,102] := {36} tii[17,103] := {37} tii[17,104] := {63} tii[17,105] := {136} tii[17,106] := {65} tii[17,107] := {96} tii[17,108] := {15} tii[17,109] := {88} tii[17,110] := {121} tii[17,111] := {67} tii[17,112] := {140} tii[17,113] := {104} tii[17,114] := {48} tii[17,115] := {86} tii[17,116] := {47} tii[17,117] := {23} tii[17,118] := {113} tii[17,119] := {75} tii[17,120] := {60} tii[17,121] := {14} tii[17,122] := {103} tii[17,123] := {87} tii[17,124] := {59} tii[17,125] := {71} tii[17,126] := {99} tii[17,127] := {98} tii[17,128] := {72} tii[17,129] := {152} tii[17,130] := {100} tii[17,131] := {32} tii[17,132] := {115} tii[17,133] := {127} tii[17,134] := {33} tii[17,135] := {57} tii[17,136] := {45} tii[17,137] := {144} tii[17,138] := {85} tii[17,139] := {102} tii[17,140] := {97} tii[17,141] := {156} tii[17,142] := {111} tii[17,143] := {132} tii[17,144] := {149} tii[17,145] := {78} tii[17,146] := {131} tii[17,147] := {164} tii[17,148] := {147} tii[17,149] := {8} tii[17,150] := {2} tii[17,151] := {13} tii[17,152] := {0} tii[17,153] := {31} tii[17,154] := {12} tii[17,155] := {1} tii[17,156] := {21} tii[17,157] := {9} tii[17,158] := {10} tii[17,159] := {26} tii[17,160] := {51} tii[17,161] := {62} tii[17,162] := {5} tii[17,163] := {81} tii[17,164] := {42} tii[17,165] := {95} tii[17,166] := {22} tii[17,167] := {77} tii[17,168] := {126} cell#27 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {42} tii[24,2] := {27} tii[24,3] := {41} tii[24,4] := {50} tii[24,5] := {53} tii[24,6] := {55} tii[24,7] := {10} tii[24,8] := {26} tii[24,9] := {40} tii[24,10] := {47} tii[24,11] := {52} tii[24,12] := {14} tii[24,13] := {28} tii[24,14] := {39} tii[24,15] := {49} tii[24,16] := {13} tii[24,17] := {24} tii[24,18] := {37} tii[24,19] := {9} tii[24,20] := {25} tii[24,21] := {38} tii[24,22] := {1} tii[24,23] := {8} tii[24,24] := {23} tii[24,25] := {32} tii[24,26] := {46} tii[24,27] := {3} tii[24,28] := {11} tii[24,29] := {17} tii[24,30] := {33} tii[24,31] := {2} tii[24,32] := {4} tii[24,33] := {15} tii[24,34] := {0} tii[24,35] := {5} tii[24,36] := {16} tii[24,37] := {7} tii[24,38] := {22} tii[24,39] := {30} tii[24,40] := {44} tii[24,41] := {12} tii[24,42] := {19} tii[24,43] := {35} tii[24,44] := {6} tii[24,45] := {18} tii[24,46] := {34} tii[24,47] := {21} tii[24,48] := {29} tii[24,49] := {43} tii[24,50] := {20} tii[24,51] := {36} tii[24,52] := {48} tii[24,53] := {31} tii[24,54] := {45} tii[24,55] := {51} tii[24,56] := {54} cell#28 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {73} tii[20,2] := {133} tii[20,3] := {168} tii[20,4] := {187} tii[20,5] := {45} tii[20,6] := {104} tii[20,7] := {19} tii[20,8] := {148} tii[20,9] := {44} tii[20,10] := {173} tii[20,11] := {59} tii[20,12] := {90} tii[20,13] := {74} tii[20,14] := {118} tii[20,15] := {43} tii[20,16] := {156} tii[20,17] := {53} tii[20,18] := {85} tii[20,19] := {88} tii[20,20] := {134} tii[20,21] := {54} tii[20,22] := {87} tii[20,23] := {107} tii[20,24] := {89} tii[20,25] := {72} tii[20,26] := {132} tii[20,27] := {41} tii[20,28] := {166} tii[20,29] := {70} tii[20,30] := {184} tii[20,31] := {82} tii[20,32] := {110} tii[20,33] := {17} tii[20,34] := {105} tii[20,35] := {151} tii[20,36] := {76} tii[20,37] := {38} tii[20,38] := {174} tii[20,39] := {96} tii[20,40] := {51} tii[20,41] := {125} tii[20,42] := {79} tii[20,43] := {21} tii[20,44] := {123} tii[20,45] := {157} tii[20,46] := {92} tii[20,47] := {35} tii[20,48] := {122} tii[20,49] := {62} tii[20,50] := {16} tii[20,51] := {136} tii[20,52] := {124} tii[20,53] := {34} tii[20,54] := {61} tii[20,55] := {131} tii[20,56] := {165} tii[20,57] := {101} tii[20,58] := {183} tii[20,59] := {113} tii[20,60] := {138} tii[20,61] := {69} tii[20,62] := {154} tii[20,63] := {175} tii[20,64] := {129} tii[20,65] := {81} tii[20,66] := {153} tii[20,67] := {109} tii[20,68] := {68} tii[20,69] := {159} tii[20,70] := {152} tii[20,71] := {98} tii[20,72] := {127} tii[20,73] := {167} tii[20,74] := {186} tii[20,75] := {144} tii[20,76] := {163} tii[20,77] := {115} tii[20,78] := {177} tii[20,79] := {172} tii[20,80] := {140} tii[20,81] := {160} tii[20,82] := {188} tii[20,83] := {182} tii[20,84] := {185} tii[20,85] := {42} tii[20,86] := {71} tii[20,87] := {84} tii[20,88] := {112} tii[20,89] := {6} tii[20,90] := {103} tii[20,91] := {20} tii[20,92] := {116} tii[20,93] := {33} tii[20,94] := {141} tii[20,95] := {60} tii[20,96] := {5} tii[20,97] := {145} tii[20,98] := {14} tii[20,99] := {164} tii[20,100] := {32} tii[20,101] := {2} tii[20,102] := {181} tii[20,103] := {15} tii[20,104] := {3} tii[20,105] := {1} tii[20,106] := {75} tii[20,107] := {11} tii[20,108] := {23} tii[20,109] := {91} tii[20,110] := {48} tii[20,111] := {120} tii[20,112] := {4} tii[20,113] := {18} tii[20,114] := {8} tii[20,115] := {121} tii[20,116] := {30} tii[20,117] := {26} tii[20,118] := {147} tii[20,119] := {58} tii[20,120] := {0} tii[20,121] := {12} tii[20,122] := {169} tii[20,123] := {7} tii[20,124] := {31} tii[20,125] := {25} tii[20,126] := {13} tii[20,127] := {10} tii[20,128] := {86} tii[20,129] := {22} tii[20,130] := {117} tii[20,131] := {47} tii[20,132] := {9} tii[20,133] := {28} tii[20,134] := {146} tii[20,135] := {27} tii[20,136] := {57} tii[20,137] := {55} tii[20,138] := {29} tii[20,139] := {24} tii[20,140] := {119} tii[20,141] := {49} tii[20,142] := {77} tii[20,143] := {56} tii[20,144] := {106} tii[20,145] := {102} tii[20,146] := {114} tii[20,147] := {139} tii[20,148] := {46} tii[20,149] := {143} tii[20,150] := {67} tii[20,151] := {162} tii[20,152] := {97} tii[20,153] := {39} tii[20,154] := {179} tii[20,155] := {66} tii[20,156] := {40} tii[20,157] := {37} tii[20,158] := {126} tii[20,159] := {50} tii[20,160] := {78} tii[20,161] := {150} tii[20,162] := {36} tii[20,163] := {64} tii[20,164] := {170} tii[20,165] := {95} tii[20,166] := {63} tii[20,167] := {65} tii[20,168] := {93} tii[20,169] := {52} tii[20,170] := {149} tii[20,171] := {80} tii[20,172] := {108} tii[20,173] := {94} tii[20,174] := {135} tii[20,175] := {142} tii[20,176] := {161} tii[20,177] := {100} tii[20,178] := {178} tii[20,179] := {130} tii[20,180] := {99} tii[20,181] := {83} tii[20,182] := {171} tii[20,183] := {111} tii[20,184] := {128} tii[20,185] := {137} tii[20,186] := {158} tii[20,187] := {180} tii[20,188] := {155} tii[20,189] := {176} cell#29 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {128} tii[20,2] := {125} tii[20,3] := {126} tii[20,4] := {127} tii[20,5] := {144} tii[20,6] := {84} tii[20,7] := {168} tii[20,8] := {85} tii[20,9] := {181} tii[20,10] := {86} tii[20,11] := {187} tii[20,12] := {188} tii[20,13] := {122} tii[20,14] := {63} tii[20,15] := {155} tii[20,16] := {64} tii[20,17] := {174} tii[20,18] := {179} tii[20,19] := {99} tii[20,20] := {33} tii[20,21] := {138} tii[20,22] := {154} tii[20,23] := {62} tii[20,24] := {82} tii[20,25] := {118} tii[20,26] := {38} tii[20,27] := {152} tii[20,28] := {41} tii[20,29] := {172} tii[20,30] := {44} tii[20,31] := {183} tii[20,32] := {185} tii[20,33] := {135} tii[20,34] := {68} tii[20,35] := {29} tii[20,36] := {109} tii[20,37] := {162} tii[20,38] := {30} tii[20,39] := {149} tii[20,40] := {177} tii[20,41] := {165} tii[20,42] := {182} tii[20,43] := {133} tii[20,44] := {56} tii[20,45] := {9} tii[20,46] := {91} tii[20,47] := {161} tii[20,48] := {110} tii[20,49] := {171} tii[20,50] := {134} tii[20,51] := {28} tii[20,52] := {36} tii[20,53] := {151} tii[20,54] := {117} tii[20,55] := {106} tii[20,56] := {40} tii[20,57] := {146} tii[20,58] := {43} tii[20,59] := {170} tii[20,60] := {178} tii[20,61] := {130} tii[20,62] := {70} tii[20,63] := {31} tii[20,64] := {113} tii[20,65] := {160} tii[20,66] := {140} tii[20,67] := {169} tii[20,68] := {129} tii[20,69] := {58} tii[20,70] := {72} tii[20,71] := {145} tii[20,72] := {105} tii[20,73] := {108} tii[20,74] := {42} tii[20,75] := {148} tii[20,76] := {164} tii[20,77] := {131} tii[20,78] := {73} tii[20,79] := {101} tii[20,80] := {147} tii[20,81] := {107} tii[20,82] := {112} tii[20,83] := {139} tii[20,84] := {111} tii[20,85] := {90} tii[20,86] := {55} tii[20,87] := {27} tii[20,88] := {8} tii[20,89] := {159} tii[20,90] := {89} tii[20,91] := {176} tii[20,92] := {54} tii[20,93] := {184} tii[20,94] := {26} tii[20,95] := {186} tii[20,96] := {157} tii[20,97] := {88} tii[20,98] := {175} tii[20,99] := {53} tii[20,100] := {180} tii[20,101] := {158} tii[20,102] := {87} tii[20,103] := {167} tii[20,104] := {143} tii[20,105] := {96} tii[20,106] := {52} tii[20,107] := {136} tii[20,108] := {163} tii[20,109] := {25} tii[20,110] := {173} tii[20,111] := {7} tii[20,112] := {97} tii[20,113] := {123} tii[20,114] := {137} tii[20,115] := {51} tii[20,116] := {156} tii[20,117] := {153} tii[20,118] := {24} tii[20,119] := {166} tii[20,120] := {98} tii[20,121] := {124} tii[20,122] := {50} tii[20,123] := {120} tii[20,124] := {142} tii[20,125] := {81} tii[20,126] := {104} tii[20,127] := {60} tii[20,128] := {35} tii[20,129] := {95} tii[20,130] := {14} tii[20,131] := {119} tii[20,132] := {61} tii[20,133] := {100} tii[20,134] := {34} tii[20,135] := {80} tii[20,136] := {121} tii[20,137] := {47} tii[20,138] := {83} tii[20,139] := {32} tii[20,140] := {13} tii[20,141] := {48} tii[20,142] := {23} tii[20,143] := {49} tii[20,144] := {6} tii[20,145] := {21} tii[20,146] := {5} tii[20,147] := {0} tii[20,148] := {71} tii[20,149] := {20} tii[20,150] := {114} tii[20,151] := {4} tii[20,152] := {141} tii[20,153] := {75} tii[20,154] := {18} tii[20,155] := {103} tii[20,156] := {67} tii[20,157] := {93} tii[20,158] := {11} tii[20,159] := {132} tii[20,160] := {150} tii[20,161] := {2} tii[20,162] := {94} tii[20,163] := {57} tii[20,164] := {10} tii[20,165] := {69} tii[20,166] := {116} tii[20,167] := {37} tii[20,168] := {78} tii[20,169] := {59} tii[20,170] := {1} tii[20,171] := {79} tii[20,172] := {46} tii[20,173] := {15} tii[20,174] := {22} tii[20,175] := {19} tii[20,176] := {3} tii[20,177] := {74} tii[20,178] := {17} tii[20,179] := {102} tii[20,180] := {66} tii[20,181] := {92} tii[20,182] := {12} tii[20,183] := {115} tii[20,184] := {39} tii[20,185] := {77} tii[20,186] := {45} tii[20,187] := {16} tii[20,188] := {65} tii[20,189] := {76} cell#30 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {113} tii[15,2] := {111} tii[15,3] := {112} tii[15,4] := {108} tii[15,5] := {107} tii[15,6] := {109} tii[15,7] := {146} tii[15,8] := {143} tii[15,9] := {145} tii[15,10] := {165} tii[15,11] := {155} tii[15,12] := {98} tii[15,13] := {194} tii[15,14] := {154} tii[15,15] := {100} tii[15,16] := {212} tii[15,17] := {215} tii[15,18] := {138} tii[15,19] := {153} tii[15,20] := {80} tii[15,21] := {173} tii[15,22] := {189} tii[15,23] := {116} tii[15,24] := {137} tii[15,25] := {182} tii[15,26] := {181} tii[15,27] := {193} tii[15,28] := {186} tii[15,29] := {144} tii[15,30] := {211} tii[15,31] := {214} tii[15,32] := {177} tii[15,33] := {190} tii[15,34] := {203} tii[15,35] := {210} tii[15,36] := {213} tii[15,37] := {77} tii[15,38] := {78} tii[15,39] := {49} tii[15,40] := {79} tii[15,41] := {27} tii[15,42] := {13} tii[15,43] := {45} tii[15,44] := {46} tii[15,45] := {24} tii[15,46] := {10} tii[15,47] := {25} tii[15,48] := {11} tii[15,49] := {135} tii[15,50] := {169} tii[15,51] := {75} tii[15,52] := {56} tii[15,53] := {196} tii[15,54] := {44} tii[15,55] := {58} tii[15,56] := {204} tii[15,57] := {22} tii[15,58] := {71} tii[15,59] := {89} tii[15,60] := {151} tii[15,61] := {38} tii[15,62] := {132} tii[15,63] := {41} tii[15,64] := {184} tii[15,65] := {74} tii[15,66] := {72} tii[15,67] := {160} tii[15,68] := {19} tii[15,69] := {195} tii[15,70] := {43} tii[15,71] := {69} tii[15,72] := {42} tii[15,73] := {150} tii[15,74] := {73} tii[15,75] := {90} tii[15,76] := {20} tii[15,77] := {168} tii[15,78] := {134} tii[15,79] := {129} tii[15,80] := {67} tii[15,81] := {167} tii[15,82] := {57} tii[15,83] := {37} tii[15,84] := {187} tii[15,85] := {70} tii[15,86] := {91} tii[15,87] := {149} tii[15,88] := {66} tii[15,89] := {39} tii[15,90] := {124} tii[15,91] := {166} tii[15,92] := {128} tii[15,93] := {131} tii[15,94] := {68} tii[15,95] := {159} tii[15,96] := {130} tii[15,97] := {105} tii[15,98] := {65} tii[15,99] := {36} tii[15,100] := {179} tii[15,101] := {121} tii[15,102] := {201} tii[15,103] := {104} tii[15,104] := {122} tii[15,105] := {85} tii[15,106] := {207} tii[15,107] := {64} tii[15,108] := {53} tii[15,109] := {178} tii[15,110] := {83} tii[15,111] := {103} tii[15,112] := {191} tii[15,113] := {52} tii[15,114] := {164} tii[15,115] := {175} tii[15,116] := {120} tii[15,117] := {198} tii[15,118] := {63} tii[15,119] := {99} tii[15,120] := {205} tii[15,121] := {82} tii[15,122] := {35} tii[15,123] := {118} tii[15,124] := {140} tii[15,125] := {185} tii[15,126] := {139} tii[15,127] := {119} tii[15,128] := {62} tii[15,129] := {81} tii[15,130] := {197} tii[15,131] := {162} tii[15,132] := {161} tii[15,133] := {174} tii[15,134] := {127} tii[15,135] := {172} tii[15,136] := {117} tii[15,137] := {188} tii[15,138] := {50} tii[15,139] := {97} tii[15,140] := {171} tii[15,141] := {148} tii[15,142] := {106} tii[15,143] := {202} tii[15,144] := {158} tii[15,145] := {147} tii[15,146] := {208} tii[15,147] := {123} tii[15,148] := {192} tii[15,149] := {200} tii[15,150] := {157} tii[15,151] := {206} tii[15,152] := {102} tii[15,153] := {163} tii[15,154] := {199} tii[15,155] := {183} tii[15,156] := {209} tii[15,157] := {28} tii[15,158] := {14} tii[15,159] := {7} tii[15,160] := {6} tii[15,161] := {2} tii[15,162] := {0} tii[15,163] := {114} tii[15,164] := {152} tii[15,165] := {48} tii[15,166] := {170} tii[15,167] := {26} tii[15,168] := {12} tii[15,169] := {115} tii[15,170] := {47} tii[15,171] := {136} tii[15,172] := {5} tii[15,173] := {96} tii[15,174] := {1} tii[15,175] := {76} tii[15,176] := {95} tii[15,177] := {23} tii[15,178] := {4} tii[15,179] := {60} tii[15,180] := {34} tii[15,181] := {33} tii[15,182] := {16} tii[15,183] := {92} tii[15,184] := {21} tii[15,185] := {32} tii[15,186] := {125} tii[15,187] := {9} tii[15,188] := {3} tii[15,189] := {88} tii[15,190] := {110} tii[15,191] := {40} tii[15,192] := {17} tii[15,193] := {133} tii[15,194] := {55} tii[15,195] := {8} tii[15,196] := {94} tii[15,197] := {59} tii[15,198] := {31} tii[15,199] := {18} tii[15,200] := {87} tii[15,201] := {93} tii[15,202] := {54} tii[15,203] := {30} tii[15,204] := {15} tii[15,205] := {156} tii[15,206] := {84} tii[15,207] := {176} tii[15,208] := {29} tii[15,209] := {142} tii[15,210] := {101} tii[15,211] := {61} tii[15,212] := {51} tii[15,213] := {126} tii[15,214] := {141} tii[15,215] := {86} tii[15,216] := {180} cell#31 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {69} tii[19,2] := {66} tii[19,3] := {62} tii[19,4] := {49} tii[19,5] := {61} tii[19,6] := {56} tii[19,7] := {47} tii[19,8] := {32} tii[19,9] := {46} tii[19,10] := {55} tii[19,11] := {48} tii[19,12] := {60} tii[19,13] := {54} tii[19,14] := {65} tii[19,15] := {68} tii[19,16] := {39} tii[19,17] := {30} tii[19,18] := {12} tii[19,19] := {29} tii[19,20] := {38} tii[19,21] := {31} tii[19,22] := {45} tii[19,23] := {37} tii[19,24] := {53} tii[19,25] := {64} tii[19,26] := {28} tii[19,27] := {14} tii[19,28] := {33} tii[19,29] := {27} tii[19,30] := {44} tii[19,31] := {59} tii[19,32] := {11} tii[19,33] := {26} tii[19,34] := {43} tii[19,35] := {58} tii[19,36] := {20} tii[19,37] := {8} tii[19,38] := {1} tii[19,39] := {7} tii[19,40] := {19} tii[19,41] := {10} tii[19,42] := {25} tii[19,43] := {17} tii[19,44] := {36} tii[19,45] := {52} tii[19,46] := {5} tii[19,47] := {2} tii[19,48] := {13} tii[19,49] := {4} tii[19,50] := {22} tii[19,51] := {41} tii[19,52] := {0} tii[19,53] := {3} tii[19,54] := {21} tii[19,55] := {40} tii[19,56] := {18} tii[19,57] := {9} tii[19,58] := {24} tii[19,59] := {16} tii[19,60] := {35} tii[19,61] := {51} tii[19,62] := {6} tii[19,63] := {23} tii[19,64] := {42} tii[19,65] := {57} tii[19,66] := {15} tii[19,67] := {34} tii[19,68] := {50} tii[19,69] := {63} tii[19,70] := {67} cell#32 , |C| = 42 special orbit = [3, 3, 3] special rep = [3, 3, 3] , dim = 42 cell rep = phi[3,3,3] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[12,1] := {41} tii[12,2] := {34} tii[12,3] := {21} tii[12,4] := {39} tii[12,5] := {32} tii[12,6] := {35} tii[12,7] := {31} tii[12,8] := {24} tii[12,9] := {36} tii[12,10] := {40} tii[12,11] := {37} tii[12,12] := {11} tii[12,13] := {28} tii[12,14] := {17} tii[12,15] := {23} tii[12,16] := {15} tii[12,17] := {10} tii[12,18] := {4} tii[12,19] := {30} tii[12,20] := {22} tii[12,21] := {14} tii[12,22] := {27} tii[12,23] := {19} tii[12,24] := {13} tii[12,25] := {38} tii[12,26] := {33} tii[12,27] := {25} tii[12,28] := {18} tii[12,29] := {26} tii[12,30] := {12} tii[12,31] := {29} tii[12,32] := {6} tii[12,33] := {2} tii[12,34] := {5} tii[12,35] := {16} tii[12,36] := {8} tii[12,37] := {3} tii[12,38] := {9} tii[12,39] := {1} tii[12,40] := {20} tii[12,41] := {7} tii[12,42] := {0} cell#33 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {104} tii[14,2] := {102} tii[14,3] := {103} tii[14,4] := {129} tii[14,5] := {144} tii[14,6] := {87} tii[14,7] := {142} tii[14,8] := {70} tii[14,9] := {106} tii[14,10] := {162} tii[14,11] := {171} tii[14,12] := {127} tii[14,13] := {159} tii[14,14] := {183} tii[14,15] := {188} tii[14,16] := {96} tii[14,17] := {113} tii[14,18] := {58} tii[14,19] := {112} tii[14,20] := {40} tii[14,21] := {74} tii[14,22] := {29} tii[14,23] := {134} tii[14,24] := {148} tii[14,25] := {95} tii[14,26] := {17} tii[14,27] := {133} tii[14,28] := {39} tii[14,29] := {28} tii[14,30] := {164} tii[14,31] := {172} tii[14,32] := {56} tii[14,33] := {93} tii[14,34] := {90} tii[14,35] := {111} tii[14,36] := {52} tii[14,37] := {89} tii[14,38] := {24} tii[14,39] := {131} tii[14,40] := {150} tii[14,41] := {51} tii[14,42] := {88} tii[14,43] := {92} tii[14,44] := {117} tii[14,45] := {91} tii[14,46] := {128} tii[14,47] := {143} tii[14,48] := {86} tii[14,49] := {141} tii[14,50] := {69} tii[14,51] := {105} tii[14,52] := {161} tii[14,53] := {49} tii[14,54] := {170} tii[14,55] := {126} tii[14,56] := {35} tii[14,57] := {158} tii[14,58] := {64} tii[14,59] := {181} tii[14,60] := {47} tii[14,61] := {186} tii[14,62] := {81} tii[14,63] := {120} tii[14,64] := {23} tii[14,65] := {139} tii[14,66] := {149} tii[14,67] := {15} tii[14,68] := {100} tii[14,69] := {33} tii[14,70] := {138} tii[14,71] := {61} tii[14,72] := {22} tii[14,73] := {166} tii[14,74] := {173} tii[14,75] := {99} tii[14,76] := {45} tii[14,77] := {137} tii[14,78] := {79} tii[14,79] := {14} tii[14,80] := {136} tii[14,81] := {32} tii[14,82] := {152} tii[14,83] := {135} tii[14,84] := {60} tii[14,85] := {97} tii[14,86] := {160} tii[14,87] := {169} tii[14,88] := {125} tii[14,89] := {157} tii[14,90] := {180} tii[14,91] := {83} tii[14,92] := {185} tii[14,93] := {122} tii[14,94] := {154} tii[14,95] := {46} tii[14,96] := {168} tii[14,97] := {80} tii[14,98] := {175} tii[14,99] := {167} tii[14,100] := {119} tii[14,101] := {153} tii[14,102] := {182} tii[14,103] := {187} tii[14,104] := {178} tii[14,105] := {184} tii[14,106] := {68} tii[14,107] := {38} tii[14,108] := {16} tii[14,109] := {50} tii[14,110] := {67} tii[14,111] := {36} tii[14,112] := {37} tii[14,113] := {65} tii[14,114] := {48} tii[14,115] := {66} tii[14,116] := {82} tii[14,117] := {121} tii[14,118] := {13} tii[14,119] := {110} tii[14,120] := {3} tii[14,121] := {72} tii[14,122] := {18} tii[14,123] := {12} tii[14,124] := {85} tii[14,125] := {108} tii[14,126] := {124} tii[14,127] := {31} tii[14,128] := {156} tii[14,129] := {59} tii[14,130] := {2} tii[14,131] := {147} tii[14,132] := {10} tii[14,133] := {179} tii[14,134] := {30} tii[14,135] := {11} tii[14,136] := {6} tii[14,137] := {76} tii[14,138] := {1} tii[14,139] := {41} tii[14,140] := {8} tii[14,141] := {5} tii[14,142] := {57} tii[14,143] := {75} tii[14,144] := {94} tii[14,145] := {20} tii[14,146] := {43} tii[14,147] := {132} tii[14,148] := {0} tii[14,149] := {9} tii[14,150] := {7} tii[14,151] := {114} tii[14,152] := {26} tii[14,153] := {25} tii[14,154] := {163} tii[14,155] := {55} tii[14,156] := {53} tii[14,157] := {27} tii[14,158] := {4} tii[14,159] := {73} tii[14,160] := {19} tii[14,161] := {42} tii[14,162] := {130} tii[14,163] := {77} tii[14,164] := {54} tii[14,165] := {116} tii[14,166] := {109} tii[14,167] := {71} tii[14,168] := {84} tii[14,169] := {107} tii[14,170] := {123} tii[14,171] := {155} tii[14,172] := {34} tii[14,173] := {146} tii[14,174] := {63} tii[14,175] := {177} tii[14,176] := {101} tii[14,177] := {62} tii[14,178] := {21} tii[14,179] := {115} tii[14,180] := {44} tii[14,181] := {78} tii[14,182] := {165} tii[14,183] := {98} tii[14,184] := {118} tii[14,185] := {151} tii[14,186] := {145} tii[14,187] := {176} tii[14,188] := {140} tii[14,189] := {174} cell#34 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {187} tii[14,2] := {159} tii[14,3] := {110} tii[14,4] := {179} tii[14,5] := {126} tii[14,6] := {169} tii[14,7] := {67} tii[14,8] := {145} tii[14,9] := {108} tii[14,10] := {158} tii[14,11] := {85} tii[14,12] := {143} tii[14,13] := {105} tii[14,14] := {125} tii[14,15] := {106} tii[14,16] := {188} tii[14,17] := {84} tii[14,18] := {181} tii[14,19] := {33} tii[14,20] := {161} tii[14,21] := {129} tii[14,22] := {186} tii[14,23] := {123} tii[14,24] := {47} tii[14,25] := {103} tii[14,26] := {182} tii[14,27] := {64} tii[14,28] := {162} tii[14,29] := {185} tii[14,30] := {83} tii[14,31] := {65} tii[14,32] := {183} tii[14,33] := {184} tii[14,34] := {155} tii[14,35] := {32} tii[14,36] := {141} tii[14,37] := {102} tii[14,38] := {154} tii[14,39] := {63} tii[14,40] := {41} tii[14,41] := {142} tii[14,42] := {153} tii[14,43] := {101} tii[14,44] := {76} tii[14,45] := {100} tii[14,46] := {175} tii[14,47] := {46} tii[14,48] := {166} tii[14,49] := {8} tii[14,50] := {136} tii[14,51] := {97} tii[14,52] := {81} tii[14,53] := {174} tii[14,54] := {20} tii[14,55] := {54} tii[14,56] := {167} tii[14,57] := {26} tii[14,58] := {137} tii[14,59] := {45} tii[14,60] := {173} tii[14,61] := {28} tii[14,62] := {168} tii[14,63] := {172} tii[14,64] := {165} tii[14,65] := {120} tii[14,66] := {7} tii[14,67] := {148} tii[14,68] := {91} tii[14,69] := {113} tii[14,70] := {51} tii[14,71] := {119} tii[14,72] := {164} tii[14,73] := {25} tii[14,74] := {17} tii[14,75] := {93} tii[14,76] := {149} tii[14,77] := {118} tii[14,78] := {163} tii[14,79] := {135} tii[14,80] := {53} tii[14,81] := {112} tii[14,82] := {39} tii[14,83] := {52} tii[14,84] := {134} tii[14,85] := {96} tii[14,86] := {152} tii[14,87] := {19} tii[14,88] := {132} tii[14,89] := {89} tii[14,90] := {44} tii[14,91] := {151} tii[14,92] := {27} tii[14,93] := {133} tii[14,94] := {150} tii[14,95] := {131} tii[14,96] := {79} tii[14,97] := {111} tii[14,98] := {55} tii[14,99] := {77} tii[14,100] := {130} tii[14,101] := {88} tii[14,102] := {117} tii[14,103] := {92} tii[14,104] := {116} tii[14,105] := {90} tii[14,106] := {180} tii[14,107] := {160} tii[14,108] := {128} tii[14,109] := {147} tii[14,110] := {127} tii[14,111] := {109} tii[14,112] := {87} tii[14,113] := {71} tii[14,114] := {70} tii[14,115] := {72} tii[14,116] := {38} tii[14,117] := {16} tii[14,118] := {178} tii[14,119] := {86} tii[14,120] := {170} tii[14,121] := {50} tii[14,122] := {146} tii[14,123] := {177} tii[14,124] := {107} tii[14,125] := {36} tii[14,126] := {69} tii[14,127] := {171} tii[14,128] := {37} tii[14,129] := {176} tii[14,130] := {157} tii[14,131] := {49} tii[14,132] := {144} tii[14,133] := {68} tii[14,134] := {156} tii[14,135] := {124} tii[14,136] := {140} tii[14,137] := {48} tii[14,138] := {114} tii[14,139] := {23} tii[14,140] := {74} tii[14,141] := {139} tii[14,142] := {66} tii[14,143] := {14} tii[14,144] := {35} tii[14,145] := {115} tii[14,146] := {138} tii[14,147] := {15} tii[14,148] := {99} tii[14,149] := {122} tii[14,150] := {75} tii[14,151] := {22} tii[14,152] := {104} tii[14,153] := {98} tii[14,154] := {34} tii[14,155] := {121} tii[14,156] := {61} tii[14,157] := {82} tii[14,158] := {60} tii[14,159] := {13} tii[14,160] := {40} tii[14,161] := {59} tii[14,162] := {18} tii[14,163] := {31} tii[14,164] := {62} tii[14,165] := {12} tii[14,166] := {21} tii[14,167] := {6} tii[14,168] := {29} tii[14,169] := {1} tii[14,170] := {11} tii[14,171] := {2} tii[14,172] := {80} tii[14,173] := {5} tii[14,174] := {56} tii[14,175] := {10} tii[14,176] := {78} tii[14,177] := {43} tii[14,178] := {95} tii[14,179] := {0} tii[14,180] := {73} tii[14,181] := {94} tii[14,182] := {3} tii[14,183] := {24} tii[14,184] := {58} tii[14,185] := {30} tii[14,186] := {4} tii[14,187] := {9} tii[14,188] := {42} tii[14,189] := {57} cell#35 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {160} tii[8,2] := {106} tii[8,3] := {156} tii[8,4] := {131} tii[8,5] := {75} tii[8,6] := {112} tii[8,7] := {128} tii[8,8] := {43} tii[8,9] := {93} tii[8,10] := {54} tii[8,11] := {74} tii[8,12] := {53} tii[8,13] := {98} tii[8,14] := {70} tii[8,15] := {52} tii[8,16] := {159} tii[8,17] := {105} tii[8,18] := {138} tii[8,19] := {154} tii[8,20] := {65} tii[8,21] := {122} tii[8,22] := {86} tii[8,23] := {103} tii[8,24] := {84} tii[8,25] := {161} tii[8,26] := {37} tii[8,27] := {134} tii[8,28] := {146} tii[8,29] := {109} tii[8,30] := {158} tii[8,31] := {119} tii[8,32] := {64} tii[8,33] := {96} tii[8,34] := {47} tii[8,35] := {151} tii[8,36] := {157} tii[8,37] := {101} tii[8,38] := {81} tii[8,39] := {100} tii[8,40] := {153} tii[8,41] := {141} tii[8,42] := {125} tii[8,43] := {155} tii[8,44] := {149} tii[8,45] := {152} tii[8,46] := {139} tii[8,47] := {66} tii[8,48] := {123} tii[8,49] := {87} tii[8,50] := {104} tii[8,51] := {85} tii[8,52] := {80} tii[8,53] := {145} tii[8,54] := {57} tii[8,55] := {23} tii[8,56] := {31} tii[8,57] := {108} tii[8,58] := {143} tii[8,59] := {46} tii[8,60] := {33} tii[8,61] := {68} tii[8,62] := {127} tii[8,63] := {32} tii[8,64] := {14} tii[8,65] := {5} tii[8,66] := {22} tii[8,67] := {150} tii[8,68] := {12} tii[8,69] := {4} tii[8,70] := {132} tii[8,71] := {115} tii[8,72] := {114} tii[8,73] := {17} tii[8,74] := {77} tii[8,75] := {76} tii[8,76] := {130} tii[8,77] := {55} tii[8,78] := {113} tii[8,79] := {36} tii[8,80] := {117} tii[8,81] := {44} tii[8,82] := {30} tii[8,83] := {19} tii[8,84] := {95} tii[8,85] := {129} tii[8,86] := {11} tii[8,87] := {62} tii[8,88] := {42} tii[8,89] := {111} tii[8,90] := {116} tii[8,91] := {28} tii[8,92] := {40} tii[8,93] := {20} tii[8,94] := {94} tii[8,95] := {61} tii[8,96] := {110} tii[8,97] := {29} tii[8,98] := {10} tii[8,99] := {73} tii[8,100] := {99} tii[8,101] := {71} tii[8,102] := {72} tii[8,103] := {27} tii[8,104] := {97} tii[8,105] := {69} tii[8,106] := {144} tii[8,107] := {107} tii[8,108] := {142} tii[8,109] := {88} tii[8,110] := {67} tii[8,111] := {50} tii[8,112] := {126} tii[8,113] := {25} tii[8,114] := {137} tii[8,115] := {83} tii[8,116] := {148} tii[8,117] := {38} tii[8,118] := {124} tii[8,119] := {60} tii[8,120] := {136} tii[8,121] := {48} tii[8,122] := {34} tii[8,123] := {102} tii[8,124] := {135} tii[8,125] := {120} tii[8,126] := {18} tii[8,127] := {121} tii[8,128] := {59} tii[8,129] := {133} tii[8,130] := {24} tii[8,131] := {63} tii[8,132] := {118} tii[8,133] := {147} tii[8,134] := {90} tii[8,135] := {140} tii[8,136] := {89} tii[8,137] := {51} tii[8,138] := {26} tii[8,139] := {15} tii[8,140] := {6} tii[8,141] := {39} tii[8,142] := {49} tii[8,143] := {2} tii[8,144] := {0} tii[8,145] := {79} tii[8,146] := {58} tii[8,147] := {9} tii[8,148] := {92} tii[8,149] := {78} tii[8,150] := {13} tii[8,151] := {45} tii[8,152] := {1} tii[8,153] := {21} tii[8,154] := {7} tii[8,155] := {56} tii[8,156] := {8} tii[8,157] := {3} tii[8,158] := {35} tii[8,159] := {41} tii[8,160] := {91} tii[8,161] := {16} tii[8,162] := {82} cell#36 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {2} tii[19,2] := {20} tii[19,3] := {43} tii[19,4] := {64} tii[19,5] := {69} tii[19,6] := {11} tii[19,7] := {30} tii[19,8] := {50} tii[19,9] := {57} tii[19,10] := {9} tii[19,11] := {29} tii[19,12] := {38} tii[19,13] := {10} tii[19,14] := {17} tii[19,15] := {1} tii[19,16] := {19} tii[19,17] := {42} tii[19,18] := {63} tii[19,19] := {68} tii[19,20] := {32} tii[19,21] := {51} tii[19,22] := {58} tii[19,23] := {31} tii[19,24] := {39} tii[19,25] := {18} tii[19,26] := {41} tii[19,27] := {62} tii[19,28] := {66} tii[19,29] := {52} tii[19,30] := {59} tii[19,31] := {40} tii[19,32] := {61} tii[19,33] := {65} tii[19,34] := {60} tii[19,35] := {67} tii[19,36] := {8} tii[19,37] := {28} tii[19,38] := {49} tii[19,39] := {56} tii[19,40] := {14} tii[19,41] := {33} tii[19,42] := {44} tii[19,43] := {13} tii[19,44] := {25} tii[19,45] := {7} tii[19,46] := {27} tii[19,47] := {48} tii[19,48] := {54} tii[19,49] := {34} tii[19,50] := {45} tii[19,51] := {26} tii[19,52] := {47} tii[19,53] := {53} tii[19,54] := {46} tii[19,55] := {55} tii[19,56] := {4} tii[19,57] := {24} tii[19,58] := {36} tii[19,59] := {12} tii[19,60] := {21} tii[19,61] := {3} tii[19,62] := {23} tii[19,63] := {35} tii[19,64] := {22} tii[19,65] := {37} tii[19,66] := {6} tii[19,67] := {15} tii[19,68] := {5} tii[19,69] := {16} tii[19,70] := {0} cell#37 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {55} tii[13,2] := {40} tii[13,3] := {16} tii[13,4] := {2} tii[13,5] := {54} tii[13,6] := {42} tii[13,7] := {18} tii[13,8] := {52} tii[13,9] := {45} tii[13,10] := {50} tii[13,11] := {36} tii[13,12] := {25} tii[13,13] := {8} tii[13,14] := {35} tii[13,15] := {26} tii[13,16] := {34} tii[13,17] := {14} tii[13,18] := {7} tii[13,19] := {13} tii[13,20] := {1} tii[13,21] := {53} tii[13,22] := {41} tii[13,23] := {17} tii[13,24] := {51} tii[13,25] := {44} tii[13,26] := {48} tii[13,27] := {38} tii[13,28] := {27} tii[13,29] := {37} tii[13,30] := {15} tii[13,31] := {49} tii[13,32] := {43} tii[13,33] := {47} tii[13,34] := {39} tii[13,35] := {46} tii[13,36] := {33} tii[13,37] := {22} tii[13,38] := {6} tii[13,39] := {32} tii[13,40] := {24} tii[13,41] := {30} tii[13,42] := {20} tii[13,43] := {9} tii[13,44] := {19} tii[13,45] := {5} tii[13,46] := {31} tii[13,47] := {23} tii[13,48] := {29} tii[13,49] := {21} tii[13,50] := {28} tii[13,51] := {12} tii[13,52] := {4} tii[13,53] := {11} tii[13,54] := {3} tii[13,55] := {10} tii[13,56] := {0} cell#38 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {2} tii[13,2] := {18} tii[13,3] := {45} tii[13,4] := {55} tii[13,5] := {8} tii[13,6] := {25} tii[13,7] := {34} tii[13,8] := {7} tii[13,9] := {13} tii[13,10] := {1} tii[13,11] := {17} tii[13,12] := {44} tii[13,13] := {53} tii[13,14] := {27} tii[13,15] := {36} tii[13,16] := {15} tii[13,17] := {42} tii[13,18] := {49} tii[13,19] := {39} tii[13,20] := {54} tii[13,21] := {6} tii[13,22] := {22} tii[13,23] := {29} tii[13,24] := {9} tii[13,25] := {19} tii[13,26] := {5} tii[13,27] := {21} tii[13,28] := {28} tii[13,29] := {20} tii[13,30] := {30} tii[13,31] := {4} tii[13,32] := {10} tii[13,33] := {3} tii[13,34] := {11} tii[13,35] := {0} tii[13,36] := {16} tii[13,37] := {43} tii[13,38] := {50} tii[13,39] := {26} tii[13,40] := {35} tii[13,41] := {14} tii[13,42] := {41} tii[13,43] := {47} tii[13,44] := {38} tii[13,45] := {51} tii[13,46] := {24} tii[13,47] := {31} tii[13,48] := {23} tii[13,49] := {32} tii[13,50] := {12} tii[13,51] := {40} tii[13,52] := {46} tii[13,53] := {37} tii[13,54] := {48} tii[13,55] := {33} tii[13,56] := {52} cell#39 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {27} tii[6,2] := {14} tii[6,3] := {2} tii[6,4] := {26} tii[6,5] := {17} tii[6,6] := {24} tii[6,7] := {11} tii[6,8] := {5} tii[6,9] := {10} tii[6,10] := {1} tii[6,11] := {25} tii[6,12] := {16} tii[6,13] := {22} tii[6,14] := {13} tii[6,15] := {20} tii[6,16] := {8} tii[6,17] := {4} tii[6,18] := {7} tii[6,19] := {3} tii[6,20] := {6} tii[6,21] := {0} tii[6,22] := {23} tii[6,23] := {15} tii[6,24] := {21} tii[6,25] := {12} tii[6,26] := {19} tii[6,27] := {9} tii[6,28] := {18}