TII subcells for the SU(5,4) x PGL(9,R) block of SL9 # cell#0 , |C| = 1 special orbit = [9] special rep = [9] , dim = 1 cell rep = phi[9] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[30,1] := {0} cell#1 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {7} tii[29,2] := {0} tii[29,3] := {6} tii[29,4] := {1} tii[29,5] := {5} tii[29,6] := {2} tii[29,7] := {4} tii[29,8] := {3} cell#2 , |C| = 8 special orbit = [8, 1] special rep = [8, 1] , dim = 8 cell rep = phi[8,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[29,1] := {3} tii[29,2] := {7} tii[29,3] := {2} tii[29,4] := {6} tii[29,5] := {1} tii[29,6] := {5} tii[29,7] := {0} tii[29,8] := {4} cell#3 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {15} tii[28,2] := {26} tii[28,3] := {12} tii[28,4] := {25} tii[28,5] := {9} tii[28,6] := {24} tii[28,7] := {0} tii[28,8] := {13} tii[28,9] := {3} tii[28,10] := {11} tii[28,11] := {5} tii[28,12] := {8} tii[28,13] := {23} tii[28,14] := {16} tii[28,15] := {22} tii[28,16] := {17} tii[28,17] := {21} tii[28,18] := {1} tii[28,19] := {10} tii[28,20] := {4} tii[28,21] := {7} tii[28,22] := {20} tii[28,23] := {14} tii[28,24] := {19} tii[28,25] := {2} tii[28,26] := {6} tii[28,27] := {18} cell#4 , |C| = 27 special orbit = [7, 2] special rep = [7, 2] , dim = 27 cell rep = phi[7,2] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[28,1] := {26} tii[28,2] := {12} tii[28,3] := {25} tii[28,4] := {9} tii[28,5] := {24} tii[28,6] := {6} tii[28,7] := {23} tii[28,8] := {15} tii[28,9] := {22} tii[28,10] := {16} tii[28,11] := {21} tii[28,12] := {17} tii[28,13] := {0} tii[28,14] := {10} tii[28,15] := {3} tii[28,16] := {8} tii[28,17] := {5} tii[28,18] := {20} tii[28,19] := {13} tii[28,20] := {19} tii[28,21] := {14} tii[28,22] := {1} tii[28,23] := {7} tii[28,24] := {4} tii[28,25] := {18} tii[28,26] := {11} tii[28,27] := {2} cell#5 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {27} tii[27,2] := {17} tii[27,3] := {23} tii[27,4] := {16} tii[27,5] := {22} tii[27,6] := {15} tii[27,7] := {21} tii[27,8] := {5} tii[27,9] := {12} tii[27,10] := {2} tii[27,11] := {9} tii[27,12] := {0} tii[27,13] := {6} tii[27,14] := {26} tii[27,15] := {14} tii[27,16] := {20} tii[27,17] := {13} tii[27,18] := {19} tii[27,19] := {4} tii[27,20] := {10} tii[27,21] := {1} tii[27,22] := {7} tii[27,23] := {25} tii[27,24] := {11} tii[27,25] := {18} tii[27,26] := {3} tii[27,27] := {8} tii[27,28] := {24} cell#6 , |C| = 28 special orbit = [7, 1, 1] special rep = [7, 1, 1] , dim = 28 cell rep = phi[7,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[27,1] := {6} tii[27,2] := {12} tii[27,3] := {17} tii[27,4] := {21} tii[27,5] := {24} tii[27,6] := {26} tii[27,7] := {27} tii[27,8] := {5} tii[27,9] := {11} tii[27,10] := {16} tii[27,11] := {20} tii[27,12] := {23} tii[27,13] := {25} tii[27,14] := {4} tii[27,15] := {10} tii[27,16] := {15} tii[27,17] := {19} tii[27,18] := {22} tii[27,19] := {3} tii[27,20] := {9} tii[27,21] := {14} tii[27,22] := {18} tii[27,23] := {2} tii[27,24] := {8} tii[27,25] := {13} tii[27,26] := {1} tii[27,27] := {7} tii[27,28] := {0} cell#7 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {47} tii[26,2] := {34} tii[26,3] := {46} tii[26,4] := {33} tii[26,5] := {43} tii[26,6] := {24} tii[26,7] := {42} tii[26,8] := {22} tii[26,9] := {45} tii[26,10] := {41} tii[26,11] := {7} tii[26,12] := {32} tii[26,13] := {36} tii[26,14] := {4} tii[26,15] := {40} tii[26,16] := {37} tii[26,17] := {20} tii[26,18] := {10} tii[26,19] := {39} tii[26,20] := {18} tii[26,21] := {19} tii[26,22] := {12} tii[26,23] := {44} tii[26,24] := {5} tii[26,25] := {38} tii[26,26] := {35} tii[26,27] := {17} tii[26,28] := {9} tii[26,29] := {31} tii[26,30] := {26} tii[26,31] := {30} tii[26,32] := {27} tii[26,33] := {13} tii[26,34] := {23} tii[26,35] := {15} tii[26,36] := {29} tii[26,37] := {25} tii[26,38] := {14} tii[26,39] := {0} tii[26,40] := {6} tii[26,41] := {3} tii[26,42] := {16} tii[26,43] := {8} tii[26,44] := {1} tii[26,45] := {28} tii[26,46] := {21} tii[26,47] := {11} tii[26,48] := {2} cell#8 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {81} tii[25,2] := {26} tii[25,3] := {69} tii[25,4] := {24} tii[25,5] := {68} tii[25,6] := {91} tii[25,7] := {10} tii[25,8] := {76} tii[25,9] := {47} tii[25,10] := {90} tii[25,11] := {7} tii[25,12] := {98} tii[25,13] := {43} tii[25,14] := {102} tii[25,15] := {104} tii[25,16] := {35} tii[25,17] := {75} tii[25,18] := {66} tii[25,19] := {21} tii[25,20] := {85} tii[25,21] := {67} tii[25,22] := {96} tii[25,23] := {101} tii[25,24] := {88} tii[25,25] := {8} tii[25,26] := {72} tii[25,27] := {44} tii[25,28] := {87} tii[25,29] := {97} tii[25,30] := {33} tii[25,31] := {71} tii[25,32] := {64} tii[25,33] := {83} tii[25,34] := {86} tii[25,35] := {70} tii[25,36] := {60} tii[25,37] := {37} tii[25,38] := {59} tii[25,39] := {38} tii[25,40] := {58} tii[25,41] := {57} tii[25,42] := {80} tii[25,43] := {13} tii[25,44] := {94} tii[25,45] := {25} tii[25,46] := {100} tii[25,47] := {15} tii[25,48] := {103} tii[25,49] := {23} tii[25,50] := {56} tii[25,51] := {79} tii[25,52] := {42} tii[25,53] := {93} tii[25,54] := {27} tii[25,55] := {99} tii[25,56] := {41} tii[25,57] := {55} tii[25,58] := {78} tii[25,59] := {14} tii[25,60] := {22} tii[25,61] := {92} tii[25,62] := {54} tii[25,63] := {40} tii[25,64] := {77} tii[25,65] := {53} tii[25,66] := {0} tii[25,67] := {9} tii[25,68] := {3} tii[25,69] := {6} tii[25,70] := {34} tii[25,71] := {19} tii[25,72] := {65} tii[25,73] := {11} tii[25,74] := {84} tii[25,75] := {18} tii[25,76] := {95} tii[25,77] := {32} tii[25,78] := {63} tii[25,79] := {1} tii[25,80] := {4} tii[25,81] := {82} tii[25,82] := {30} tii[25,83] := {16} tii[25,84] := {61} tii[25,85] := {28} tii[25,86] := {52} tii[25,87] := {36} tii[25,88] := {51} tii[25,89] := {50} tii[25,90] := {12} tii[25,91] := {74} tii[25,92] := {20} tii[25,93] := {89} tii[25,94] := {49} tii[25,95] := {39} tii[25,96] := {73} tii[25,97] := {48} tii[25,98] := {2} tii[25,99] := {5} tii[25,100] := {31} tii[25,101] := {17} tii[25,102] := {62} tii[25,103] := {29} tii[25,104] := {46} tii[25,105] := {45} cell#9 , |C| = 48 special orbit = [6, 3] special rep = [6, 3] , dim = 48 cell rep = phi[6,3] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[26,1] := {37} tii[26,2] := {47} tii[26,3] := {34} tii[26,4] := {46} tii[26,5] := {12} tii[26,6] := {35} tii[26,7] := {9} tii[26,8] := {33} tii[26,9] := {27} tii[26,10] := {15} tii[26,11] := {43} tii[26,12] := {25} tii[26,13] := {24} tii[26,14] := {42} tii[26,15] := {13} tii[26,16] := {22} tii[26,17] := {45} tii[26,18] := {41} tii[26,19] := {8} tii[26,20] := {32} tii[26,21] := {36} tii[26,22] := {40} tii[26,23] := {20} tii[26,24] := {39} tii[26,25] := {10} tii[26,26] := {18} tii[26,27] := {44} tii[26,28] := {38} tii[26,29] := {3} tii[26,30] := {7} tii[26,31] := {0} tii[26,32] := {4} tii[26,33] := {21} tii[26,34] := {11} tii[26,35] := {19} tii[26,36] := {2} tii[26,37] := {6} tii[26,38] := {17} tii[26,39] := {31} tii[26,40] := {26} tii[26,41] := {30} tii[26,42] := {14} tii[26,43] := {23} tii[26,44] := {29} tii[26,45] := {1} tii[26,46] := {5} tii[26,47] := {16} tii[26,48] := {28} cell#10 , |C| = 42 special orbit = [5, 4] special rep = [5, 4] , dim = 42 cell rep = phi[5,4] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[23,1] := {34} tii[23,2] := {41} tii[23,3] := {16} tii[23,4] := {33} tii[23,5] := {24} tii[23,6] := {9} tii[23,7] := {37} tii[23,8] := {23} tii[23,9] := {29} tii[23,10] := {39} tii[23,11] := {22} tii[23,12] := {31} tii[23,13] := {17} tii[23,14] := {21} tii[23,15] := {40} tii[23,16] := {38} tii[23,17] := {35} tii[23,18] := {2} tii[23,19] := {15} tii[23,20] := {7} tii[23,21] := {20} tii[23,22] := {3} tii[23,23] := {6} tii[23,24] := {28} tii[23,25] := {19} tii[23,26] := {14} tii[23,27] := {10} tii[23,28] := {27} tii[23,29] := {13} tii[23,30] := {32} tii[23,31] := {4} tii[23,32] := {8} tii[23,33] := {26} tii[23,34] := {12} tii[23,35] := {36} tii[23,36] := {30} tii[23,37] := {25} tii[23,38] := {0} tii[23,39] := {1} tii[23,40] := {5} tii[23,41] := {11} tii[23,42] := {18} cell#11 , |C| = 42 special orbit = [5, 4] special rep = [5, 4] , dim = 42 cell rep = phi[5,4] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[23,1] := {41} tii[23,2] := {33} tii[23,3] := {37} tii[23,4] := {23} tii[23,5] := {39} tii[23,6] := {31} tii[23,7] := {15} tii[23,8] := {21} tii[23,9] := {40} tii[23,10] := {20} tii[23,11] := {38} tii[23,12] := {6} tii[23,13] := {35} tii[23,14] := {34} tii[23,15] := {28} tii[23,16] := {19} tii[23,17] := {16} tii[23,18] := {27} tii[23,19] := {13} tii[23,20] := {32} tii[23,21] := {8} tii[23,22] := {26} tii[23,23] := {24} tii[23,24] := {12} tii[23,25] := {9} tii[23,26] := {36} tii[23,27] := {30} tii[23,28] := {1} tii[23,29] := {29} tii[23,30] := {5} tii[23,31] := {25} tii[23,32] := {22} tii[23,33] := {2} tii[23,34] := {17} tii[23,35] := {11} tii[23,36] := {7} tii[23,37] := {3} tii[23,38] := {18} tii[23,39] := {14} tii[23,40] := {10} tii[23,41] := {4} tii[23,42] := {0} cell#12 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {131} tii[22,2] := {160} tii[22,3] := {156} tii[22,4] := {99} tii[22,5] := {23} tii[22,6] := {153} tii[22,7] := {80} tii[22,8] := {147} tii[22,9] := {20} tii[22,10] := {126} tii[22,11] := {159} tii[22,12] := {93} tii[22,13] := {137} tii[22,14] := {124} tii[22,15] := {125} tii[22,16] := {79} tii[22,17] := {145} tii[22,18] := {155} tii[22,19] := {161} tii[22,20] := {90} tii[22,21] := {157} tii[22,22] := {18} tii[22,23] := {149} tii[22,24] := {158} tii[22,25] := {122} tii[22,26] := {86} tii[22,27] := {120} tii[22,28] := {67} tii[22,29] := {119} tii[22,30] := {65} tii[22,31] := {104} tii[22,32] := {9} tii[22,33] := {45} tii[22,34] := {76} tii[22,35] := {144} tii[22,36] := {5} tii[22,37] := {102} tii[22,38] := {103} tii[22,39] := {78} tii[22,40] := {33} tii[22,41] := {154} tii[22,42] := {91} tii[22,43] := {73} tii[22,44] := {133} tii[22,45] := {19} tii[22,46] := {143} tii[22,47] := {107} tii[22,48] := {132} tii[22,49] := {134} tii[22,50] := {123} tii[22,51] := {148} tii[22,52] := {7} tii[22,53] := {87} tii[22,54] := {121} tii[22,55] := {135} tii[22,56] := {31} tii[22,57] := {71} tii[22,58] := {63} tii[22,59] := {117} tii[22,60] := {37} tii[22,61] := {61} tii[22,62] := {62} tii[22,63] := {39} tii[22,64] := {59} tii[22,65] := {142} tii[22,66] := {98} tii[22,67] := {13} tii[22,68] := {115} tii[22,69] := {129} tii[22,70] := {101} tii[22,71] := {22} tii[22,72] := {116} tii[22,73] := {44} tii[22,74] := {146} tii[22,75] := {100} tii[22,76] := {16} tii[22,77] := {58} tii[22,78] := {141} tii[22,79] := {130} tii[22,80] := {21} tii[22,81] := {97} tii[22,82] := {43} tii[22,83] := {113} tii[22,84] := {24} tii[22,85] := {128} tii[22,86] := {108} tii[22,87] := {140} tii[22,88] := {56} tii[22,89] := {57} tii[22,90] := {14} tii[22,91] := {96} tii[22,92] := {95} tii[22,93] := {54} tii[22,94] := {152} tii[22,95] := {52} tii[22,96] := {139} tii[22,97] := {127} tii[22,98] := {150} tii[22,99] := {92} tii[22,100] := {136} tii[22,101] := {110} tii[22,102] := {6} tii[22,103] := {151} tii[22,104] := {74} tii[22,105] := {94} tii[22,106] := {112} tii[22,107] := {30} tii[22,108] := {53} tii[22,109] := {70} tii[22,110] := {138} tii[22,111] := {111} tii[22,112] := {50} tii[22,113] := {34} tii[22,114] := {48} tii[22,115] := {88} tii[22,116] := {11} tii[22,117] := {46} tii[22,118] := {40} tii[22,119] := {66} tii[22,120] := {42} tii[22,121] := {85} tii[22,122] := {68} tii[22,123] := {41} tii[22,124] := {0} tii[22,125] := {8} tii[22,126] := {4} tii[22,127] := {32} tii[22,128] := {72} tii[22,129] := {17} tii[22,130] := {118} tii[22,131] := {10} tii[22,132] := {106} tii[22,133] := {105} tii[22,134] := {29} tii[22,135] := {1} tii[22,136] := {77} tii[22,137] := {69} tii[22,138] := {26} tii[22,139] := {51} tii[22,140] := {35} tii[22,141] := {49} tii[22,142] := {12} tii[22,143] := {109} tii[22,144] := {89} tii[22,145] := {47} tii[22,146] := {3} tii[22,147] := {28} tii[22,148] := {84} tii[22,149] := {64} tii[22,150] := {38} tii[22,151] := {83} tii[22,152] := {60} tii[22,153] := {82} tii[22,154] := {75} tii[22,155] := {25} tii[22,156] := {114} tii[22,157] := {81} tii[22,158] := {15} tii[22,159] := {55} tii[22,160] := {36} tii[22,161] := {2} tii[22,162] := {27} cell#13 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {79} tii[25,2] := {85} tii[25,3] := {99} tii[25,4] := {101} tii[25,5] := {104} tii[25,6] := {92} tii[25,7] := {64} tii[25,8] := {78} tii[25,9] := {90} tii[25,10] := {54} tii[25,11] := {95} tii[25,12] := {69} tii[25,13] := {102} tii[25,14] := {53} tii[25,15] := {68} tii[25,16] := {34} tii[25,17] := {74} tii[25,18] := {12} tii[25,19] := {82} tii[25,20] := {20} tii[25,21] := {97} tii[25,22] := {10} tii[25,23] := {18} tii[25,24] := {88} tii[25,25] := {61} tii[25,26] := {73} tii[25,27] := {87} tii[25,28] := {46} tii[25,29] := {67} tii[25,30] := {30} tii[25,31] := {71} tii[25,32] := {8} tii[25,33] := {16} tii[25,34] := {86} tii[25,35] := {70} tii[25,36] := {60} tii[25,37] := {38} tii[25,38] := {59} tii[25,39] := {37} tii[25,40] := {58} tii[25,41] := {57} tii[25,42] := {27} tii[25,43] := {66} tii[25,44] := {42} tii[25,45] := {81} tii[25,46] := {26} tii[25,47] := {65} tii[25,48] := {41} tii[25,49] := {80} tii[25,50] := {15} tii[25,51] := {24} tii[25,52] := {94} tii[25,53] := {13} tii[25,54] := {84} tii[25,55] := {22} tii[25,56] := {93} tii[25,57] := {56} tii[25,58] := {25} tii[25,59] := {96} tii[25,60] := {100} tii[25,61] := {40} tii[25,62] := {14} tii[25,63] := {103} tii[25,64] := {23} tii[25,65] := {55} tii[25,66] := {36} tii[25,67] := {52} tii[25,68] := {35} tii[25,69] := {51} tii[25,70] := {3} tii[25,71] := {77} tii[25,72] := {7} tii[25,73] := {63} tii[25,74] := {0} tii[25,75] := {76} tii[25,76] := {4} tii[25,77] := {31} tii[25,78] := {9} tii[25,79] := {83} tii[25,80] := {91} tii[25,81] := {17} tii[25,82] := {2} tii[25,83] := {98} tii[25,84] := {6} tii[25,85] := {29} tii[25,86] := {50} tii[25,87] := {33} tii[25,88] := {49} tii[25,89] := {48} tii[25,90] := {62} tii[25,91] := {21} tii[25,92] := {75} tii[25,93] := {39} tii[25,94] := {11} tii[25,95] := {89} tii[25,96] := {19} tii[25,97] := {47} tii[25,98] := {32} tii[25,99] := {45} tii[25,100] := {1} tii[25,101] := {72} tii[25,102] := {5} tii[25,103] := {28} tii[25,104] := {44} tii[25,105] := {43} cell#14 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {147} tii[22,2] := {135} tii[22,3] := {161} tii[22,4] := {156} tii[22,5] := {122} tii[22,6] := {108} tii[22,7] := {50} tii[22,8] := {154} tii[22,9] := {113} tii[22,10] := {160} tii[22,11] := {67} tii[22,12] := {152} tii[22,13] := {7} tii[22,14] := {139} tii[22,15] := {140} tii[22,16] := {44} tii[22,17] := {153} tii[22,18] := {159} tii[22,19] := {106} tii[22,20] := {151} tii[22,21] := {64} tii[22,22] := {115} tii[22,23] := {105} tii[22,24] := {134} tii[22,25] := {158} tii[22,26] := {150} tii[22,27] := {136} tii[22,28] := {103} tii[22,29] := {37} tii[22,30] := {102} tii[22,31] := {131} tii[22,32] := {98} tii[22,33] := {20} tii[22,34] := {100} tii[22,35] := {75} tii[22,36] := {79} tii[22,37] := {133} tii[22,38] := {73} tii[22,39] := {99} tii[22,40] := {129} tii[22,41] := {112} tii[22,42] := {9} tii[22,43] := {95} tii[22,44] := {149} tii[22,45] := {51} tii[22,46] := {77} tii[22,47] := {128} tii[22,48] := {111} tii[22,49] := {146} tii[22,50] := {34} tii[22,51] := {157} tii[22,52] := {94} tii[22,53] := {72} tii[22,54] := {110} tii[22,55] := {148} tii[22,56] := {127} tii[22,57] := {93} tii[22,58] := {145} tii[22,59] := {30} tii[22,60] := {126} tii[22,61] := {87} tii[22,62] := {109} tii[22,63] := {125} tii[22,64] := {142} tii[22,65] := {69} tii[22,66] := {121} tii[22,67] := {89} tii[22,68] := {2} tii[22,69] := {143} tii[22,70] := {120} tii[22,71] := {70} tii[22,72] := {41} tii[22,73] := {21} tii[22,74] := {155} tii[22,75] := {68} tii[22,76] := {88} tii[22,77] := {92} tii[22,78] := {13} tii[22,79] := {141} tii[22,80] := {63} tii[22,81] := {124} tii[22,82] := {31} tii[22,83] := {40} tii[22,84] := {49} tii[22,85] := {144} tii[22,86] := {119} tii[22,87] := {76} tii[22,88] := {91} tii[22,89] := {104} tii[22,90] := {78} tii[22,91] := {62} tii[22,92] := {123} tii[22,93] := {90} tii[22,94] := {28} tii[22,95] := {85} tii[22,96] := {14} tii[22,97] := {27} tii[22,98] := {26} tii[22,99] := {118} tii[22,100] := {66} tii[22,101] := {3} tii[22,102] := {83} tii[22,103] := {107} tii[22,104] := {84} tii[22,105] := {6} tii[22,106] := {25} tii[22,107] := {117} tii[22,108] := {17} tii[22,109] := {82} tii[22,110] := {65} tii[22,111] := {24} tii[22,112] := {138} tii[22,113] := {116} tii[22,114] := {137} tii[22,115] := {114} tii[22,116] := {80} tii[22,117] := {81} tii[22,118] := {61} tii[22,119] := {38} tii[22,120] := {60} tii[22,121] := {16} tii[22,122] := {36} tii[22,123] := {59} tii[22,124] := {58} tii[22,125] := {35} tii[22,126] := {57} tii[22,127] := {56} tii[22,128] := {97} tii[22,129] := {10} tii[22,130] := {42} tii[22,131] := {19} tii[22,132] := {130} tii[22,133] := {74} tii[22,134] := {55} tii[22,135] := {43} tii[22,136] := {101} tii[22,137] := {96} tii[22,138] := {54} tii[22,139] := {4} tii[22,140] := {8} tii[22,141] := {33} tii[22,142] := {18} tii[22,143] := {132} tii[22,144] := {71} tii[22,145] := {32} tii[22,146] := {53} tii[22,147] := {52} tii[22,148] := {15} tii[22,149] := {29} tii[22,150] := {48} tii[22,151] := {0} tii[22,152] := {1} tii[22,153] := {12} tii[22,154] := {86} tii[22,155] := {5} tii[22,156] := {39} tii[22,157] := {11} tii[22,158] := {23} tii[22,159] := {22} tii[22,160] := {47} tii[22,161] := {46} tii[22,162] := {45} cell#15 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {71} tii[25,2] := {93} tii[25,3] := {97} tii[25,4] := {103} tii[25,5] := {104} tii[25,6] := {46} tii[25,7] := {79} tii[25,8] := {22} tii[25,9] := {85} tii[25,10] := {34} tii[25,11] := {99} tii[25,12] := {23} tii[25,13] := {101} tii[25,14] := {31} tii[25,15] := {25} tii[25,16] := {91} tii[25,17] := {67} tii[25,18] := {78} tii[25,19] := {90} tii[25,20] := {57} tii[25,21] := {95} tii[25,22] := {74} tii[25,23] := {58} tii[25,24] := {41} tii[25,25] := {76} tii[25,26] := {17} tii[25,27] := {83} tii[25,28] := {28} tii[25,29] := {19} tii[25,30] := {89} tii[25,31] := {65} tii[25,32] := {75} tii[25,33] := {53} tii[25,34] := {37} tii[25,35] := {13} tii[25,36] := {49} tii[25,37] := {64} tii[25,38] := {50} tii[25,39] := {63} tii[25,40] := {51} tii[25,41] := {0} tii[25,42] := {16} tii[25,43] := {82} tii[25,44] := {1} tii[25,45] := {72} tii[25,46] := {10} tii[25,47] := {81} tii[25,48] := {4} tii[25,49] := {73} tii[25,50] := {42} tii[25,51] := {18} tii[25,52] := {87} tii[25,53] := {29} tii[25,54] := {94} tii[25,55] := {20} tii[25,56] := {88} tii[25,57] := {3} tii[25,58] := {12} tii[25,59] := {100} tii[25,60] := {98} tii[25,61] := {7} tii[25,62] := {39} tii[25,63] := {102} tii[25,64] := {15} tii[25,65] := {9} tii[25,66] := {62} tii[25,67] := {47} tii[25,68] := {61} tii[25,69] := {48} tii[25,70] := {60} tii[25,71] := {69} tii[25,72] := {35} tii[25,73] := {80} tii[25,74] := {52} tii[25,75] := {70} tii[25,76] := {36} tii[25,77] := {24} tii[25,78] := {32} tii[25,79] := {92} tii[25,80] := {86} tii[25,81] := {26} tii[25,82] := {59} tii[25,83] := {96} tii[25,84] := {33} tii[25,85] := {27} tii[25,86] := {44} tii[25,87] := {56} tii[25,88] := {45} tii[25,89] := {2} tii[25,90] := {77} tii[25,91] := {11} tii[25,92] := {68} tii[25,93] := {5} tii[25,94] := {38} tii[25,95] := {84} tii[25,96] := {14} tii[25,97] := {8} tii[25,98] := {55} tii[25,99] := {43} tii[25,100] := {54} tii[25,101] := {66} tii[25,102] := {30} tii[25,103] := {21} tii[25,104] := {40} tii[25,105] := {6} cell#16 , |C| = 162 special orbit = [5, 3, 1] special rep = [5, 3, 1] , dim = 162 cell rep = phi[5,3,1] TII depth = 3 TII multiplicity polynomial = 162*X TII subcells: tii[22,1] := {153} tii[22,2] := {68} tii[22,3] := {144} tii[22,4] := {158} tii[22,5] := {132} tii[22,6] := {38} tii[22,7] := {142} tii[22,8] := {124} tii[22,9] := {159} tii[22,10] := {161} tii[22,11] := {82} tii[22,12] := {157} tii[22,13] := {88} tii[22,14] := {148} tii[22,15] := {149} tii[22,16] := {141} tii[22,17] := {130} tii[22,18] := {143} tii[22,19] := {117} tii[22,20] := {156} tii[22,21] := {81} tii[22,22] := {126} tii[22,23] := {40} tii[22,24] := {59} tii[22,25] := {160} tii[22,26] := {155} tii[22,27] := {145} tii[22,28] := {114} tii[22,29] := {51} tii[22,30] := {113} tii[22,31] := {140} tii[22,32] := {109} tii[22,33] := {121} tii[22,34] := {112} tii[22,35] := {18} tii[22,36] := {154} tii[22,37] := {65} tii[22,38] := {87} tii[22,39] := {111} tii[22,40] := {138} tii[22,41] := {32} tii[22,42] := {85} tii[22,43] := {108} tii[22,44] := {91} tii[22,45] := {137} tii[22,46] := {20} tii[22,47] := {70} tii[22,48] := {31} tii[22,49] := {92} tii[22,50] := {47} tii[22,51] := {123} tii[22,52] := {106} tii[22,53] := {19} tii[22,54] := {30} tii[22,55] := {90} tii[22,56] := {136} tii[22,57] := {105} tii[22,58] := {152} tii[22,59] := {4} tii[22,60] := {135} tii[22,61] := {35} tii[22,62] := {120} tii[22,63] := {134} tii[22,64] := {150} tii[22,65] := {13} tii[22,66] := {131} tii[22,67] := {102} tii[22,68] := {53} tii[22,69] := {100} tii[22,70] := {58} tii[22,71] := {84} tii[22,72] := {6} tii[22,73] := {116} tii[22,74] := {122} tii[22,75] := {12} tii[22,76] := {101} tii[22,77] := {104} tii[22,78] := {23} tii[22,79] := {93} tii[22,80] := {79} tii[22,81] := {64} tii[22,82] := {119} tii[22,83] := {5} tii[22,84] := {133} tii[22,85] := {89} tii[22,86] := {57} tii[22,87] := {11} tii[22,88] := {45} tii[22,89] := {115} tii[22,90] := {151} tii[22,91] := {78} tii[22,92] := {63} tii[22,93] := {103} tii[22,94] := {44} tii[22,95] := {99} tii[22,96] := {25} tii[22,97] := {43} tii[22,98] := {42} tii[22,99] := {129} tii[22,100] := {15} tii[22,101] := {54} tii[22,102] := {97} tii[22,103] := {28} tii[22,104] := {98} tii[22,105] := {83} tii[22,106] := {7} tii[22,107] := {128} tii[22,108] := {118} tii[22,109] := {96} tii[22,110] := {14} tii[22,111] := {41} tii[22,112] := {147} tii[22,113] := {127} tii[22,114] := {146} tii[22,115] := {125} tii[22,116] := {94} tii[22,117] := {95} tii[22,118] := {77} tii[22,119] := {52} tii[22,120] := {76} tii[22,121] := {26} tii[22,122] := {50} tii[22,123] := {75} tii[22,124] := {74} tii[22,125] := {49} tii[22,126] := {73} tii[22,127] := {72} tii[22,128] := {34} tii[22,129] := {86} tii[22,130] := {8} tii[22,131] := {110} tii[22,132] := {56} tii[22,133] := {16} tii[22,134] := {21} tii[22,135] := {139} tii[22,136] := {29} tii[22,137] := {33} tii[22,138] := {71} tii[22,139] := {48} tii[22,140] := {69} tii[22,141] := {9} tii[22,142] := {107} tii[22,143] := {55} tii[22,144] := {17} tii[22,145] := {46} tii[22,146] := {67} tii[22,147] := {66} tii[22,148] := {0} tii[22,149] := {2} tii[22,150] := {10} tii[22,151] := {24} tii[22,152] := {39} tii[22,153] := {1} tii[22,154] := {27} tii[22,155] := {80} tii[22,156] := {3} tii[22,157] := {22} tii[22,158] := {37} tii[22,159] := {36} tii[22,160] := {62} tii[22,161] := {61} tii[22,162] := {60} cell#17 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {61} tii[21,2] := {95} tii[21,3] := {113} tii[21,4] := {119} tii[21,5] := {54} tii[21,6] := {91} tii[21,7] := {112} tii[21,8] := {50} tii[21,9] := {90} tii[21,10] := {49} tii[21,11] := {40} tii[21,12] := {82} tii[21,13] := {19} tii[21,14] := {108} tii[21,15] := {41} tii[21,16] := {118} tii[21,17] := {64} tii[21,18] := {84} tii[21,19] := {65} tii[21,20] := {100} tii[21,21] := {42} tii[21,22] := {116} tii[21,23] := {66} tii[21,24] := {86} tii[21,25] := {87} tii[21,26] := {111} tii[21,27] := {67} tii[21,28] := {88} tii[21,29] := {103} tii[21,30] := {89} tii[21,31] := {39} tii[21,32] := {62} tii[21,33] := {81} tii[21,34] := {97} tii[21,35] := {33} tii[21,36] := {14} tii[21,37] := {80} tii[21,38] := {76} tii[21,39] := {34} tii[21,40] := {96} tii[21,41] := {105} tii[21,42] := {57} tii[21,43] := {107} tii[21,44] := {58} tii[21,45] := {94} tii[21,46] := {35} tii[21,47] := {106} tii[21,48] := {59} tii[21,49] := {114} tii[21,50] := {79} tii[21,51] := {117} tii[21,52] := {60} tii[21,53] := {32} tii[21,54] := {55} tii[21,55] := {75} tii[21,56] := {29} tii[21,57] := {11} tii[21,58] := {74} tii[21,59] := {73} tii[21,60] := {30} tii[21,61] := {92} tii[21,62] := {53} tii[21,63] := {104} tii[21,64] := {31} tii[21,65] := {28} tii[21,66] := {51} tii[21,67] := {27} tii[21,68] := {72} tii[21,69] := {10} tii[21,70] := {26} tii[21,71] := {9} tii[21,72] := {25} tii[21,73] := {48} tii[21,74] := {71} tii[21,75] := {8} tii[21,76] := {24} tii[21,77] := {47} tii[21,78] := {7} tii[21,79] := {23} tii[21,80] := {6} tii[21,81] := {63} tii[21,82] := {83} tii[21,83] := {99} tii[21,84] := {22} tii[21,85] := {98} tii[21,86] := {46} tii[21,87] := {109} tii[21,88] := {70} tii[21,89] := {21} tii[21,90] := {115} tii[21,91] := {45} tii[21,92] := {20} tii[21,93] := {85} tii[21,94] := {101} tii[21,95] := {44} tii[21,96] := {110} tii[21,97] := {69} tii[21,98] := {43} tii[21,99] := {102} tii[21,100] := {68} tii[21,101] := {5} tii[21,102] := {18} tii[21,103] := {38} tii[21,104] := {4} tii[21,105] := {17} tii[21,106] := {3} tii[21,107] := {56} tii[21,108] := {77} tii[21,109] := {16} tii[21,110] := {93} tii[21,111] := {37} tii[21,112] := {15} tii[21,113] := {78} tii[21,114] := {36} tii[21,115] := {2} tii[21,116] := {13} tii[21,117] := {1} tii[21,118] := {52} tii[21,119] := {12} tii[21,120] := {0} cell#18 , |C| = 84 special orbit = [4, 4, 1] special rep = [4, 4, 1] , dim = 84 cell rep = phi[4,4,1] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[18,1] := {76} tii[18,2] := {80} tii[18,3] := {54} tii[18,4] := {82} tii[18,5] := {72} tii[18,6] := {49} tii[18,7] := {83} tii[18,8] := {81} tii[18,9] := {77} tii[18,10] := {70} tii[18,11] := {46} tii[18,12] := {44} tii[18,13] := {59} tii[18,14] := {29} tii[18,15] := {69} tii[18,16] := {57} tii[18,17] := {24} tii[18,18] := {58} tii[18,19] := {43} tii[18,20] := {68} tii[18,21] := {56} tii[18,22] := {40} tii[18,23] := {67} tii[18,24] := {39} tii[18,25] := {75} tii[18,26] := {65} tii[18,27] := {35} tii[18,28] := {19} tii[18,29] := {66} tii[18,30] := {53} tii[18,31] := {74} tii[18,32] := {36} tii[18,33] := {21} tii[18,34] := {64} tii[18,35] := {18} tii[18,36] := {50} tii[18,37] := {37} tii[18,38] := {20} tii[18,39] := {79} tii[18,40] := {73} tii[18,41] := {63} tii[18,42] := {78} tii[18,43] := {71} tii[18,44] := {61} tii[18,45] := {60} tii[18,46] := {47} tii[18,47] := {62} tii[18,48] := {31} tii[18,49] := {48} tii[18,50] := {32} tii[18,51] := {15} tii[18,52] := {30} tii[18,53] := {14} tii[18,54] := {12} tii[18,55] := {27} tii[18,56] := {45} tii[18,57] := {10} tii[18,58] := {28} tii[18,59] := {11} tii[18,60] := {26} tii[18,61] := {13} tii[18,62] := {9} tii[18,63] := {42} tii[18,64] := {25} tii[18,65] := {41} tii[18,66] := {23} tii[18,67] := {7} tii[18,68] := {8} tii[18,69] := {55} tii[18,70] := {38} tii[18,71] := {22} tii[18,72] := {51} tii[18,73] := {33} tii[18,74] := {52} tii[18,75] := {16} tii[18,76] := {4} tii[18,77] := {34} tii[18,78] := {17} tii[18,79] := {6} tii[18,80] := {5} tii[18,81] := {3} tii[18,82] := {2} tii[18,83] := {1} tii[18,84] := {0} cell#19 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {158} tii[17,2] := {93} tii[17,3] := {167} tii[17,4] := {60} tii[17,5] := {151} tii[17,6] := {166} tii[17,7] := {112} tii[17,8] := {150} tii[17,9] := {149} tii[17,10] := {75} tii[17,11] := {107} tii[17,12] := {52} tii[17,13] := {160} tii[17,14] := {126} tii[17,15] := {47} tii[17,16] := {146} tii[17,17] := {12} tii[17,18] := {159} tii[17,19] := {128} tii[17,20] := {147} tii[17,21] := {72} tii[17,22] := {125} tii[17,23] := {45} tii[17,24] := {71} tii[17,25] := {123} tii[17,26] := {70} tii[17,27] := {165} tii[17,28] := {142} tii[17,29] := {137} tii[17,30] := {155} tii[17,31] := {32} tii[17,32] := {164} tii[17,33] := {44} tii[17,34] := {121} tii[17,35] := {4} tii[17,36] := {139} tii[17,37] := {116} tii[17,38] := {156} tii[17,39] := {118} tii[17,40] := {57} tii[17,41] := {67} tii[17,42] := {111} tii[17,43] := {157} tii[17,44] := {92} tii[17,45] := {30} tii[17,46] := {119} tii[17,47] := {63} tii[17,48] := {56} tii[17,49] := {141} tii[17,50] := {120} tii[17,51] := {162} tii[17,52] := {16} tii[17,53] := {153} tii[17,54] := {163} tii[17,55] := {87} tii[17,56] := {34} tii[17,57] := {135} tii[17,58] := {59} tii[17,59] := {136} tii[17,60] := {24} tii[17,61] := {88} tii[17,62] := {152} tii[17,63] := {115} tii[17,64] := {161} tii[17,65] := {89} tii[17,66] := {86} tii[17,67] := {113} tii[17,68] := {134} tii[17,69] := {83} tii[17,70] := {29} tii[17,71] := {110} tii[17,72] := {21} tii[17,73] := {81} tii[17,74] := {109} tii[17,75] := {42} tii[17,76] := {66} tii[17,77] := {131} tii[17,78] := {28} tii[17,79] := {105} tii[17,80] := {91} tii[17,81] := {132} tii[17,82] := {102} tii[17,83] := {49} tii[17,84] := {106} tii[17,85] := {148} tii[17,86] := {5} tii[17,87] := {78} tii[17,88] := {74} tii[17,89] := {133} tii[17,90] := {39} tii[17,91] := {103} tii[17,92] := {65} tii[17,93] := {130} tii[17,94] := {80} tii[17,95] := {18} tii[17,96] := {38} tii[17,97] := {108} tii[17,98] := {40} tii[17,99] := {104} tii[17,100] := {79} tii[17,101] := {27} tii[17,102] := {101} tii[17,103] := {19} tii[17,104] := {127} tii[17,105] := {100} tii[17,106] := {26} tii[17,107] := {46} tii[17,108] := {6} tii[17,109] := {145} tii[17,110] := {73} tii[17,111] := {25} tii[17,112] := {99} tii[17,113] := {143} tii[17,114] := {96} tii[17,115] := {122} tii[17,116] := {1} tii[17,117] := {90} tii[17,118] := {144} tii[17,119] := {8} tii[17,120] := {98} tii[17,121] := {64} tii[17,122] := {23} tii[17,123] := {124} tii[17,124] := {97} tii[17,125] := {117} tii[17,126] := {15} tii[17,127] := {138} tii[17,128] := {9} tii[17,129] := {85} tii[17,130] := {14} tii[17,131] := {69} tii[17,132] := {154} tii[17,133] := {31} tii[17,134] := {37} tii[17,135] := {95} tii[17,136] := {2} tii[17,137] := {58} tii[17,138] := {68} tii[17,139] := {13} tii[17,140] := {140} tii[17,141] := {84} tii[17,142] := {94} tii[17,143] := {36} tii[17,144] := {62} tii[17,145] := {10} tii[17,146] := {35} tii[17,147] := {114} tii[17,148] := {61} tii[17,149] := {55} tii[17,150] := {43} tii[17,151] := {54} tii[17,152] := {22} tii[17,153] := {82} tii[17,154] := {53} tii[17,155] := {11} tii[17,156] := {41} tii[17,157] := {51} tii[17,158] := {20} tii[17,159] := {77} tii[17,160] := {50} tii[17,161] := {129} tii[17,162] := {3} tii[17,163] := {76} tii[17,164] := {17} tii[17,165] := {48} tii[17,166] := {0} tii[17,167] := {7} tii[17,168] := {33} cell#20 , |C| = 105 special orbit = [6, 2, 1] special rep = [6, 2, 1] , dim = 105 cell rep = phi[6,2,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[25,1] := {22} tii[25,2] := {58} tii[25,3] := {17} tii[25,4] := {54} tii[25,5] := {12} tii[25,6] := {49} tii[25,7] := {82} tii[25,8] := {73} tii[25,9] := {35} tii[25,10] := {88} tii[25,11] := {74} tii[25,12] := {98} tii[25,13] := {33} tii[25,14] := {102} tii[25,15] := {104} tii[25,16] := {92} tii[25,17] := {16} tii[25,18] := {78} tii[25,19] := {53} tii[25,20] := {91} tii[25,21] := {11} tii[25,22] := {99} tii[25,23] := {103} tii[25,24] := {45} tii[25,25] := {77} tii[25,26] := {70} tii[25,27] := {30} tii[25,28] := {85} tii[25,29] := {95} tii[25,30] := {90} tii[25,31] := {10} tii[25,32] := {75} tii[25,33] := {89} tii[25,34] := {40} tii[25,35] := {65} tii[25,36] := {3} tii[25,37] := {19} tii[25,38] := {7} tii[25,39] := {15} tii[25,40] := {9} tii[25,41] := {48} tii[25,42] := {72} tii[25,43] := {32} tii[25,44] := {87} tii[25,45] := {23} tii[25,46] := {97} tii[25,47] := {31} tii[25,48] := {101} tii[25,49] := {24} tii[25,50] := {46} tii[25,51] := {71} tii[25,52] := {4} tii[25,53] := {86} tii[25,54] := {14} tii[25,55] := {96} tii[25,56] := {8} tii[25,57] := {44} tii[25,58] := {69} tii[25,59] := {29} tii[25,60] := {20} tii[25,61] := {84} tii[25,62] := {42} tii[25,63] := {5} tii[25,64] := {67} tii[25,65] := {39} tii[25,66] := {64} tii[25,67] := {50} tii[25,68] := {63} tii[25,69] := {51} tii[25,70] := {62} tii[25,71] := {25} tii[25,72] := {81} tii[25,73] := {34} tii[25,74] := {94} tii[25,75] := {27} tii[25,76] := {100} tii[25,77] := {61} tii[25,78] := {80} tii[25,79] := {52} tii[25,80] := {36} tii[25,81] := {93} tii[25,82] := {60} tii[25,83] := {26} tii[25,84] := {79} tii[25,85] := {59} tii[25,86] := {1} tii[25,87] := {13} tii[25,88] := {6} tii[25,89] := {43} tii[25,90] := {28} tii[25,91] := {68} tii[25,92] := {18} tii[25,93] := {83} tii[25,94] := {41} tii[25,95] := {2} tii[25,96] := {66} tii[25,97] := {38} tii[25,98] := {57} tii[25,99] := {47} tii[25,100] := {56} tii[25,101] := {21} tii[25,102] := {76} tii[25,103] := {55} tii[25,104] := {0} tii[25,105] := {37} cell#21 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {62} tii[21,2] := {103} tii[21,3] := {105} tii[21,4] := {119} tii[21,5] := {118} tii[21,6] := {100} tii[21,7] := {116} tii[21,8] := {59} tii[21,9] := {96} tii[21,10] := {117} tii[21,11] := {34} tii[21,12] := {77} tii[21,13] := {13} tii[21,14] := {86} tii[21,15] := {22} tii[21,16] := {112} tii[21,17] := {14} tii[21,18] := {20} tii[21,19] := {98} tii[21,20] := {60} tii[21,21] := {76} tii[21,22] := {97} tii[21,23] := {47} tii[21,24] := {64} tii[21,25] := {30} tii[21,26] := {72} tii[21,27] := {11} tii[21,28] := {18} tii[21,29] := {94} tii[21,30] := {70} tii[21,31] := {36} tii[21,32] := {57} tii[21,33] := {37} tii[21,34] := {55} tii[21,35] := {114} tii[21,36] := {102} tii[21,37] := {83} tii[21,38] := {80} tii[21,39] := {81} tii[21,40] := {63} tii[21,41] := {109} tii[21,42] := {92} tii[21,43] := {82} tii[21,44] := {53} tii[21,45] := {90} tii[21,46] := {25} tii[21,47] := {87} tii[21,48] := {40} tii[21,49] := {104} tii[21,50] := {108} tii[21,51] := {115} tii[21,52] := {89} tii[21,53] := {113} tii[21,54] := {101} tii[21,55] := {107} tii[21,56] := {29} tii[21,57] := {10} tii[21,58] := {79} tii[21,59] := {71} tii[21,60] := {17} tii[21,61] := {88} tii[21,62] := {93} tii[21,63] := {106} tii[21,64] := {69} tii[21,65] := {32} tii[21,66] := {45} tii[21,67] := {111} tii[21,68] := {73} tii[21,69] := {95} tii[21,70] := {110} tii[21,71] := {0} tii[21,72] := {9} tii[21,73] := {2} tii[21,74] := {6} tii[21,75] := {31} tii[21,76] := {12} tii[21,77] := {19} tii[21,78] := {4} tii[21,79] := {8} tii[21,80] := {28} tii[21,81] := {51} tii[21,82] := {35} tii[21,83] := {50} tii[21,84] := {49} tii[21,85] := {61} tii[21,86] := {23} tii[21,87] := {78} tii[21,88] := {39} tii[21,89] := {15} tii[21,90] := {99} tii[21,91] := {21} tii[21,92] := {48} tii[21,93] := {33} tii[21,94] := {46} tii[21,95] := {3} tii[21,96] := {74} tii[21,97] := {7} tii[21,98] := {27} tii[21,99] := {44} tii[21,100] := {42} tii[21,101] := {85} tii[21,102] := {58} tii[21,103] := {68} tii[21,104] := {38} tii[21,105] := {56} tii[21,106] := {84} tii[21,107] := {54} tii[21,108] := {67} tii[21,109] := {16} tii[21,110] := {91} tii[21,111] := {24} tii[21,112] := {52} tii[21,113] := {66} tii[21,114] := {65} tii[21,115] := {1} tii[21,116] := {5} tii[21,117] := {26} tii[21,118] := {43} tii[21,119] := {41} tii[21,120] := {75} cell#22 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {150} tii[17,2] := {167} tii[17,3] := {112} tii[17,4] := {154} tii[17,5] := {59} tii[17,6] := {93} tii[17,7] := {166} tii[17,8] := {151} tii[17,9] := {135} tii[17,10] := {164} tii[17,11] := {90} tii[17,12] := {129} tii[17,13] := {116} tii[17,14] := {23} tii[17,15] := {160} tii[17,16] := {91} tii[17,17] := {132} tii[17,18] := {58} tii[17,19] := {63} tii[17,20] := {78} tii[17,21] := {165} tii[17,22] := {111} tii[17,23] := {159} tii[17,24] := {147} tii[17,25] := {114} tii[17,26] := {144} tii[17,27] := {87} tii[17,28] := {134} tii[17,29] := {35} tii[17,30] := {61} tii[17,31] := {142} tii[17,32] := {72} tii[17,33] := {157} tii[17,34] := {113} tii[17,35] := {100} tii[17,36] := {36} tii[17,37] := {126} tii[17,38] := {49} tii[17,39] := {17} tii[17,40] := {155} tii[17,41] := {163} tii[17,42] := {122} tii[17,43] := {46} tii[17,44] := {6} tii[17,45] := {141} tii[17,46] := {12} tii[17,47] := {156} tii[17,48] := {123} tii[17,49] := {70} tii[17,50] := {45} tii[17,51] := {86} tii[17,52] := {121} tii[17,53] := {60} tii[17,54] := {69} tii[17,55] := {162} tii[17,56] := {139} tii[17,57] := {137} tii[17,58] := {153} tii[17,59] := {34} tii[17,60] := {119} tii[17,61] := {138} tii[17,62] := {44} tii[17,63] := {118} tii[17,64] := {67} tii[17,65] := {92} tii[17,66] := {161} tii[17,67] := {152} tii[17,68] := {136} tii[17,69] := {66} tii[17,70] := {110} tii[17,71] := {42} tii[17,72] := {82} tii[17,73] := {22} tii[17,74] := {29} tii[17,75] := {109} tii[17,76] := {81} tii[17,77] := {115} tii[17,78] := {146} tii[17,79] := {89} tii[17,80] := {103} tii[17,81] := {65} tii[17,82] := {8} tii[17,83] := {158} tii[17,84] := {40} tii[17,85] := {31} tii[17,86] := {108} tii[17,87] := {62} tii[17,88] := {2} tii[17,89] := {52} tii[17,90] := {145} tii[17,91] := {4} tii[17,92] := {77} tii[17,93] := {56} tii[17,94] := {24} tii[17,95] := {133} tii[17,96] := {107} tii[17,97] := {39} tii[17,98] := {104} tii[17,99] := {30} tii[17,100] := {64} tii[17,101] := {148} tii[17,102] := {9} tii[17,103] := {130} tii[17,104] := {15} tii[17,105] := {85} tii[17,106] := {149} tii[17,107] := {131} tii[17,108] := {105} tii[17,109] := {32} tii[17,110] := {57} tii[17,111] := {106} tii[17,112] := {84} tii[17,113] := {38} tii[17,114] := {88} tii[17,115] := {20} tii[17,116] := {76} tii[17,117] := {102} tii[17,118] := {28} tii[17,119] := {101} tii[17,120] := {10} tii[17,121] := {127} tii[17,122] := {75} tii[17,123] := {19} tii[17,124] := {37} tii[17,125] := {18} tii[17,126] := {124} tii[17,127] := {27} tii[17,128] := {98} tii[17,129] := {97} tii[17,130] := {125} tii[17,131] := {3} tii[17,132] := {47} tii[17,133] := {99} tii[17,134] := {143} tii[17,135] := {5} tii[17,136] := {73} tii[17,137] := {71} tii[17,138] := {16} tii[17,139] := {74} tii[17,140] := {26} tii[17,141] := {96} tii[17,142] := {25} tii[17,143] := {140} tii[17,144] := {120} tii[17,145] := {94} tii[17,146] := {95} tii[17,147] := {117} tii[17,148] := {68} tii[17,149] := {43} tii[17,150] := {55} tii[17,151] := {11} tii[17,152] := {83} tii[17,153] := {21} tii[17,154] := {41} tii[17,155] := {54} tii[17,156] := {53} tii[17,157] := {0} tii[17,158] := {128} tii[17,159] := {1} tii[17,160] := {7} tii[17,161] := {14} tii[17,162] := {80} tii[17,163] := {13} tii[17,164] := {79} tii[17,165] := {33} tii[17,166] := {51} tii[17,167] := {50} tii[17,168] := {48} cell#23 , |C| = 120 special orbit = [5, 2, 2] special rep = [5, 2, 2] , dim = 120 cell rep = phi[5,2,2] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[21,1] := {119} tii[21,2] := {98} tii[21,3] := {116} tii[21,4] := {118} tii[21,5] := {62} tii[21,6] := {97} tii[21,7] := {105} tii[21,8] := {117} tii[21,9] := {94} tii[21,10] := {59} tii[21,11] := {115} tii[21,12] := {80} tii[21,13] := {104} tii[21,14] := {109} tii[21,15] := {82} tii[21,16] := {114} tii[21,17] := {92} tii[21,18] := {83} tii[21,19] := {51} tii[21,20] := {90} tii[21,21] := {23} tii[21,22] := {102} tii[21,23] := {39} tii[21,24] := {24} tii[21,25] := {108} tii[21,26] := {78} tii[21,27] := {89} tii[21,28] := {64} tii[21,29] := {48} tii[21,30] := {21} tii[21,31] := {113} tii[21,32] := {100} tii[21,33] := {107} tii[21,34] := {101} tii[21,35] := {31} tii[21,36] := {9} tii[21,37] := {76} tii[21,38] := {70} tii[21,39] := {17} tii[21,40] := {88} tii[21,41] := {86} tii[21,42] := {10} tii[21,43] := {77} tii[21,44] := {93} tii[21,45] := {60} tii[21,46] := {69} tii[21,47] := {106} tii[21,48] := {41} tii[21,49] := {99} tii[21,50] := {27} tii[21,51] := {112} tii[21,52] := {7} tii[21,53] := {33} tii[21,54] := {46} tii[21,55] := {34} tii[21,56] := {111} tii[21,57] := {96} tii[21,58] := {74} tii[21,59] := {72} tii[21,60] := {73} tii[21,61] := {63} tii[21,62] := {44} tii[21,63] := {87} tii[21,64] := {19} tii[21,65] := {110} tii[21,66] := {95} tii[21,67] := {26} tii[21,68] := {71} tii[21,69] := {6} tii[21,70] := {29} tii[21,71] := {85} tii[21,72] := {57} tii[21,73] := {68} tii[21,74] := {58} tii[21,75] := {36} tii[21,76] := {55} tii[21,77] := {37} tii[21,78] := {84} tii[21,79] := {56} tii[21,80] := {38} tii[21,81] := {53} tii[21,82] := {67} tii[21,83] := {54} tii[21,84] := {13} tii[21,85] := {91} tii[21,86] := {20} tii[21,87] := {81} tii[21,88] := {14} tii[21,89] := {49} tii[21,90] := {103} tii[21,91] := {22} tii[21,92] := {16} tii[21,93] := {66} tii[21,94] := {52} tii[21,95] := {65} tii[21,96] := {79} tii[21,97] := {40} tii[21,98] := {25} tii[21,99] := {50} tii[21,100] := {15} tii[21,101] := {0} tii[21,102] := {5} tii[21,103] := {2} tii[21,104] := {28} tii[21,105] := {8} tii[21,106] := {4} tii[21,107] := {43} tii[21,108] := {32} tii[21,109] := {42} tii[21,110] := {61} tii[21,111] := {18} tii[21,112] := {11} tii[21,113] := {30} tii[21,114] := {3} tii[21,115] := {75} tii[21,116] := {47} tii[21,117] := {35} tii[21,118] := {45} tii[21,119] := {12} tii[21,120] := {1} cell#24 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {5} tii[24,2] := {15} tii[24,3] := {27} tii[24,4] := {39} tii[24,5] := {49} tii[24,6] := {55} tii[24,7] := {10} tii[24,8] := {21} tii[24,9] := {32} tii[24,10] := {43} tii[24,11] := {50} tii[24,12] := {26} tii[24,13] := {38} tii[24,14] := {48} tii[24,15] := {54} tii[24,16] := {33} tii[24,17] := {44} tii[24,18] := {51} tii[24,19] := {47} tii[24,20] := {53} tii[24,21] := {52} tii[24,22] := {2} tii[24,23] := {9} tii[24,24] := {19} tii[24,25] := {30} tii[24,26] := {40} tii[24,27] := {14} tii[24,28] := {25} tii[24,29] := {37} tii[24,30] := {46} tii[24,31] := {20} tii[24,32] := {31} tii[24,33] := {41} tii[24,34] := {36} tii[24,35] := {45} tii[24,36] := {42} tii[24,37] := {4} tii[24,38] := {13} tii[24,39] := {24} tii[24,40] := {35} tii[24,41] := {8} tii[24,42] := {18} tii[24,43] := {28} tii[24,44] := {23} tii[24,45] := {34} tii[24,46] := {29} tii[24,47] := {1} tii[24,48] := {7} tii[24,49] := {16} tii[24,50] := {12} tii[24,51] := {22} tii[24,52] := {17} tii[24,53] := {3} tii[24,54] := {11} tii[24,55] := {6} tii[24,56] := {0} cell#25 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {132} tii[20,2] := {165} tii[20,3] := {178} tii[20,4] := {187} tii[20,5] := {102} tii[20,6] := {154} tii[20,7] := {69} tii[20,8] := {160} tii[20,9] := {92} tii[20,10] := {184} tii[20,11] := {67} tii[20,12] := {90} tii[20,13] := {173} tii[20,14] := {177} tii[20,15] := {153} tii[20,16] := {186} tii[20,17] := {125} tii[20,18] := {140} tii[20,19] := {161} tii[20,20] := {185} tii[20,21] := {136} tii[20,22] := {156} tii[20,23] := {188} tii[20,24] := {183} tii[20,25] := {65} tii[20,26] := {120} tii[20,27] := {35} tii[20,28] := {133} tii[20,29] := {53} tii[20,30] := {171} tii[20,31] := {33} tii[20,32] := {51} tii[20,33] := {15} tii[20,34] := {148} tii[20,35] := {152} tii[20,36] := {119} tii[20,37] := {23} tii[20,38] := {179} tii[20,39] := {84} tii[20,40] := {13} tii[20,41] := {107} tii[20,42] := {20} tii[20,43] := {49} tii[20,44] := {134} tii[20,45] := {172} tii[20,46] := {100} tii[20,47] := {24} tii[20,48] := {122} tii[20,49] := {39} tii[20,50] := {14} tii[20,51] := {182} tii[20,52] := {170} tii[20,53] := {21} tii[20,54] := {47} tii[20,55] := {169} tii[20,56] := {116} tii[20,57] := {147} tii[20,58] := {162} tii[20,59] := {118} tii[20,60] := {138} tii[20,61] := {117} tii[20,62] := {98} tii[20,63] := {146} tii[20,64] := {63} tii[20,65] := {81} tii[20,66] := {78} tii[20,67] := {105} tii[20,68] := {46} tii[20,69] := {168} tii[20,70] := {145} tii[20,71] := {70} tii[20,72] := {106} tii[20,73] := {61} tii[20,74] := {113} tii[20,75] := {30} tii[20,76] := {43} tii[20,77] := {11} tii[20,78] := {144} tii[20,79] := {112} tii[20,80] := {18} tii[20,81] := {41} tii[20,82] := {167} tii[20,83] := {143} tii[20,84] := {111} tii[20,85] := {97} tii[20,86] := {110} tii[20,87] := {96} tii[20,88] := {109} tii[20,89] := {38} tii[20,90] := {142} tii[20,91] := {57} tii[20,92] := {131} tii[20,93] := {36} tii[20,94] := {141} tii[20,95] := {55} tii[20,96] := {95} tii[20,97] := {159} tii[20,98] := {58} tii[20,99] := {166} tii[20,100] := {74} tii[20,101] := {37} tii[20,102] := {181} tii[20,103] := {56} tii[20,104] := {94} tii[20,105] := {2} tii[20,106] := {128} tii[20,107] := {9} tii[20,108] := {0} tii[20,109] := {101} tii[20,110] := {5} tii[20,111] := {126} tii[20,112] := {29} tii[20,113] := {130} tii[20,114] := {10} tii[20,115] := {135} tii[20,116] := {93} tii[20,117] := {17} tii[20,118] := {155} tii[20,119] := {108} tii[20,120] := {1} tii[20,121] := {68} tii[20,122] := {174} tii[20,123] := {6} tii[20,124] := {91} tii[20,125] := {26} tii[20,126] := {129} tii[20,127] := {62} tii[20,128] := {157} tii[20,129] := {31} tii[20,130] := {164} tii[20,131] := {44} tii[20,132] := {12} tii[20,133] := {103} tii[20,134] := {180} tii[20,135] := {19} tii[20,136] := {127} tii[20,137] := {42} tii[20,138] := {158} tii[20,139] := {4} tii[20,140] := {175} tii[20,141] := {8} tii[20,142] := {28} tii[20,143] := {176} tii[20,144] := {60} tii[20,145] := {87} tii[20,146] := {64} tii[20,147] := {85} tii[20,148] := {89} tii[20,149] := {99} tii[20,150] := {54} tii[20,151] := {121} tii[20,152] := {73} tii[20,153] := {34} tii[20,154] := {149} tii[20,155] := {52} tii[20,156] := {88} tii[20,157] := {83} tii[20,158] := {123} tii[20,159] := {50} tii[20,160] := {72} tii[20,161] := {139} tii[20,162] := {25} tii[20,163] := {66} tii[20,164] := {163} tii[20,165] := {86} tii[20,166] := {40} tii[20,167] := {124} tii[20,168] := {71} tii[20,169] := {16} tii[20,170] := {150} tii[20,171] := {22} tii[20,172] := {48} tii[20,173] := {151} tii[20,174] := {82} tii[20,175] := {80} tii[20,176] := {104} tii[20,177] := {32} tii[20,178] := {137} tii[20,179] := {45} tii[20,180] := {79} tii[20,181] := {3} tii[20,182] := {114} tii[20,183] := {7} tii[20,184] := {115} tii[20,185] := {27} tii[20,186] := {59} tii[20,187] := {76} tii[20,188] := {77} tii[20,189] := {75} cell#26 , |C| = 84 special orbit = [4, 4, 1] special rep = [4, 4, 1] , dim = 84 cell rep = phi[4,4,1] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[18,1] := {82} tii[18,2] := {78} tii[18,3] := {37} tii[18,4] := {81} tii[18,5] := {68} tii[18,6] := {74} tii[18,7] := {83} tii[18,8] := {80} tii[18,9] := {75} tii[18,10] := {66} tii[18,11] := {60} tii[18,12] := {21} tii[18,13] := {73} tii[18,14] := {49} tii[18,15] := {79} tii[18,16] := {44} tii[18,17] := {51} tii[18,18] := {72} tii[18,19] := {65} tii[18,20] := {61} tii[18,21] := {43} tii[18,22] := {22} tii[18,23] := {58} tii[18,24] := {29} tii[18,25] := {71} tii[18,26] := {56} tii[18,27] := {64} tii[18,28] := {10} tii[18,29] := {57} tii[18,30] := {48} tii[18,31] := {70} tii[18,32] := {19} tii[18,33] := {46} tii[18,34] := {55} tii[18,35] := {12} tii[18,36] := {38} tii[18,37] := {26} tii[18,38] := {11} tii[18,39] := {77} tii[18,40] := {69} tii[18,41] := {63} tii[18,42] := {76} tii[18,43] := {67} tii[18,44] := {53} tii[18,45] := {52} tii[18,46] := {45} tii[18,47] := {54} tii[18,48] := {62} tii[18,49] := {36} tii[18,50] := {25} tii[18,51] := {31} tii[18,52] := {42} tii[18,53] := {32} tii[18,54] := {2} tii[18,55] := {8} tii[18,56] := {59} tii[18,57] := {33} tii[18,58] := {50} tii[18,59] := {4} tii[18,60] := {14} tii[18,61] := {35} tii[18,62] := {3} tii[18,63] := {24} tii[18,64] := {16} tii[18,65] := {23} tii[18,66] := {9} tii[18,67] := {34} tii[18,68] := {5} tii[18,69] := {41} tii[18,70] := {30} tii[18,71] := {17} tii[18,72] := {40} tii[18,73] := {28} tii[18,74] := {39} tii[18,75] := {47} tii[18,76] := {6} tii[18,77] := {20} tii[18,78] := {13} tii[18,79] := {27} tii[18,80] := {7} tii[18,81] := {18} tii[18,82] := {0} tii[18,83] := {15} tii[18,84] := {1} cell#27 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {161} tii[16,2] := {204} tii[16,3] := {134} tii[16,4] := {50} tii[16,5] := {203} tii[16,6] := {116} tii[16,7] := {168} tii[16,8] := {211} tii[16,9] := {133} tii[16,10] := {187} tii[16,11] := {169} tii[16,12] := {191} tii[16,13] := {214} tii[16,14] := {210} tii[16,15] := {200} tii[16,16] := {86} tii[16,17] := {184} tii[16,18] := {20} tii[16,19] := {66} tii[16,20] := {130} tii[16,21] := {6} tii[16,22] := {199} tii[16,23] := {85} tii[16,24] := {151} tii[16,25] := {29} tii[16,26] := {131} tii[16,27] := {167} tii[16,28] := {18} tii[16,29] := {209} tii[16,30] := {60} tii[16,31] := {42} tii[16,32] := {198} tii[16,33] := {82} tii[16,34] := {181} tii[16,35] := {103} tii[16,36] := {59} tii[16,37] := {165} tii[16,38] := {208} tii[16,39] := {127} tii[16,40] := {179} tii[16,41] := {166} tii[16,42] := {190} tii[16,43] := {81} tii[16,44] := {213} tii[16,45] := {142} tii[16,46] := {207} tii[16,47] := {126} tii[16,48] := {195} tii[16,49] := {163} tii[16,50] := {143} tii[16,51] := {175} tii[16,52] := {141} tii[16,53] := {176} tii[16,54] := {164} tii[16,55] := {215} tii[16,56] := {212} tii[16,57] := {206} tii[16,58] := {205} tii[16,59] := {193} tii[16,60] := {173} tii[16,61] := {74} tii[16,62] := {139} tii[16,63] := {122} tii[16,64] := {22} tii[16,65] := {172} tii[16,66] := {96} tii[16,67] := {70} tii[16,68] := {121} tii[16,69] := {53} tii[16,70] := {192} tii[16,71] := {120} tii[16,72] := {95} tii[16,73] := {171} tii[16,74] := {137} tii[16,75] := {160} tii[16,76] := {119} tii[16,77] := {90} tii[16,78] := {2} tii[16,79] := {13} tii[16,80] := {157} tii[16,81] := {58} tii[16,82] := {89} tii[16,83] := {93} tii[16,84] := {9} tii[16,85] := {188} tii[16,86] := {136} tii[16,87] := {35} tii[16,88] := {28} tii[16,89] := {159} tii[16,90] := {25} tii[16,91] := {170} tii[16,92] := {49} tii[16,93] := {156} tii[16,94] := {55} tii[16,95] := {75} tii[16,96] := {92} tii[16,97] := {189} tii[16,98] := {69} tii[16,99] := {34} tii[16,100] := {158} tii[16,101] := {135} tii[16,102] := {91} tii[16,103] := {26} tii[16,104] := {201} tii[16,105] := {79} tii[16,106] := {57} tii[16,107] := {185} tii[16,108] := {97} tii[16,109] := {80} tii[16,110] := {124} tii[16,111] := {202} tii[16,112] := {186} tii[16,113] := {78} tii[16,114] := {154} tii[16,115] := {125} tii[16,116] := {98} tii[16,117] := {155} tii[16,118] := {162} tii[16,119] := {123} tii[16,120] := {77} tii[16,121] := {45} tii[16,122] := {112} tii[16,123] := {27} tii[16,124] := {44} tii[16,125] := {48} tii[16,126] := {152} tii[16,127] := {10} tii[16,128] := {114} tii[16,129] := {88} tii[16,130] := {111} tii[16,131] := {19} tii[16,132] := {132} tii[16,133] := {47} tii[16,134] := {153} tii[16,135] := {32} tii[16,136] := {113} tii[16,137] := {87} tii[16,138] := {46} tii[16,139] := {43} tii[16,140] := {3} tii[16,141] := {182} tii[16,142] := {107} tii[16,143] := {84} tii[16,144] := {128} tii[16,145] := {5} tii[16,146] := {149} tii[16,147] := {108} tii[16,148] := {17} tii[16,149] := {183} tii[16,150] := {147} tii[16,151] := {12} tii[16,152] := {150} tii[16,153] := {148} tii[16,154] := {109} tii[16,155] := {40} tii[16,156] := {106} tii[16,157] := {129} tii[16,158] := {16} tii[16,159] := {110} tii[16,160] := {61} tii[16,161] := {180} tii[16,162] := {31} tii[16,163] := {104} tii[16,164] := {146} tii[16,165] := {105} tii[16,166] := {83} tii[16,167] := {30} tii[16,168] := {41} tii[16,169] := {196} tii[16,170] := {177} tii[16,171] := {197} tii[16,172] := {144} tii[16,173] := {178} tii[16,174] := {145} tii[16,175] := {194} tii[16,176] := {100} tii[16,177] := {174} tii[16,178] := {140} tii[16,179] := {101} tii[16,180] := {102} tii[16,181] := {54} tii[16,182] := {73} tii[16,183] := {99} tii[16,184] := {11} tii[16,185] := {21} tii[16,186] := {52} tii[16,187] := {138} tii[16,188] := {33} tii[16,189] := {94} tii[16,190] := {51} tii[16,191] := {72} tii[16,192] := {71} tii[16,193] := {0} tii[16,194] := {1} tii[16,195] := {8} tii[16,196] := {4} tii[16,197] := {115} tii[16,198] := {23} tii[16,199] := {7} tii[16,200] := {36} tii[16,201] := {15} tii[16,202] := {76} tii[16,203] := {118} tii[16,204] := {56} tii[16,205] := {14} tii[16,206] := {117} tii[16,207] := {24} tii[16,208] := {38} tii[16,209] := {39} tii[16,210] := {37} tii[16,211] := {65} tii[16,212] := {68} tii[16,213] := {67} tii[16,214] := {63} tii[16,215] := {64} tii[16,216] := {62} cell#28 , |C| = 56 special orbit = [6, 1, 1, 1] special rep = [6, 1, 1, 1] , dim = 56 cell rep = phi[6,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[24,1] := {2} tii[24,2] := {10} tii[24,3] := {21} tii[24,4] := {33} tii[24,5] := {44} tii[24,6] := {52} tii[24,7] := {15} tii[24,8] := {27} tii[24,9] := {39} tii[24,10] := {49} tii[24,11] := {55} tii[24,12] := {20} tii[24,13] := {32} tii[24,14] := {43} tii[24,15] := {51} tii[24,16] := {38} tii[24,17] := {48} tii[24,18] := {54} tii[24,19] := {42} tii[24,20] := {50} tii[24,21] := {53} tii[24,22] := {5} tii[24,23] := {14} tii[24,24] := {26} tii[24,25] := {37} tii[24,26] := {47} tii[24,27] := {9} tii[24,28] := {19} tii[24,29] := {31} tii[24,30] := {41} tii[24,31] := {25} tii[24,32] := {36} tii[24,33] := {46} tii[24,34] := {30} tii[24,35] := {40} tii[24,36] := {45} tii[24,37] := {1} tii[24,38] := {8} tii[24,39] := {18} tii[24,40] := {29} tii[24,41] := {13} tii[24,42] := {24} tii[24,43] := {35} tii[24,44] := {17} tii[24,45] := {28} tii[24,46] := {34} tii[24,47] := {4} tii[24,48] := {12} tii[24,49] := {23} tii[24,50] := {7} tii[24,51] := {16} tii[24,52] := {22} tii[24,53] := {0} tii[24,54] := {6} tii[24,55] := {11} tii[24,56] := {3} cell#29 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {129} tii[20,2] := {57} tii[20,3] := {110} tii[20,4] := {55} tii[20,5] := {156} tii[20,6] := {23} tii[20,7] := {128} tii[20,8] := {70} tii[20,9] := {157} tii[20,10] := {21} tii[20,11] := {177} tii[20,12] := {185} tii[20,13] := {53} tii[20,14] := {108} tii[20,15] := {90} tii[20,16] := {40} tii[20,17] := {126} tii[20,18] := {153} tii[20,19] := {140} tii[20,20] := {20} tii[20,21] := {106} tii[20,22] := {139} tii[20,23] := {50} tii[20,24] := {86} tii[20,25] := {173} tii[20,26] := {9} tii[20,27] := {151} tii[20,28] := {41} tii[20,29] := {174} tii[20,30] := {7} tii[20,31] := {184} tii[20,32] := {188} tii[20,33] := {122} tii[20,34] := {33} tii[20,35] := {79} tii[20,36] := {65} tii[20,37] := {150} tii[20,38] := {18} tii[20,39] := {102} tii[20,40] := {172} tii[20,41] := {134} tii[20,42] := {183} tii[20,43] := {163} tii[20,44] := {114} tii[20,45] := {5} tii[20,46] := {77} tii[20,47] := {179} tii[20,48] := {113} tii[20,49] := {187} tii[20,50] := {171} tii[20,51] := {29} tii[20,52] := {59} tii[20,53] := {182} tii[20,54] := {186} tii[20,55] := {66} tii[20,56] := {119} tii[20,57] := {103} tii[20,58] := {47} tii[20,59] := {136} tii[20,60] := {161} tii[20,61] := {120} tii[20,62] := {147} tii[20,63] := {19} tii[20,64] := {118} tii[20,65] := {149} tii[20,66] := {148} tii[20,67] := {170} tii[20,68] := {135} tii[20,69] := {46} tii[20,70] := {81} tii[20,71] := {160} tii[20,72] := {169} tii[20,73] := {167} tii[20,74] := {6} tii[20,75] := {146} tii[20,76] := {168} tii[20,77] := {116} tii[20,78] := {30} tii[20,79] := {60} tii[20,80] := {145} tii[20,81] := {162} tii[20,82] := {63} tii[20,83] := {99} tii[20,84] := {112} tii[20,85] := {93} tii[20,86] := {68} tii[20,87] := {92} tii[20,88] := {69} tii[20,89] := {97} tii[20,90] := {36} tii[20,91] := {132} tii[20,92] := {56} tii[20,93] := {159} tii[20,94] := {38} tii[20,95] := {178} tii[20,96] := {96} tii[20,97] := {74} tii[20,98] := {131} tii[20,99] := {58} tii[20,100] := {158} tii[20,101] := {95} tii[20,102] := {37} tii[20,103] := {130} tii[20,104] := {94} tii[20,105] := {91} tii[20,106] := {14} tii[20,107] := {127} tii[20,108] := {155} tii[20,109] := {22} tii[20,110] := {176} tii[20,111] := {16} tii[20,112] := {142} tii[20,113] := {52} tii[20,114] := {166} tii[20,115] := {39} tii[20,116] := {89} tii[20,117] := {181} tii[20,118] := {24} tii[20,119] := {124} tii[20,120] := {154} tii[20,121] := {51} tii[20,122] := {15} tii[20,123] := {175} tii[20,124] := {87} tii[20,125] := {180} tii[20,126] := {49} tii[20,127] := {109} tii[20,128] := {73} tii[20,129] := {141} tii[20,130] := {54} tii[20,131] := {165} tii[20,132] := {125} tii[20,133] := {72} tii[20,134] := {25} tii[20,135] := {152} tii[20,136] := {107} tii[20,137] := {164} tii[20,138] := {71} tii[20,139] := {88} tii[20,140] := {13} tii[20,141] := {123} tii[20,142] := {138} tii[20,143] := {48} tii[20,144] := {105} tii[20,145] := {2} tii[20,146] := {8} tii[20,147] := {4} tii[20,148] := {32} tii[20,149] := {17} tii[20,150] := {64} tii[20,151] := {10} tii[20,152] := {100} tii[20,153] := {31} tii[20,154] := {3} tii[20,155] := {61} tii[20,156] := {28} tii[20,157] := {80} tii[20,158] := {44} tii[20,159] := {115} tii[20,160] := {144} tii[20,161] := {34} tii[20,162] := {101} tii[20,163] := {43} tii[20,164] := {11} tii[20,165] := {78} tii[20,166] := {133} tii[20,167] := {42} tii[20,168] := {143} tii[20,169] := {62} tii[20,170] := {0} tii[20,171] := {98} tii[20,172] := {111} tii[20,173] := {26} tii[20,174] := {75} tii[20,175] := {83} tii[20,176] := {67} tii[20,177] := {85} tii[20,178] := {35} tii[20,179] := {121} tii[20,180] := {84} tii[20,181] := {82} tii[20,182] := {12} tii[20,183] := {117} tii[20,184] := {45} tii[20,185] := {137} tii[20,186] := {104} tii[20,187] := {1} tii[20,188] := {27} tii[20,189] := {76} cell#30 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {24} tii[20,2] := {82} tii[20,3] := {95} tii[20,4] := {155} tii[20,5] := {46} tii[20,6] := {108} tii[20,7] := {85} tii[20,8] := {125} tii[20,9] := {124} tii[20,10] := {172} tii[20,11] := {158} tii[20,12] := {178} tii[20,13] := {144} tii[20,14] := {94} tii[20,15] := {171} tii[20,16] := {154} tii[20,17] := {184} tii[20,18] := {188} tii[20,19] := {122} tii[20,20] := {170} tii[20,21] := {156} tii[20,22] := {176} tii[20,23] := {182} tii[20,24] := {187} tii[20,25] := {12} tii[20,26] := {64} tii[20,27] := {42} tii[20,28] := {81} tii[20,29] := {80} tii[20,30] := {142} tii[20,31] := {118} tii[20,32] := {152} tii[20,33] := {22} tii[20,34] := {104} tii[20,35] := {54} tii[20,36] := {141} tii[20,37] := {53} tii[20,38] := {115} tii[20,39] := {167} tii[20,40] := {90} tii[20,41] := {181} tii[20,42] := {126} tii[20,43] := {79} tii[20,44] := {78} tii[20,45] := {140} tii[20,46] := {116} tii[20,47] := {117} tii[20,48] := {150} tii[20,49] := {151} tii[20,50] := {92} tii[20,51] := {165} tii[20,52] := {180} tii[20,53] := {128} tii[20,54] := {149} tii[20,55] := {139} tii[20,56] := {21} tii[20,57] := {100} tii[20,58] := {72} tii[20,59] := {136} tii[20,60] := {164} tii[20,61] := {61} tii[20,62] := {37} tii[20,63] := {99} tii[20,64] := {73} tii[20,65] := {101} tii[20,66] := {112} tii[20,67] := {138} tii[20,68] := {75} tii[20,69] := {134} tii[20,70] := {163} tii[20,71] := {114} tii[20,72] := {137} tii[20,73] := {8} tii[20,74] := {59} tii[20,75] := {34} tii[20,76] := {70} tii[20,77] := {18} tii[20,78] := {97} tii[20,79] := {133} tii[20,80] := {48} tii[20,81] := {68} tii[20,82] := {132} tii[20,83] := {96} tii[20,84] := {58} tii[20,85] := {4} tii[20,86] := {15} tii[20,87] := {5} tii[20,88] := {14} tii[20,89] := {55} tii[20,90] := {45} tii[20,91] := {93} tii[20,92] := {25} tii[20,93] := {129} tii[20,94] := {44} tii[20,95] := {160} tii[20,96] := {123} tii[20,97] := {57} tii[20,98] := {157} tii[20,99] := {84} tii[20,100] := {177} tii[20,101] := {131} tii[20,102] := {121} tii[20,103] := {162} tii[20,104] := {175} tii[20,105] := {2} tii[20,106] := {67} tii[20,107] := {20} tii[20,108] := {50} tii[20,109] := {47} tii[20,110] := {87} tii[20,111] := {66} tii[20,112] := {38} tii[20,113] := {147} tii[20,114] := {74} tii[20,115] := {86} tii[20,116] := {173} tii[20,117] := {113} tii[20,118] := {109} tii[20,119] := {186} tii[20,120] := {52} tii[20,121] := {159} tii[20,122] := {146} tii[20,123] := {89} tii[20,124] := {179} tii[20,125] := {111} tii[20,126] := {185} tii[20,127] := {9} tii[20,128] := {56} tii[20,129] := {35} tii[20,130] := {83} tii[20,131] := {71} tii[20,132] := {19} tii[20,133] := {130} tii[20,134] := {120} tii[20,135] := {49} tii[20,136] := {161} tii[20,137] := {69} tii[20,138] := {174} tii[20,139] := {1} tii[20,140] := {145} tii[20,141] := {17} tii[20,142] := {33} tii[20,143] := {183} tii[20,144] := {7} tii[20,145] := {31} tii[20,146] := {13} tii[20,147] := {30} tii[20,148] := {107} tii[20,149] := {43} tii[20,150] := {143} tii[20,151] := {65} tii[20,152] := {169} tii[20,153] := {119} tii[20,154] := {106} tii[20,155] := {153} tii[20,156] := {168} tii[20,157] := {29} tii[20,158] := {23} tii[20,159] := {63} tii[20,160] := {103} tii[20,161] := {41} tii[20,162] := {40} tii[20,163] := {91} tii[20,164] := {77} tii[20,165] := {127} tii[20,166] := {76} tii[20,167] := {148} tii[20,168] := {102} tii[20,169] := {11} tii[20,170] := {105} tii[20,171] := {39} tii[20,172] := {62} tii[20,173] := {166} tii[20,174] := {28} tii[20,175] := {3} tii[20,176] := {10} tii[20,177] := {51} tii[20,178] := {36} tii[20,179] := {88} tii[20,180] := {110} tii[20,181] := {0} tii[20,182] := {60} tii[20,183] := {16} tii[20,184] := {135} tii[20,185] := {32} tii[20,186] := {6} tii[20,187] := {27} tii[20,188] := {98} tii[20,189] := {26} cell#31 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {183} tii[15,2] := {112} tii[15,3] := {174} tii[15,4] := {36} tii[15,5] := {89} tii[15,6] := {170} tii[15,7] := {203} tii[15,8] := {148} tii[15,9] := {196} tii[15,10] := {210} tii[15,11] := {21} tii[15,12] := {107} tii[15,13] := {195} tii[15,14] := {62} tii[15,15] := {165} tii[15,16] := {209} tii[15,17] := {215} tii[15,18] := {126} tii[15,19] := {141} tii[15,20] := {185} tii[15,21] := {166} tii[15,22] := {194} tii[15,23] := {205} tii[15,24] := {214} tii[15,25] := {45} tii[15,26] := {105} tii[15,27] := {65} tii[15,28] := {179} tii[15,29] := {124} tii[15,30] := {106} tii[15,31] := {145} tii[15,32] := {163} tii[15,33] := {192} tii[15,34] := {202} tii[15,35] := {208} tii[15,36] := {190} tii[15,37] := {152} tii[15,38] := {76} tii[15,39] := {113} tii[15,40] := {139} tii[15,41] := {72} tii[15,42] := {94} tii[15,43] := {41} tii[15,44] := {97} tii[15,45] := {19} tii[15,46] := {27} tii[15,47] := {137} tii[15,48] := {96} tii[15,49] := {199} tii[15,50] := {173} tii[15,51] := {150} tii[15,52] := {70} tii[15,53] := {198} tii[15,54] := {111} tii[15,55] := {132} tii[15,56] := {213} tii[15,57] := {134} tii[15,58] := {16} tii[15,59] := {92} tii[15,60] := {136} tii[15,61] := {158} tii[15,62] := {133} tii[15,63] := {6} tii[15,64] := {175} tii[15,65] := {71} tii[15,66] := {50} tii[15,67] := {172} tii[15,68] := {11} tii[15,69] := {201} tii[15,70] := {93} tii[15,71] := {188} tii[15,72] := {86} tii[15,73] := {151} tii[15,74] := {135} tii[15,75] := {207} tii[15,76] := {49} tii[15,77] := {184} tii[15,78] := {200} tii[15,79] := {53} tii[15,80] := {17} tii[15,81] := {90} tii[15,82] := {118} tii[15,83] := {26} tii[15,84] := {131} tii[15,85] := {129} tii[15,86] := {156} tii[15,87] := {69} tii[15,88] := {51} tii[15,89] := {88} tii[15,90] := {187} tii[15,91] := {109} tii[15,92] := {130} tii[15,93] := {186} tii[15,94] := {128} tii[15,95] := {155} tii[15,96] := {117} tii[15,97] := {181} tii[15,98] := {147} tii[15,99] := {167} tii[15,100] := {169} tii[15,101] := {8} tii[15,102] := {197} tii[15,103] := {108} tii[15,104] := {30} tii[15,105] := {2} tii[15,106] := {212} tii[15,107] := {127} tii[15,108] := {4} tii[15,109] := {182} tii[15,110] := {59} tii[15,111] := {168} tii[15,112] := {204} tii[15,113] := {29} tii[15,114] := {211} tii[15,115] := {33} tii[15,116] := {9} tii[15,117] := {63} tii[15,118] := {67} tii[15,119] := {82} tii[15,120] := {103} tii[15,121] := {14} tii[15,122] := {85} tii[15,123] := {101} tii[15,124] := {146} tii[15,125] := {44} tii[15,126] := {121} tii[15,127] := {31} tii[15,128] := {125} tii[15,129] := {61} tii[15,130] := {77} tii[15,131] := {180} tii[15,132] := {160} tii[15,133] := {102} tii[15,134] := {193} tii[15,135] := {159} tii[15,136] := {100} tii[15,137] := {120} tii[15,138] := {154} tii[15,139] := {206} tii[15,140] := {81} tii[15,141] := {22} tii[15,142] := {34} tii[15,143] := {78} tii[15,144] := {143} tii[15,145] := {64} tii[15,146] := {116} tii[15,147] := {104} tii[15,148] := {144} tii[15,149] := {191} tii[15,150] := {142} tii[15,151] := {162} tii[15,152] := {83} tii[15,153] := {164} tii[15,154] := {123} tii[15,155] := {178} tii[15,156] := {161} tii[15,157] := {74} tii[15,158] := {39} tii[15,159] := {55} tii[15,160] := {23} tii[15,161] := {38} tii[15,162] := {73} tii[15,163] := {99} tii[15,164] := {140} tii[15,165] := {42} tii[15,166] := {177} tii[15,167] := {58} tii[15,168] := {10} tii[15,169] := {115} tii[15,170] := {98} tii[15,171] := {153} tii[15,172] := {18} tii[15,173] := {176} tii[15,174] := {40} tii[15,175] := {75} tii[15,176] := {114} tii[15,177] := {57} tii[15,178] := {56} tii[15,179] := {138} tii[15,180] := {95} tii[15,181] := {37} tii[15,182] := {54} tii[15,183] := {110} tii[15,184] := {3} tii[15,185] := {91} tii[15,186] := {149} tii[15,187] := {5} tii[15,188] := {15} tii[15,189] := {171} tii[15,190] := {35} tii[15,191] := {25} tii[15,192] := {119} tii[15,193] := {68} tii[15,194] := {189} tii[15,195] := {24} tii[15,196] := {87} tii[15,197] := {48} tii[15,198] := {80} tii[15,199] := {52} tii[15,200] := {157} tii[15,201] := {79} tii[15,202] := {0} tii[15,203] := {1} tii[15,204] := {7} tii[15,205] := {20} tii[15,206] := {13} tii[15,207] := {43} tii[15,208] := {12} tii[15,209] := {60} tii[15,210] := {28} tii[15,211] := {47} tii[15,212] := {32} tii[15,213] := {122} tii[15,214] := {46} tii[15,215] := {66} tii[15,216] := {84} cell#32 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {160} tii[17,2] := {166} tii[17,3] := {167} tii[17,4] := {152} tii[17,5] := {157} tii[17,6] := {125} tii[17,7] := {112} tii[17,8] := {57} tii[17,9] := {151} tii[17,10] := {163} tii[17,11] := {110} tii[17,12] := {120} tii[17,13] := {161} tii[17,14] := {132} tii[17,15] := {156} tii[17,16] := {150} tii[17,17] := {122} tii[17,18] := {76} tii[17,19] := {133} tii[17,20] := {106} tii[17,21] := {143} tii[17,22] := {39} tii[17,23] := {123} tii[17,24] := {94} tii[17,25] := {131} tii[17,26] := {139} tii[17,27] := {165} tii[17,28] := {148} tii[17,29] := {146} tii[17,30] := {159} tii[17,31] := {137} tii[17,32] := {100} tii[17,33] := {154} tii[17,34] := {129} tii[17,35] := {88} tii[17,36] := {147} tii[17,37] := {117} tii[17,38] := {127} tii[17,39] := {128} tii[17,40] := {116} tii[17,41] := {162} tii[17,42] := {23} tii[17,43] := {74} tii[17,44] := {101} tii[17,45] := {89} tii[17,46] := {72} tii[17,47] := {153} tii[17,48] := {61} tii[17,49] := {47} tii[17,50] := {26} tii[17,51] := {164} tii[17,52] := {114} tii[17,53] := {158} tii[17,54] := {145} tii[17,55] := {85} tii[17,56] := {136} tii[17,57] := {32} tii[17,58] := {59} tii[17,59] := {144} tii[17,60] := {113} tii[17,61] := {33} tii[17,62] := {124} tii[17,63] := {13} tii[17,64] := {98} tii[17,65] := {4} tii[17,66] := {84} tii[17,67] := {58} tii[17,68] := {31} tii[17,69] := {83} tii[17,70] := {97} tii[17,71] := {111} tii[17,72] := {69} tii[17,73] := {82} tii[17,74] := {54} tii[17,75] := {42} tii[17,76] := {21} tii[17,77] := {134} tii[17,78] := {141} tii[17,79] := {108} tii[17,80] := {91} tii[17,81] := {135} tii[17,82] := {107} tii[17,83] := {155} tii[17,84] := {109} tii[17,85] := {50} tii[17,86] := {96} tii[17,87] := {80} tii[17,88] := {78} tii[17,89] := {79} tii[17,90] := {140} tii[17,91] := {51} tii[17,92] := {65} tii[17,93] := {27} tii[17,94] := {81} tii[17,95] := {67} tii[17,96] := {41} tii[17,97] := {53} tii[17,98] := {92} tii[17,99] := {12} tii[17,100] := {40} tii[17,101] := {142} tii[17,102] := {105} tii[17,103] := {121} tii[17,104] := {77} tii[17,105] := {18} tii[17,106] := {95} tii[17,107] := {66} tii[17,108] := {93} tii[17,109] := {49} tii[17,110] := {5} tii[17,111] := {45} tii[17,112] := {19} tii[17,113] := {149} tii[17,114] := {103} tii[17,115] := {130} tii[17,116] := {63} tii[17,117] := {90} tii[17,118] := {102} tii[17,119] := {36} tii[17,120] := {104} tii[17,121] := {118} tii[17,122] := {16} tii[17,123] := {75} tii[17,124] := {64} tii[17,125] := {126} tii[17,126] := {115} tii[17,127] := {99} tii[17,128] := {87} tii[17,129] := {7} tii[17,130] := {62} tii[17,131] := {73} tii[17,132] := {71} tii[17,133] := {35} tii[17,134] := {138} tii[17,135] := {46} tii[17,136] := {60} tii[17,137] := {1} tii[17,138] := {38} tii[17,139] := {24} tii[17,140] := {48} tii[17,141] := {8} tii[17,142] := {17} tii[17,143] := {34} tii[17,144] := {15} tii[17,145] := {86} tii[17,146] := {9} tii[17,147] := {14} tii[17,148] := {2} tii[17,149] := {56} tii[17,150] := {44} tii[17,151] := {55} tii[17,152] := {70} tii[17,153] := {30} tii[17,154] := {22} tii[17,155] := {43} tii[17,156] := {11} tii[17,157] := {52} tii[17,158] := {119} tii[17,159] := {29} tii[17,160] := {20} tii[17,161] := {28} tii[17,162] := {68} tii[17,163] := {6} tii[17,164] := {25} tii[17,165] := {3} tii[17,166] := {37} tii[17,167] := {10} tii[17,168] := {0} cell#33 , |C| = 84 special orbit = [4, 4, 1] special rep = [4, 4, 1] , dim = 84 cell rep = phi[4,4,1] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[18,1] := {66} tii[18,2] := {79} tii[18,3] := {74} tii[18,4] := {82} tii[18,5] := {68} tii[18,6] := {38} tii[18,7] := {83} tii[18,8] := {80} tii[18,9] := {75} tii[18,10] := {81} tii[18,11] := {21} tii[18,12] := {63} tii[18,13] := {37} tii[18,14] := {10} tii[18,15] := {52} tii[18,16] := {45} tii[18,17] := {9} tii[18,18] := {36} tii[18,19] := {25} tii[18,20] := {62} tii[18,21] := {43} tii[18,22] := {61} tii[18,23] := {60} tii[18,24] := {31} tii[18,25] := {73} tii[18,26] := {58} tii[18,27] := {20} tii[18,28] := {50} tii[18,29] := {59} tii[18,30] := {49} tii[18,31] := {72} tii[18,32] := {65} tii[18,33] := {12} tii[18,34] := {56} tii[18,35] := {51} tii[18,36] := {71} tii[18,37] := {29} tii[18,38] := {48} tii[18,39] := {78} tii[18,40] := {70} tii[18,41] := {64} tii[18,42] := {76} tii[18,43] := {67} tii[18,44] := {53} tii[18,45] := {77} tii[18,46] := {47} tii[18,47] := {55} tii[18,48] := {27} tii[18,49] := {69} tii[18,50] := {54} tii[18,51] := {3} tii[18,52] := {8} tii[18,53] := {4} tii[18,54] := {26} tii[18,55] := {46} tii[18,56] := {19} tii[18,57] := {2} tii[18,58] := {11} tii[18,59] := {34} tii[18,60] := {15} tii[18,61] := {6} tii[18,62] := {33} tii[18,63] := {24} tii[18,64] := {16} tii[18,65] := {23} tii[18,66] := {44} tii[18,67] := {5} tii[18,68] := {22} tii[18,69] := {42} tii[18,70] := {32} tii[18,71] := {18} tii[18,72] := {41} tii[18,73] := {30} tii[18,74] := {40} tii[18,75] := {13} tii[18,76] := {35} tii[18,77] := {57} tii[18,78] := {39} tii[18,79] := {7} tii[18,80] := {28} tii[18,81] := {1} tii[18,82] := {17} tii[18,83] := {0} tii[18,84] := {14} cell#34 , |C| = 168 special orbit = [4, 3, 2] special rep = [4, 3, 2] , dim = 168 cell rep = phi[4,3,2] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[17,1] := {66} tii[17,2] := {135} tii[17,3] := {117} tii[17,4] := {160} tii[17,5] := {153} tii[17,6] := {166} tii[17,7] := {167} tii[17,8] := {157} tii[17,9] := {37} tii[17,10] := {101} tii[17,11] := {6} tii[17,12] := {26} tii[17,13] := {60} tii[17,14] := {113} tii[17,15] := {125} tii[17,16] := {34} tii[17,17] := {72} tii[17,18] := {152} tii[17,19] := {59} tii[17,20] := {86} tii[17,21] := {144} tii[17,22] := {112} tii[17,23] := {124} tii[17,24] := {98} tii[17,25] := {22} tii[17,26] := {54} tii[17,27] := {92} tii[17,28] := {41} tii[17,29] := {140} tii[17,30] := {65} tii[17,31] := {151} tii[17,32] := {163} tii[17,33] := {81} tii[17,34] := {25} tii[17,35] := {109} tii[17,36] := {93} tii[17,37] := {40} tii[17,38] := {120} tii[17,39] := {121} tii[17,40] := {161} tii[17,41] := {110} tii[17,42] := {131} tii[17,43] := {156} tii[17,44] := {94} tii[17,45] := {150} tii[17,46] := {122} tii[17,47] := {80} tii[17,48] := {132} tii[17,49] := {143} tii[17,50] := {123} tii[17,51] := {91} tii[17,52] := {130} tii[17,53] := {118} tii[17,54] := {139} tii[17,55] := {165} tii[17,56] := {148} tii[17,57] := {146} tii[17,58] := {159} tii[17,59] := {138} tii[17,60] := {128} tii[17,61] := {147} tii[17,62] := {154} tii[17,63] := {127} tii[17,64] := {162} tii[17,65] := {102} tii[17,66] := {164} tii[17,67] := {158} tii[17,68] := {145} tii[17,69] := {2} tii[17,70] := {13} tii[17,71] := {9} tii[17,72] := {32} tii[17,73] := {24} tii[17,74] := {45} tii[17,75] := {57} tii[17,76] := {31} tii[17,77] := {20} tii[17,78] := {51} tii[17,79] := {10} tii[17,80] := {19} tii[17,81] := {18} tii[17,82] := {88} tii[17,83] := {75} tii[17,84] := {36} tii[17,85] := {137} tii[17,86] := {49} tii[17,87] := {3} tii[17,88] := {62} tii[17,89] := {61} tii[17,90] := {50} tii[17,91] := {89} tii[17,92] := {5} tii[17,93] := {116} tii[17,94] := {17} tii[17,95] := {74} tii[17,96] := {48} tii[17,97] := {35} tii[17,98] := {12} tii[17,99] := {90} tii[17,100] := {16} tii[17,101] := {100} tii[17,102] := {87} tii[17,103] := {73} tii[17,104] := {114} tii[17,105] := {85} tii[17,106] := {99} tii[17,107] := {71} tii[17,108] := {46} tii[17,109] := {136} tii[17,110] := {58} tii[17,111] := {47} tii[17,112] := {84} tii[17,113] := {44} tii[17,114] := {11} tii[17,115] := {70} tii[17,116] := {83} tii[17,117] := {21} tii[17,118] := {97} tii[17,119] := {111} tii[17,120] := {43} tii[17,121] := {30} tii[17,122] := {82} tii[17,123] := {69} tii[17,124] := {42} tii[17,125] := {119} tii[17,126] := {133} tii[17,127] := {141} tii[17,128] := {107} tii[17,129] := {106} tii[17,130] := {134} tii[17,131] := {68} tii[17,132] := {155} tii[17,133] := {108} tii[17,134] := {53} tii[17,135] := {96} tii[17,136] := {78} tii[17,137] := {77} tii[17,138] := {67} tii[17,139] := {79} tii[17,140] := {142} tii[17,141] := {105} tii[17,142] := {95} tii[17,143] := {149} tii[17,144] := {129} tii[17,145] := {103} tii[17,146] := {104} tii[17,147] := {126} tii[17,148] := {76} tii[17,149] := {0} tii[17,150] := {1} tii[17,151] := {8} tii[17,152] := {4} tii[17,153] := {23} tii[17,154] := {7} tii[17,155] := {15} tii[17,156] := {14} tii[17,157] := {39} tii[17,158] := {29} tii[17,159] := {64} tii[17,160] := {38} tii[17,161] := {115} tii[17,162] := {28} tii[17,163] := {63} tii[17,164] := {27} tii[17,165] := {33} tii[17,166] := {56} tii[17,167] := {55} tii[17,168] := {52} cell#35 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {61} tii[16,2] := {158} tii[16,3] := {88} tii[16,4] := {98} tii[16,5] := {178} tii[16,6] := {161} tii[16,7] := {124} tii[16,8] := {196} tii[16,9] := {160} tii[16,10] := {197} tii[16,11] := {184} tii[16,12] := {201} tii[16,13] := {207} tii[16,14] := {213} tii[16,15] := {215} tii[16,16] := {46} tii[16,17] := {146} tii[16,18] := {60} tii[16,19] := {122} tii[16,20] := {82} tii[16,21] := {35} tii[16,22] := {172} tii[16,23] := {121} tii[16,24] := {173} tii[16,25] := {93} tii[16,26] := {155} tii[16,27] := {181} tii[16,28] := {59} tii[16,29] := {192} tii[16,30] := {120} tii[16,31] := {94} tii[16,32] := {205} tii[16,33] := {130} tii[16,34] := {212} tii[16,35] := {153} tii[16,36] := {180} tii[16,37] := {119} tii[16,38] := {191} tii[16,39] := {78} tii[16,40] := {137} tii[16,41] := {116} tii[16,42] := {152} tii[16,43] := {43} tii[16,44] := {204} tii[16,45] := {103} tii[16,46] := {189} tii[16,47] := {79} tii[16,48] := {203} tii[16,49] := {118} tii[16,50] := {56} tii[16,51] := {139} tii[16,52] := {170} tii[16,53] := {92} tii[16,54] := {117} tii[16,55] := {211} tii[16,56] := {202} tii[16,57] := {187} tii[16,58] := {188} tii[16,59] := {166} tii[16,60] := {136} tii[16,61] := {9} tii[16,62] := {51} tii[16,63] := {31} tii[16,64] := {66} tii[16,65] := {87} tii[16,66] := {14} tii[16,67] := {132} tii[16,68] := {30} tii[16,69] := {97} tii[16,70] := {125} tii[16,71] := {159} tii[16,72] := {133} tii[16,73] := {86} tii[16,74] := {164} tii[16,75] := {182} tii[16,76] := {200} tii[16,77] := {50} tii[16,78] := {12} tii[16,79] := {54} tii[16,80] := {111} tii[16,81] := {32} tii[16,82] := {49} tii[16,83] := {128} tii[16,84] := {25} tii[16,85] := {149} tii[16,86] := {162} tii[16,87] := {77} tii[16,88] := {63} tii[16,89] := {179} tii[16,90] := {55} tii[16,91] := {186} tii[16,92] := {89} tii[16,93] := {110} tii[16,94] := {91} tii[16,95] := {114} tii[16,96] := {134} tii[16,97] := {198} tii[16,98] := {127} tii[16,99] := {151} tii[16,100] := {210} tii[16,101] := {165} tii[16,102] := {185} tii[16,103] := {4} tii[16,104] := {176} tii[16,105] := {41} tii[16,106] := {23} tii[16,107] := {148} tii[16,108] := {53} tii[16,109] := {11} tii[16,110] := {75} tii[16,111] := {208} tii[16,112] := {214} tii[16,113] := {113} tii[16,114] := {177} tii[16,115] := {33} tii[16,116] := {52} tii[16,117] := {209} tii[16,118] := {112} tii[16,119] := {74} tii[16,120] := {40} tii[16,121] := {20} tii[16,122] := {72} tii[16,123] := {7} tii[16,124] := {19} tii[16,125] := {85} tii[16,126] := {108} tii[16,127] := {29} tii[16,128] := {147} tii[16,129] := {123} tii[16,130] := {71} tii[16,131] := {47} tii[16,132] := {157} tii[16,133] := {95} tii[16,134] := {174} tii[16,135] := {84} tii[16,136] := {195} tii[16,137] := {131} tii[16,138] := {156} tii[16,139] := {18} tii[16,140] := {13} tii[16,141] := {144} tii[16,142] := {70} tii[16,143] := {45} tii[16,144] := {81} tii[16,145] := {28} tii[16,146] := {107} tii[16,147] := {27} tii[16,148] := {65} tii[16,149] := {193} tii[16,150] := {105} tii[16,151] := {58} tii[16,152] := {206} tii[16,153] := {57} tii[16,154] := {145} tii[16,155] := {99} tii[16,156] := {143} tii[16,157] := {80} tii[16,158] := {129} tii[16,159] := {194} tii[16,160] := {6} tii[16,161] := {142} tii[16,162] := {83} tii[16,163] := {26} tii[16,164] := {104} tii[16,165] := {69} tii[16,166] := {44} tii[16,167] := {154} tii[16,168] := {17} tii[16,169] := {171} tii[16,170] := {141} tii[16,171] := {167} tii[16,172] := {101} tii[16,173] := {190} tii[16,174] := {168} tii[16,175] := {169} tii[16,176] := {67} tii[16,177] := {138} tii[16,178] := {102} tii[16,179] := {140} tii[16,180] := {68} tii[16,181] := {2} tii[16,182] := {8} tii[16,183] := {21} tii[16,184] := {36} tii[16,185] := {62} tii[16,186] := {100} tii[16,187] := {48} tii[16,188] := {96} tii[16,189] := {135} tii[16,190] := {163} tii[16,191] := {126} tii[16,192] := {183} tii[16,193] := {1} tii[16,194] := {5} tii[16,195] := {34} tii[16,196] := {24} tii[16,197] := {73} tii[16,198] := {64} tii[16,199] := {90} tii[16,200] := {0} tii[16,201] := {42} tii[16,202] := {10} tii[16,203] := {150} tii[16,204] := {22} tii[16,205] := {115} tii[16,206] := {199} tii[16,207] := {3} tii[16,208] := {16} tii[16,209] := {76} tii[16,210] := {15} tii[16,211] := {39} tii[16,212] := {109} tii[16,213] := {175} tii[16,214] := {38} tii[16,215] := {106} tii[16,216] := {37} cell#36 , |C| = 42 special orbit = [3, 3, 3] special rep = [3, 3, 3] , dim = 42 cell rep = phi[3,3,3] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[12,1] := {41} tii[12,2] := {38} tii[12,3] := {26} tii[12,4] := {40} tii[12,5] := {30} tii[12,6] := {37} tii[12,7] := {31} tii[12,8] := {22} tii[12,9] := {35} tii[12,10] := {39} tii[12,11] := {34} tii[12,12] := {13} tii[12,13] := {33} tii[12,14] := {20} tii[12,15] := {27} tii[12,16] := {18} tii[12,17] := {12} tii[12,18] := {5} tii[12,19] := {32} tii[12,20] := {25} tii[12,21] := {17} tii[12,22] := {24} tii[12,23] := {16} tii[12,24] := {9} tii[12,25] := {36} tii[12,26] := {29} tii[12,27] := {23} tii[12,28] := {14} tii[12,29] := {21} tii[12,30] := {8} tii[12,31] := {28} tii[12,32] := {7} tii[12,33] := {2} tii[12,34] := {6} tii[12,35] := {19} tii[12,36] := {10} tii[12,37] := {4} tii[12,38] := {11} tii[12,39] := {1} tii[12,40] := {15} tii[12,41] := {3} tii[12,42] := {0} cell#37 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {108} tii[11,2] := {151} tii[11,3] := {167} tii[11,4] := {79} tii[11,5] := {127} tii[11,6] := {65} tii[11,7] := {23} tii[11,8] := {161} tii[11,9] := {92} tii[11,10] := {140} tii[11,11] := {64} tii[11,12] := {93} tii[11,13] := {145} tii[11,14] := {166} tii[11,15] := {137} tii[11,16] := {164} tii[11,17] := {113} tii[11,18] := {138} tii[11,19] := {165} tii[11,20] := {158} tii[11,21] := {96} tii[11,22] := {46} tii[11,23] := {119} tii[11,24] := {157} tii[11,25] := {95} tii[11,26] := {120} tii[11,27] := {37} tii[11,28] := {57} tii[11,29] := {10} tii[11,30] := {133} tii[11,31] := {60} tii[11,32] := {82} tii[11,33] := {163} tii[11,34] := {112} tii[11,35] := {36} tii[11,36] := {3} tii[11,37] := {107} tii[11,38] := {72} tii[11,39] := {61} tii[11,40] := {134} tii[11,41] := {154} tii[11,42] := {9} tii[11,43] := {135} tii[11,44] := {18} tii[11,45] := {85} tii[11,46] := {132} tii[11,47] := {136} tii[11,48] := {59} tii[11,49] := {152} tii[11,50] := {86} tii[11,51] := {143} tii[11,52] := {34} tii[11,53] := {122} tii[11,54] := {162} tii[11,55] := {58} tii[11,56] := {74} tii[11,57] := {32} tii[11,58] := {104} tii[11,59] := {54} tii[11,60] := {11} tii[11,61] := {150} tii[11,62] := {78} tii[11,63] := {45} tii[11,64] := {105} tii[11,65] := {25} tii[11,66] := {131} tii[11,67] := {43} tii[11,68] := {106} tii[11,69] := {115} tii[11,70] := {40} tii[11,71] := {102} tii[11,72] := {156} tii[11,73] := {90} tii[11,74] := {116} tii[11,75] := {29} tii[11,76] := {128} tii[11,77] := {118} tii[11,78] := {160} tii[11,79] := {42} tii[11,80] := {63} tii[11,81] := {15} tii[11,82] := {67} tii[11,83] := {147} tii[11,84] := {148} tii[11,85] := {94} tii[11,86] := {91} tii[11,87] := {41} tii[11,88] := {101} tii[11,89] := {149} tii[11,90] := {129} tii[11,91] := {117} tii[11,92] := {103} tii[11,93] := {125} tii[11,94] := {146} tii[11,95] := {89} tii[11,96] := {159} tii[11,97] := {114} tii[11,98] := {124} tii[11,99] := {155} tii[11,100] := {144} tii[11,101] := {27} tii[11,102] := {49} tii[11,103] := {73} tii[11,104] := {69} tii[11,105] := {1} tii[11,106] := {50} tii[11,107] := {142} tii[11,108] := {71} tii[11,109] := {5} tii[11,110] := {98} tii[11,111] := {12} tii[11,112] := {30} tii[11,113] := {121} tii[11,114] := {70} tii[11,115] := {13} tii[11,116] := {28} tii[11,117] := {141} tii[11,118] := {33} tii[11,119] := {20} tii[11,120] := {14} tii[11,121] := {88} tii[11,122] := {22} tii[11,123] := {84} tii[11,124] := {47} tii[11,125] := {6} tii[11,126] := {39} tii[11,127] := {110} tii[11,128] := {62} tii[11,129] := {83} tii[11,130] := {21} tii[11,131] := {123} tii[11,132] := {19} tii[11,133] := {100} tii[11,134] := {153} tii[11,135] := {87} tii[11,136] := {35} tii[11,137] := {2} tii[11,138] := {109} tii[11,139] := {51} tii[11,140] := {8} tii[11,141] := {75} tii[11,142] := {31} tii[11,143] := {111} tii[11,144] := {99} tii[11,145] := {56} tii[11,146] := {26} tii[11,147] := {81} tii[11,148] := {55} tii[11,149] := {44} tii[11,150] := {7} tii[11,151] := {130} tii[11,152] := {68} tii[11,153] := {24} tii[11,154] := {80} tii[11,155] := {77} tii[11,156] := {53} tii[11,157] := {139} tii[11,158] := {126} tii[11,159] := {66} tii[11,160] := {76} tii[11,161] := {16} tii[11,162] := {48} tii[11,163] := {0} tii[11,164] := {97} tii[11,165] := {4} tii[11,166] := {17} tii[11,167] := {38} tii[11,168] := {52} cell#38 , |C| = 189 special orbit = [5, 2, 1, 1] special rep = [5, 2, 1, 1] , dim = 189 cell rep = phi[5,2,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[20,1] := {66} tii[20,2] := {85} tii[20,3] := {146} tii[20,4] := {159} tii[20,5] := {106} tii[20,6] := {56} tii[20,7] := {145} tii[20,8] := {121} tii[20,9] := {171} tii[20,10] := {131} tii[20,11] := {184} tii[20,12] := {188} tii[20,13] := {83} tii[20,14] := {144} tii[20,15] := {122} tii[20,16] := {157} tii[20,17] := {156} tii[20,18] := {176} tii[20,19] := {169} tii[20,20] := {130} tii[20,21] := {182} tii[20,22] := {187} tii[20,23] := {154} tii[20,24] := {174} tii[20,25] := {141} tii[20,26] := {22} tii[20,27] := {101} tii[20,28] := {75} tii[20,29] := {138} tii[20,30] := {92} tii[20,31] := {166} tii[20,32] := {181} tii[20,33] := {62} tii[20,34] := {40} tii[20,35] := {100} tii[20,36] := {76} tii[20,37] := {102} tii[20,38] := {117} tii[20,39] := {116} tii[20,40] := {140} tii[20,41] := {150} tii[20,42] := {168} tii[20,43] := {78} tii[20,44] := {136} tii[20,45] := {91} tii[20,46] := {164} tii[20,47] := {118} tii[20,48] := {180} tii[20,49] := {152} tii[20,50] := {139} tii[20,51] := {114} tii[20,52] := {148} tii[20,53] := {167} tii[20,54] := {153} tii[20,55] := {9} tii[20,56] := {60} tii[20,57] := {37} tii[20,58] := {74} tii[20,59] := {73} tii[20,60] := {112} tii[20,61] := {20} tii[20,62] := {98} tii[20,63] := {52} tii[20,64] := {134} tii[20,65] := {51} tii[20,66] := {163} tii[20,67] := {87} tii[20,68] := {72} tii[20,69] := {71} tii[20,70] := {110} tii[20,71] := {111} tii[20,72] := {89} tii[20,73] := {133} tii[20,74] := {19} tii[20,75] := {96} tii[20,76] := {132} tii[20,77] := {58} tii[20,78] := {34} tii[20,79] := {68} tii[20,80] := {97} tii[20,81] := {70} tii[20,82] := {6} tii[20,83] := {32} tii[20,84] := {16} tii[20,85] := {31} tii[20,86] := {14} tii[20,87] := {30} tii[20,88] := {15} tii[20,89] := {109} tii[20,90] := {46} tii[20,91] := {147} tii[20,92] := {67} tii[20,93] := {173} tii[20,94] := {47} tii[20,95] := {186} tii[20,96] := {124} tii[20,97] := {108} tii[20,98] := {158} tii[20,99] := {86} tii[20,100] := {178} tii[20,101] := {172} tii[20,102] := {125} tii[20,103] := {185} tii[20,104] := {179} tii[20,105] := {29} tii[20,106] := {24} tii[20,107] := {65} tii[20,108] := {105} tii[20,109] := {45} tii[20,110] := {143} tii[20,111] := {25} tii[20,112] := {44} tii[20,113] := {93} tii[20,114] := {81} tii[20,115] := {82} tii[20,116] := {129} tii[20,117] := {119} tii[20,118] := {57} tii[20,119] := {160} tii[20,120] := {104} tii[20,121] := {155} tii[20,122] := {95} tii[20,123] := {142} tii[20,124] := {175} tii[20,125] := {120} tii[20,126] := {162} tii[20,127] := {13} tii[20,128] := {107} tii[20,129] := {43} tii[20,130] := {84} tii[20,131] := {79} tii[20,132] := {64} tii[20,133] := {170} tii[20,134] := {123} tii[20,135] := {103} tii[20,136] := {183} tii[20,137] := {80} tii[20,138] := {177} tii[20,139] := {28} tii[20,140] := {94} tii[20,141] := {63} tii[20,142] := {42} tii[20,143] := {161} tii[20,144] := {12} tii[20,145] := {4} tii[20,146] := {11} tii[20,147] := {5} tii[20,148] := {53} tii[20,149] := {39} tii[20,150] := {90} tii[20,151] := {23} tii[20,152] := {126} tii[20,153] := {115} tii[20,154] := {55} tii[20,155] := {149} tii[20,156] := {128} tii[20,157] := {2} tii[20,158] := {61} tii[20,159] := {18} tii[20,160] := {48} tii[20,161] := {41} tii[20,162] := {35} tii[20,163] := {137} tii[20,164] := {77} tii[20,165] := {165} tii[20,166] := {69} tii[20,167] := {151} tii[20,168] := {50} tii[20,169] := {7} tii[20,170] := {54} tii[20,171] := {33} tii[20,172] := {17} tii[20,173] := {127} tii[20,174] := {1} tii[20,175] := {27} tii[20,176] := {10} tii[20,177] := {99} tii[20,178] := {38} tii[20,179] := {135} tii[20,180] := {113} tii[20,181] := {26} tii[20,182] := {21} tii[20,183] := {59} tii[20,184] := {88} tii[20,185] := {36} tii[20,186] := {8} tii[20,187] := {3} tii[20,188] := {49} tii[20,189] := {0} cell#39 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {149} tii[16,2] := {127} tii[16,3] := {176} tii[16,4] := {177} tii[16,5] := {96} tii[16,6] := {184} tii[16,7] := {195} tii[16,8] := {125} tii[16,9] := {207} tii[16,10] := {133} tii[16,11] := {213} tii[16,12] := {215} tii[16,13] := {158} tii[16,14] := {182} tii[16,15] := {200} tii[16,16] := {194} tii[16,17] := {56} tii[16,18] := {137} tii[16,19] := {155} tii[16,20] := {206} tii[16,21] := {103} tii[16,22] := {78} tii[16,23] := {190} tii[16,24] := {93} tii[16,25] := {121} tii[16,26] := {204} tii[16,27] := {212} tii[16,28] := {140} tii[16,29] := {116} tii[16,30] := {94} tii[16,31] := {172} tii[16,32] := {153} tii[16,33] := {193} tii[16,34] := {180} tii[16,35] := {120} tii[16,36] := {156} tii[16,37] := {211} tii[16,38] := {42} tii[16,39] := {203} tii[16,40] := {55} tii[16,41] := {187} tii[16,42] := {202} tii[16,43] := {189} tii[16,44] := {76} tii[16,45] := {34} tii[16,46] := {114} tii[16,47] := {166} tii[16,48] := {151} tii[16,49] := {188} tii[16,50] := {136} tii[16,51] := {54} tii[16,52] := {90} tii[16,53] := {167} tii[16,54] := {152} tii[16,55] := {113} tii[16,56] := {74} tii[16,57] := {112} tii[16,58] := {40} tii[16,59] := {75} tii[16,60] := {53} tii[16,61] := {73} tii[16,62] := {20} tii[16,63] := {110} tii[16,64] := {150} tii[16,65] := {51} tii[16,66] := {72} tii[16,67] := {162} tii[16,68] := {50} tii[16,69] := {178} tii[16,70] := {88} tii[16,71] := {134} tii[16,72] := {198} tii[16,73] := {63} tii[16,74] := {210} tii[16,75] := {161} tii[16,76] := {185} tii[16,77] := {147} tii[16,78] := {71} tii[16,79] := {85} tii[16,80] := {31} tii[16,81] := {109} tii[16,82] := {86} tii[16,83] := {196} tii[16,84] := {107} tii[16,85] := {61} tii[16,86] := {208} tii[16,87] := {60} tii[16,88] := {148} tii[16,89] := {100} tii[16,90] := {145} tii[16,91] := {214} tii[16,92] := {126} tii[16,93] := {36} tii[16,94] := {175} tii[16,95] := {84} tii[16,96] := {197} tii[16,97] := {132} tii[16,98] := {160} tii[16,99] := {123} tii[16,100] := {163} tii[16,101] := {209} tii[16,102] := {201} tii[16,103] := {144} tii[16,104] := {87} tii[16,105] := {29} tii[16,106] := {105} tii[16,107] := {62} tii[16,108] := {143} tii[16,109] := {69} tii[16,110] := {47} tii[16,111] := {159} tii[16,112] := {183} tii[16,113] := {82} tii[16,114] := {97} tii[16,115] := {106} tii[16,116] := {83} tii[16,117] := {164} tii[16,118] := {17} tii[16,119] := {46} tii[16,120] := {28} tii[16,121] := {174} tii[16,122] := {6} tii[16,123] := {142} tii[16,124] := {122} tii[16,125] := {168} tii[16,126] := {26} tii[16,127] := {101} tii[16,128] := {65} tii[16,129] := {191} tii[16,130] := {13} tii[16,131] := {79} tii[16,132] := {205} tii[16,133] := {169} tii[16,134] := {92} tii[16,135] := {118} tii[16,136] := {129} tii[16,137] := {192} tii[16,138] := {181} tii[16,139] := {171} tii[16,140] := {67} tii[16,141] := {43} tii[16,142] := {11} tii[16,143] := {138} tii[16,144] := {170} tii[16,145] := {44} tii[16,146] := {27} tii[16,147] := {102} tii[16,148] := {141} tii[16,149] := {117} tii[16,150] := {23} tii[16,151] := {80} tii[16,152] := {154} tii[16,153] := {139} tii[16,154] := {57} tii[16,155] := {173} tii[16,156] := {52} tii[16,157] := {119} tii[16,158] := {157} tii[16,159] := {130} tii[16,160] := {68} tii[16,161] := {3} tii[16,162] := {58} tii[16,163] := {104} tii[16,164] := {22} tii[16,165] := {10} tii[16,166] := {81} tii[16,167] := {131} tii[16,168] := {45} tii[16,169] := {16} tii[16,170] := {5} tii[16,171] := {77} tii[16,172] := {25} tii[16,173] := {115} tii[16,174] := {91} tii[16,175] := {15} tii[16,176] := {12} tii[16,177] := {41} tii[16,178] := {24} tii[16,179] := {64} tii[16,180] := {4} tii[16,181] := {39} tii[16,182] := {21} tii[16,183] := {9} tii[16,184] := {111} tii[16,185] := {89} tii[16,186] := {179} tii[16,187] := {32} tii[16,188] := {128} tii[16,189] := {199} tii[16,190] := {186} tii[16,191] := {98} tii[16,192] := {165} tii[16,193] := {38} tii[16,194] := {19} tii[16,195] := {108} tii[16,196] := {49} tii[16,197] := {14} tii[16,198] := {146} tii[16,199] := {124} tii[16,200] := {37} tii[16,201] := {30} tii[16,202] := {70} tii[16,203] := {66} tii[16,204] := {48} tii[16,205] := {95} tii[16,206] := {135} tii[16,207] := {18} tii[16,208] := {8} tii[16,209] := {59} tii[16,210] := {7} tii[16,211] := {2} tii[16,212] := {35} tii[16,213] := {99} tii[16,214] := {1} tii[16,215] := {33} tii[16,216] := {0} cell#40 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {163} tii[11,2] := {142} tii[11,3] := {95} tii[11,4] := {167} tii[11,5] := {113} tii[11,6] := {164} tii[11,7] := {138} tii[11,8] := {63} tii[11,9] := {166} tii[11,10] := {19} tii[11,11] := {158} tii[11,12] := {165} tii[11,13] := {136} tii[11,14] := {87} tii[11,15] := {144} tii[11,16] := {59} tii[11,17] := {122} tii[11,18] := {143} tii[11,19] := {74} tii[11,20] := {99} tii[11,21] := {154} tii[11,22] := {109} tii[11,23] := {135} tii[11,24] := {47} tii[11,25] := {110} tii[11,26] := {82} tii[11,27] := {157} tii[11,28] := {131} tii[11,29] := {117} tii[11,30] := {121} tii[11,31] := {162} tii[11,32] := {151} tii[11,33] := {71} tii[11,34] := {13} tii[11,35] := {149} tii[11,36] := {93} tii[11,37] := {96} tii[11,38] := {130} tii[11,39] := {161} tii[11,40] := {68} tii[11,41] := {44} tii[11,42] := {103} tii[11,43] := {24} tii[11,44] := {129} tii[11,45] := {153} tii[11,46] := {119} tii[11,47] := {29} tii[11,48] := {132} tii[11,49] := {94} tii[11,50] := {152} tii[11,51] := {34} tii[11,52] := {105} tii[11,53] := {58} tii[11,54] := {67} tii[11,55] := {133} tii[11,56] := {120} tii[11,57] := {148} tii[11,58] := {90} tii[11,59] := {160} tii[11,60] := {115} tii[11,61] := {42} tii[11,62] := {64} tii[11,63] := {147} tii[11,64] := {39} tii[11,65] := {126} tii[11,66] := {22} tii[11,67] := {146} tii[11,68] := {10} tii[11,69] := {125} tii[11,70] := {155} tii[11,71] := {88} tii[11,72] := {37} tii[11,73] := {101} tii[11,74] := {124} tii[11,75] := {137} tii[11,76] := {62} tii[11,77] := {8} tii[11,78] := {52} tii[11,79] := {145} tii[11,80] := {76} tii[11,81] := {114} tii[11,82] := {159} tii[11,83] := {75} tii[11,84] := {38} tii[11,85] := {3} tii[11,86] := {102} tii[11,87] := {156} tii[11,88] := {89} tii[11,89] := {31} tii[11,90] := {51} tii[11,91] := {9} tii[11,92] := {36} tii[11,93] := {111} tii[11,94] := {86} tii[11,95] := {100} tii[11,96] := {60} tii[11,97] := {123} tii[11,98] := {112} tii[11,99] := {35} tii[11,100] := {85} tii[11,101] := {84} tii[11,102] := {56} tii[11,103] := {32} tii[11,104] := {134} tii[11,105] := {73} tii[11,106] := {108} tii[11,107] := {25} tii[11,108] := {83} tii[11,109] := {80} tii[11,110] := {55} tii[11,111] := {107} tii[11,112] := {81} tii[11,113] := {11} tii[11,114] := {49} tii[11,115] := {54} tii[11,116] := {79} tii[11,117] := {26} tii[11,118] := {72} tii[11,119] := {140} tii[11,120] := {116} tii[11,121] := {4} tii[11,122] := {128} tii[11,123] := {69} tii[11,124] := {104} tii[11,125] := {92} tii[11,126] := {150} tii[11,127] := {43} tii[11,128] := {1} tii[11,129] := {30} tii[11,130] := {141} tii[11,131] := {17} tii[11,132] := {78} tii[11,133] := {33} tii[11,134] := {45} tii[11,135] := {5} tii[11,136] := {106} tii[11,137] := {66} tii[11,138] := {16} tii[11,139] := {97} tii[11,140] := {118} tii[11,141] := {28} tii[11,142] := {70} tii[11,143] := {14} tii[11,144] := {50} tii[11,145] := {40} tii[11,146] := {127} tii[11,147] := {21} tii[11,148] := {15} tii[11,149] := {53} tii[11,150] := {91} tii[11,151] := {23} tii[11,152] := {77} tii[11,153] := {139} tii[11,154] := {6} tii[11,155] := {65} tii[11,156] := {41} tii[11,157] := {20} tii[11,158] := {61} tii[11,159] := {2} tii[11,160] := {18} tii[11,161] := {57} tii[11,162] := {27} tii[11,163] := {48} tii[11,164] := {7} tii[11,165] := {98} tii[11,166] := {46} tii[11,167] := {0} tii[11,168] := {12} cell#41 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {196} tii[15,2] := {199} tii[15,3] := {214} tii[15,4] := {152} tii[15,5] := {198} tii[15,6] := {215} tii[15,7] := {210} tii[15,8] := {163} tii[15,9] := {205} tii[15,10] := {203} tii[15,11] := {107} tii[15,12] := {127} tii[15,13] := {181} tii[15,14] := {162} tii[15,15] := {186} tii[15,16] := {147} tii[15,17] := {166} tii[15,18] := {108} tii[15,19] := {209} tii[15,20] := {165} tii[15,21] := {69} tii[15,22] := {84} tii[15,23] := {194} tii[15,24] := {164} tii[15,25] := {65} tii[15,26] := {121} tii[15,27] := {43} tii[15,28] := {191} tii[15,29] := {104} tii[15,30] := {22} tii[15,31] := {31} tii[15,32] := {144} tii[15,33] := {103} tii[15,34] := {208} tii[15,35] := {202} tii[15,36] := {178} tii[15,37] := {174} tii[15,38] := {177} tii[15,39] := {137} tii[15,40] := {207} tii[15,41] := {96} tii[15,42] := {119} tii[15,43] := {153} tii[15,44] := {201} tii[15,45] := {115} tii[15,46] := {138} tii[15,47] := {213} tii[15,48] := {200} tii[15,49] := {182} tii[15,50] := {149} tii[15,51] := {170} tii[15,52] := {93} tii[15,53] := {110} tii[15,54] := {135} tii[15,55] := {156} tii[15,56] := {134} tii[15,57] := {157} tii[15,58] := {116} tii[15,59] := {71} tii[15,60] := {111} tii[15,61] := {133} tii[15,62] := {38} tii[15,63] := {78} tii[15,64] := {72} tii[15,65] := {173} tii[15,66] := {184} tii[15,67] := {51} tii[15,68] := {112} tii[15,69] := {94} tii[15,70] := {188} tii[15,71] := {169} tii[15,72] := {204} tii[15,73] := {39} tii[15,74] := {206} tii[15,75] := {132} tii[15,76] := {183} tii[15,77] := {54} tii[15,78] := {95} tii[15,79] := {37} tii[15,80] := {113} tii[15,81] := {16} tii[15,82] := {90} tii[15,83] := {136} tii[15,84] := {25} tii[15,85] := {212} tii[15,86] := {131} tii[15,87] := {6} tii[15,88] := {171} tii[15,89] := {197} tii[15,90] := {89} tii[15,91] := {11} tii[15,92] := {24} tii[15,93] := {168} tii[15,94] := {211} tii[15,95] := {130} tii[15,96] := {88} tii[15,97] := {195} tii[15,98] := {167} tii[15,99] := {187} tii[15,100] := {148} tii[15,101] := {77} tii[15,102] := {109} tii[15,103] := {124} tii[15,104] := {146} tii[15,105] := {44} tii[15,106] := {128} tii[15,107] := {154} tii[15,108] := {66} tii[15,109] := {70} tii[15,110] := {180} tii[15,111] := {185} tii[15,112] := {87} tii[15,113] := {145} tii[15,114] := {129} tii[15,115] := {21} tii[15,116] := {67} tii[15,117] := {8} tii[15,118] := {85} tii[15,119] := {61} tii[15,120] := {13} tii[15,121] := {83} tii[15,122] := {117} tii[15,123] := {193} tii[15,124] := {35} tii[15,125] := {2} tii[15,126] := {101} tii[15,127] := {122} tii[15,128] := {155} tii[15,129] := {161} tii[15,130] := {4} tii[15,131] := {47} tii[15,132] := {60} tii[15,133] := {12} tii[15,134] := {86} tii[15,135] := {141} tii[15,136] := {192} tii[15,137] := {100} tii[15,138] := {125} tii[15,139] := {126} tii[15,140] := {59} tii[15,141] := {33} tii[15,142] := {46} tii[15,143] := {9} tii[15,144] := {160} tii[15,145] := {81} tii[15,146] := {14} tii[15,147] := {120} tii[15,148] := {32} tii[15,149] := {179} tii[15,150] := {159} tii[15,151] := {143} tii[15,152] := {62} tii[15,153] := {63} tii[15,154] := {102} tii[15,155] := {190} tii[15,156] := {142} tii[15,157] := {99} tii[15,158] := {58} tii[15,159] := {80} tii[15,160] := {42} tii[15,161] := {57} tii[15,162] := {98} tii[15,163] := {75} tii[15,164] := {41} tii[15,165] := {139} tii[15,166] := {56} tii[15,167] := {158} tii[15,168] := {76} tii[15,169] := {19} tii[15,170] := {189} tii[15,171] := {27} tii[15,172] := {97} tii[15,173] := {55} tii[15,174] := {140} tii[15,175] := {10} tii[15,176] := {18} tii[15,177] := {175} tii[15,178] := {176} tii[15,179] := {40} tii[15,180] := {74} tii[15,181] := {53} tii[15,182] := {79} tii[15,183] := {17} tii[15,184] := {45} tii[15,185] := {118} tii[15,186] := {26} tii[15,187] := {73} tii[15,188] := {114} tii[15,189] := {52} tii[15,190] := {3} tii[15,191] := {150} tii[15,192] := {91} tii[15,193] := {5} tii[15,194] := {92} tii[15,195] := {151} tii[15,196] := {15} tii[15,197] := {36} tii[15,198] := {49} tii[15,199] := {172} tii[15,200] := {50} tii[15,201] := {48} tii[15,202] := {23} tii[15,203] := {34} tii[15,204] := {68} tii[15,205] := {0} tii[15,206] := {105} tii[15,207] := {1} tii[15,208] := {106} tii[15,209] := {7} tii[15,210] := {20} tii[15,211] := {29} tii[15,212] := {123} tii[15,213] := {30} tii[15,214] := {28} tii[15,215] := {82} tii[15,216] := {64} cell#42 , |C| = 216 special orbit = [4, 3, 1, 1] special rep = [4, 3, 1, 1] , dim = 216 cell rep = phi[4,3,1,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[16,1] := {188} tii[16,2] := {169} tii[16,3] := {203} tii[16,4] := {156} tii[16,5] := {189} tii[16,6] := {70} tii[16,7] := {211} tii[16,8] := {168} tii[16,9] := {201} tii[16,10] := {91} tii[16,11] := {184} tii[16,12] := {202} tii[16,13] := {190} tii[16,14] := {167} tii[16,15] := {191} tii[16,16] := {210} tii[16,17] := {141} tii[16,18] := {180} tii[16,19] := {107} tii[16,20] := {214} tii[16,21] := {144} tii[16,22] := {128} tii[16,23] := {208} tii[16,24] := {40} tii[16,25] := {61} tii[16,26] := {197} tii[16,27] := {209} tii[16,28] := {176} tii[16,29] := {164} tii[16,30] := {29} tii[16,31] := {143} tii[16,32] := {127} tii[16,33] := {177} tii[16,34] := {165} tii[16,35] := {63} tii[16,36] := {105} tii[16,37] := {215} tii[16,38] := {79} tii[16,39] := {212} tii[16,40] := {15} tii[16,41] := {207} tii[16,42] := {213} tii[16,43] := {205} tii[16,44] := {125} tii[16,45] := {4} tii[16,46] := {78} tii[16,47] := {193} tii[16,48] := {126} tii[16,49] := {206} tii[16,50] := {173} tii[16,51] := {14} tii[16,52] := {35} tii[16,53] := {194} tii[16,54] := {204} tii[16,55] := {162} tii[16,56] := {124} tii[16,57] := {163} tii[16,58] := {76} tii[16,59] := {123} tii[16,60] := {140} tii[16,61] := {119} tii[16,62] := {50} tii[16,63] := {158} tii[16,64] := {122} tii[16,65] := {92} tii[16,66] := {117} tii[16,67] := {33} tii[16,68] := {90} tii[16,69] := {161} tii[16,70] := {133} tii[16,71] := {21} tii[16,72] := {120} tii[16,73] := {98} tii[16,74] := {160} tii[16,75] := {53} tii[16,76] := {96} tii[16,77] := {185} tii[16,78] := {112} tii[16,79] := {32} tii[16,80] := {118} tii[16,81] := {154} tii[16,82] := {131} tii[16,83] := {186} tii[16,84] := {152} tii[16,85] := {159} tii[16,86] := {155} tii[16,87] := {12} tii[16,88] := {114} tii[16,89] := {49} tii[16,90] := {111} tii[16,91] := {187} tii[16,92] := {89} tii[16,93] := {136} tii[16,94] := {153} tii[16,95] := {31} tii[16,96] := {116} tii[16,97] := {95} tii[16,98] := {48} tii[16,99] := {65} tii[16,100] := {137} tii[16,101] := {157} tii[16,102] := {115} tii[16,103] := {182} tii[16,104] := {132} tii[16,105] := {5} tii[16,106] := {151} tii[16,107] := {97} tii[16,108] := {183} tii[16,109] := {109} tii[16,110] := {19} tii[16,111] := {135} tii[16,112] := {170} tii[16,113] := {45} tii[16,114] := {57} tii[16,115] := {150} tii[16,116] := {172} tii[16,117] := {134} tii[16,118] := {46} tii[16,119] := {88} tii[16,120] := {108} tii[16,121] := {198} tii[16,122] := {60} tii[16,123] := {178} tii[16,124] := {166} tii[16,125] := {199} tii[16,126] := {101} tii[16,127] := {147} tii[16,128] := {16} tii[16,129] := {179} tii[16,130] := {85} tii[16,131] := {130} tii[16,132] := {200} tii[16,133] := {149} tii[16,134] := {42} tii[16,135] := {87} tii[16,136] := {84} tii[16,137] := {181} tii[16,138] := {148} tii[16,139] := {195} tii[16,140] := {102} tii[16,141] := {81} tii[16,142] := {1} tii[16,143] := {174} tii[16,144] := {196} tii[16,145] := {86} tii[16,146] := {56} tii[16,147] := {142} tii[16,148] := {104} tii[16,149] := {83} tii[16,150] := {8} tii[16,151] := {44} tii[16,152] := {129} tii[16,153] := {175} tii[16,154] := {26} tii[16,155] := {145} tii[16,156] := {23} tii[16,157] := {192} tii[16,158] := {103} tii[16,159] := {82} tii[16,160] := {106} tii[16,161] := {24} tii[16,162] := {17} tii[16,163] := {146} tii[16,164] := {55} tii[16,165] := {75} tii[16,166] := {171} tii[16,167] := {62} tii[16,168] := {138} tii[16,169] := {37} tii[16,170] := {25} tii[16,171] := {39} tii[16,172] := {9} tii[16,173] := {80} tii[16,174] := {38} tii[16,175] := {36} tii[16,176] := {2} tii[16,177] := {77} tii[16,178] := {100} tii[16,179] := {13} tii[16,180] := {59} tii[16,181] := {71} tii[16,182] := {51} tii[16,183] := {28} tii[16,184] := {74} tii[16,185] := {54} tii[16,186] := {73} tii[16,187] := {58} tii[16,188] := {22} tii[16,189] := {121} tii[16,190] := {72} tii[16,191] := {11} tii[16,192] := {52} tii[16,193] := {67} tii[16,194] := {47} tii[16,195] := {69} tii[16,196] := {20} tii[16,197] := {93} tii[16,198] := {113} tii[16,199] := {68} tii[16,200] := {66} tii[16,201] := {6} tii[16,202] := {110} tii[16,203] := {27} tii[16,204] := {139} tii[16,205] := {30} tii[16,206] := {94} tii[16,207] := {99} tii[16,208] := {3} tii[16,209] := {18} tii[16,210] := {64} tii[16,211] := {43} tii[16,212] := {10} tii[16,213] := {41} tii[16,214] := {0} tii[16,215] := {7} tii[16,216] := {34} cell#43 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {152} tii[15,2] := {196} tii[15,3] := {203} tii[15,4] := {214} tii[15,5] := {215} tii[15,6] := {201} tii[15,7] := {109} tii[15,8] := {165} tii[15,9] := {177} tii[15,10] := {83} tii[15,11] := {206} tii[15,12] := {144} tii[15,13] := {52} tii[15,14] := {207} tii[15,15] := {155} tii[15,16] := {69} tii[15,17] := {53} tii[15,18] := {174} tii[15,19] := {175} tii[15,20] := {176} tii[15,21] := {143} tii[15,22] := {105} tii[15,23] := {157} tii[15,24] := {123} tii[15,25] := {213} tii[15,26] := {188} tii[15,27] := {212} tii[15,28] := {137} tii[15,29] := {162} tii[15,30] := {198} tii[15,31] := {171} tii[15,32] := {139} tii[15,33] := {101} tii[15,34] := {93} tii[15,35] := {78} tii[15,36] := {46} tii[15,37] := {124} tii[15,38] := {180} tii[15,39] := {87} tii[15,40] := {185} tii[15,41] := {112} tii[15,42] := {88} tii[15,43] := {200} tii[15,44] := {202} tii[15,45] := {179} tii[15,46] := {149} tii[15,47] := {187} tii[15,48] := {160} tii[15,49] := {48} tii[15,50] := {26} tii[15,51] := {114} tii[15,52] := {98} tii[15,53] := {36} tii[15,54] := {133} tii[15,55] := {118} tii[15,56] := {27} tii[15,57] := {115} tii[15,58] := {210} tii[15,59] := {136} tii[15,60] := {11} tii[15,61] := {138} tii[15,62] := {97} tii[15,63] := {195} tii[15,64] := {16} tii[15,65] := {168} tii[15,66] := {211} tii[15,67] := {62} tii[15,68] := {167} tii[15,69] := {12} tii[15,70] := {153} tii[15,71] := {120} tii[15,72] := {204} tii[15,73] := {34} tii[15,74] := {183} tii[15,75] := {82} tii[15,76] := {184} tii[15,77] := {17} tii[15,78] := {13} tii[15,79] := {170} tii[15,80] := {208} tii[15,81] := {135} tii[15,82] := {94} tii[15,83] := {194} tii[15,84] := {96} tii[15,85] := {186} tii[15,86] := {79} tii[15,87] := {95} tii[15,88] := {209} tii[15,89] := {159} tii[15,90] := {47} tii[15,91] := {60} tii[15,92] := {33} tii[15,93] := {44} tii[15,94] := {181} tii[15,95] := {22} tii[15,96] := {9} tii[15,97] := {73} tii[15,98] := {91} tii[15,99] := {74} tii[15,100] := {29} tii[15,101] := {192} tii[15,102] := {40} tii[15,103] := {131} tii[15,104] := {193} tii[15,105] := {164} tii[15,106] := {30} tii[15,107] := {110} tii[15,108] := {130} tii[15,109] := {71} tii[15,110] := {178} tii[15,111] := {147} tii[15,112] := {41} tii[15,113] := {148} tii[15,114] := {31} tii[15,115] := {199} tii[15,116] := {190} tii[15,117] := {173} tii[15,118] := {106} tii[15,119] := {129} tii[15,120] := {141} tii[15,121] := {163} tii[15,122] := {84} tii[15,123] := {156} tii[15,124] := {107} tii[15,125] := {142} tii[15,126] := {103} tii[15,127] := {191} tii[15,128] := {121} tii[15,129] := {122} tii[15,130] := {104} tii[15,131] := {70} tii[15,132] := {67} tii[15,133] := {68} tii[15,134] := {54} tii[15,135] := {66} tii[15,136] := {145} tii[15,137] := {38} tii[15,138] := {146} tii[15,139] := {86} tii[15,140] := {19} tii[15,141] := {205} tii[15,142] := {189} tii[15,143] := {172} tii[15,144] := {119} tii[15,145] := {161} tii[15,146] := {140} tii[15,147] := {81} tii[15,148] := {102} tii[15,149] := {43} tii[15,150] := {99} tii[15,151] := {21} tii[15,152] := {128} tii[15,153] := {65} tii[15,154] := {8} tii[15,155] := {58} tii[15,156] := {24} tii[15,157] := {55} tii[15,158] := {76} tii[15,159] := {56} tii[15,160] := {117} tii[15,161] := {77} tii[15,162] := {57} tii[15,163] := {0} tii[15,164] := {6} tii[15,165] := {150} tii[15,166] := {1} tii[15,167] := {125} tii[15,168] := {151} tii[15,169] := {20} tii[15,170] := {158} tii[15,171] := {7} tii[15,172] := {113} tii[15,173] := {3} tii[15,174] := {89} tii[15,175] := {45} tii[15,176] := {23} tii[15,177] := {182} tii[15,178] := {127} tii[15,179] := {10} tii[15,180] := {5} tii[15,181] := {63} tii[15,182] := {49} tii[15,183] := {64} tii[15,184] := {169} tii[15,185] := {80} tii[15,186] := {37} tii[15,187] := {134} tii[15,188] := {116} tii[15,189] := {28} tii[15,190] := {61} tii[15,191] := {197} tii[15,192] := {100} tii[15,193] := {35} tii[15,194] := {51} tii[15,195] := {154} tii[15,196] := {18} tii[15,197] := {14} tii[15,198] := {59} tii[15,199] := {126} tii[15,200] := {25} tii[15,201] := {4} tii[15,202] := {132} tii[15,203] := {92} tii[15,204] := {75} tii[15,205] := {108} tii[15,206] := {166} tii[15,207] := {72} tii[15,208] := {111} tii[15,209] := {42} tii[15,210] := {32} tii[15,211] := {90} tii[15,212] := {85} tii[15,213] := {39} tii[15,214] := {15} tii[15,215] := {50} tii[15,216] := {2} cell#44 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {12} tii[19,2] := {27} tii[19,3] := {48} tii[19,4] := {63} tii[19,5] := {69} tii[19,6] := {11} tii[19,7] := {26} tii[19,8] := {47} tii[19,9] := {62} tii[19,10] := {35} tii[19,11] := {53} tii[19,12] := {66} tii[19,13] := {46} tii[19,14] := {61} tii[19,15] := {65} tii[19,16] := {5} tii[19,17] := {17} tii[19,18] := {33} tii[19,19] := {51} tii[19,20] := {25} tii[19,21] := {43} tii[19,22] := {58} tii[19,23] := {31} tii[19,24] := {49} tii[19,25] := {56} tii[19,26] := {45} tii[19,27] := {60} tii[19,28] := {68} tii[19,29] := {44} tii[19,30] := {59} tii[19,31] := {64} tii[19,32] := {32} tii[19,33] := {50} tii[19,34] := {57} tii[19,35] := {67} tii[19,36] := {1} tii[19,37] := {4} tii[19,38] := {16} tii[19,39] := {30} tii[19,40] := {10} tii[19,41] := {22} tii[19,42] := {40} tii[19,43] := {14} tii[19,44] := {28} tii[19,45] := {38} tii[19,46] := {24} tii[19,47] := {42} tii[19,48] := {55} tii[19,49] := {23} tii[19,50] := {41} tii[19,51] := {52} tii[19,52] := {15} tii[19,53] := {29} tii[19,54] := {39} tii[19,55] := {54} tii[19,56] := {9} tii[19,57] := {21} tii[19,58] := {37} tii[19,59] := {8} tii[19,60] := {20} tii[19,61] := {34} tii[19,62] := {3} tii[19,63] := {13} tii[19,64] := {19} tii[19,65] := {36} tii[19,66] := {0} tii[19,67] := {2} tii[19,68] := {7} tii[19,69] := {18} tii[19,70] := {6} cell#45 , |C| = 120 special orbit = [3, 3, 1, 1, 1] special rep = [3, 3, 1, 1, 1] , dim = 120 cell rep = phi[3,3,1,1,1] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[10,1] := {115} tii[10,2] := {99} tii[10,3] := {51} tii[10,4] := {113} tii[10,5] := {98} tii[10,6] := {114} tii[10,7] := {90} tii[10,8] := {40} tii[10,9] := {108} tii[10,10] := {22} tii[10,11] := {89} tii[10,12] := {109} tii[10,13] := {42} tii[10,14] := {66} tii[10,15] := {118} tii[10,16] := {106} tii[10,17] := {119} tii[10,18] := {88} tii[10,19] := {107} tii[10,20] := {112} tii[10,21] := {60} tii[10,22] := {19} tii[10,23] := {86} tii[10,24] := {10} tii[10,25] := {59} tii[10,26] := {87} tii[10,27] := {21} tii[10,28] := {38} tii[10,29] := {104} tii[10,30] := {3} tii[10,31] := {84} tii[10,32] := {105} tii[10,33] := {58} tii[10,34] := {9} tii[10,35] := {17} tii[10,36] := {85} tii[10,37] := {96} tii[10,38] := {18} tii[10,39] := {33} tii[10,40] := {48} tii[10,41] := {116} tii[10,42] := {102} tii[10,43] := {117} tii[10,44] := {83} tii[10,45] := {103} tii[10,46] := {111} tii[10,47] := {56} tii[10,48] := {82} tii[10,49] := {94} tii[10,50] := {110} tii[10,51] := {80} tii[10,52] := {101} tii[10,53] := {31} tii[10,54] := {93} tii[10,55] := {53} tii[10,56] := {79} tii[10,57] := {76} tii[10,58] := {11} tii[10,59] := {69} tii[10,60] := {78} tii[10,61] := {24} tii[10,62] := {45} tii[10,63] := {100} tii[10,64] := {43} tii[10,65] := {77} tii[10,66] := {44} tii[10,67] := {68} tii[10,68] := {75} tii[10,69] := {63} tii[10,70] := {1} tii[10,71] := {47} tii[10,72] := {5} tii[10,73] := {65} tii[10,74] := {29} tii[10,75] := {91} tii[10,76] := {12} tii[10,77] := {64} tii[10,78] := {13} tii[10,79] := {67} tii[10,80] := {26} tii[10,81] := {15} tii[10,82] := {92} tii[10,83] := {97} tii[10,84] := {32} tii[10,85] := {41} tii[10,86] := {74} tii[10,87] := {27} tii[10,88] := {46} tii[10,89] := {55} tii[10,90] := {81} tii[10,91] := {35} tii[10,92] := {28} tii[10,93] := {37} tii[10,94] := {14} tii[10,95] := {61} tii[10,96] := {36} tii[10,97] := {39} tii[10,98] := {6} tii[10,99] := {62} tii[10,100] := {20} tii[10,101] := {73} tii[10,102] := {49} tii[10,103] := {34} tii[10,104] := {2} tii[10,105] := {57} tii[10,106] := {72} tii[10,107] := {8} tii[10,108] := {95} tii[10,109] := {30} tii[10,110] := {71} tii[10,111] := {70} tii[10,112] := {25} tii[10,113] := {52} tii[10,114] := {7} tii[10,115] := {23} tii[10,116] := {50} tii[10,117] := {0} tii[10,118] := {4} tii[10,119] := {16} tii[10,120] := {54} cell#46 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {53} tii[15,2] := {104} tii[15,3] := {124} tii[15,4] := {170} tii[15,5] := {100} tii[15,6] := {47} tii[15,7] := {88} tii[15,8] := {151} tii[15,9] := {160} tii[15,10] := {113} tii[15,11] := {200} tii[15,12] := {168} tii[15,13] := {152} tii[15,14] := {149} tii[15,15] := {184} tii[15,16] := {183} tii[15,17] := {203} tii[15,18] := {196} tii[15,19] := {72} tii[15,20] := {159} tii[15,21] := {210} tii[15,22] := {215} tii[15,23] := {181} tii[15,24] := {201} tii[15,25] := {212} tii[15,26] := {177} tii[15,27] := {214} tii[15,28] := {46} tii[15,29] := {145} tii[15,30] := {206} tii[15,31] := {213} tii[15,32] := {165} tii[15,33] := {192} tii[15,34] := {81} tii[15,35] := {97} tii[15,36] := {135} tii[15,37] := {27} tii[15,38] := {62} tii[15,39] := {11} tii[15,40] := {84} tii[15,41] := {16} tii[15,42] := {12} tii[15,43] := {96} tii[15,44] := {48} tii[15,45] := {61} tii[15,46] := {33} tii[15,47] := {22} tii[15,48] := {9} tii[15,49] := {69} tii[15,50] := {105} tii[15,51] := {29} tii[15,52] := {130} tii[15,53] := {143} tii[15,54] := {38} tii[15,55] := {144} tii[15,56] := {173} tii[15,57] := {30} tii[15,58] := {140} tii[15,59] := {163} tii[15,60] := {85} tii[15,61] := {123} tii[15,62] := {190} tii[15,63] := {103} tii[15,64] := {122} tii[15,65] := {67} tii[15,66] := {65} tii[15,67] := {205} tii[15,68] := {66} tii[15,69] := {155} tii[15,70] := {54} tii[15,71] := {141} tii[15,72] := {36} tii[15,73] := {142} tii[15,74] := {87} tii[15,75] := {171} tii[15,76] := {18} tii[15,77] := {172} tii[15,78] := {157} tii[15,79] := {189} tii[15,80] := {139} tii[15,81] := {161} tii[15,82] := {83} tii[15,83] := {101} tii[15,84] := {188} tii[15,85] := {21} tii[15,86] := {98} tii[15,87] := {128} tii[15,88] := {63} tii[15,89] := {8} tii[15,90] := {136} tii[15,91] := {162} tii[15,92] := {138} tii[15,93] := {59} tii[15,94] := {25} tii[15,95] := {94} tii[15,96] := {79} tii[15,97] := {55} tii[15,98] := {74} tii[15,99] := {56} tii[15,100] := {125} tii[15,101] := {180} tii[15,102] := {158} tii[15,103] := {112} tii[15,104] := {117} tii[15,105] := {150} tii[15,106] := {185} tii[15,107] := {89} tii[15,108] := {111} tii[15,109] := {182} tii[15,110] := {76} tii[15,111] := {127} tii[15,112] := {202} tii[15,113] := {42} tii[15,114] := {187} tii[15,115] := {209} tii[15,116] := {178} tii[15,117] := {194} tii[15,118] := {133} tii[15,119] := {109} tii[15,120] := {208} tii[15,121] := {148} tii[15,122] := {114} tii[15,123] := {40} tii[15,124] := {197} tii[15,125] := {167} tii[15,126] := {132} tii[15,127] := {110} tii[15,128] := {153} tii[15,129] := {19} tii[15,130] := {195} tii[15,131] := {211} tii[15,132] := {166} tii[15,133] := {179} tii[15,134] := {204} tii[15,135] := {92} tii[15,136] := {41} tii[15,137] := {131} tii[15,138] := {126} tii[15,139] := {186} tii[15,140] := {108} tii[15,141] := {198} tii[15,142] := {176} tii[15,143] := {193} tii[15,144] := {20} tii[15,145] := {146} tii[15,146] := {207} tii[15,147] := {7} tii[15,148] := {199} tii[15,149] := {58} tii[15,150] := {24} tii[15,151] := {93} tii[15,152] := {107} tii[15,153] := {175} tii[15,154] := {78} tii[15,155] := {49} tii[15,156] := {118} tii[15,157] := {1} tii[15,158] := {6} tii[15,159] := {3} tii[15,160] := {23} tii[15,161] := {10} tii[15,162] := {5} tii[15,163] := {50} tii[15,164] := {82} tii[15,165] := {35} tii[15,166] := {119} tii[15,167] := {28} tii[15,168] := {34} tii[15,169] := {99} tii[15,170] := {52} tii[15,171] := {137} tii[15,172] := {17} tii[15,173] := {121} tii[15,174] := {13} tii[15,175] := {60} tii[15,176] := {95} tii[15,177] := {26} tii[15,178] := {4} tii[15,179] := {80} tii[15,180] := {45} tii[15,181] := {91} tii[15,182] := {70} tii[15,183] := {164} tii[15,184] := {68} tii[15,185] := {106} tii[15,186] := {191} tii[15,187] := {39} tii[15,188] := {31} tii[15,189] := {174} tii[15,190] := {90} tii[15,191] := {37} tii[15,192] := {86} tii[15,193] := {129} tii[15,194] := {156} tii[15,195] := {14} tii[15,196] := {102} tii[15,197] := {64} tii[15,198] := {51} tii[15,199] := {2} tii[15,200] := {120} tii[15,201] := {44} tii[15,202] := {115} tii[15,203] := {75} tii[15,204] := {57} tii[15,205] := {134} tii[15,206] := {77} tii[15,207] := {169} tii[15,208] := {32} tii[15,209] := {154} tii[15,210] := {116} tii[15,211] := {73} tii[15,212] := {15} tii[15,213] := {147} tii[15,214] := {71} tii[15,215] := {0} tii[15,216] := {43} cell#47 , |C| = 84 special orbit = [3, 2, 2, 2] special rep = [3, 2, 2, 2] , dim = 84 cell rep = phi[3,2,2,2] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[9,1] := {45} tii[9,2] := {61} tii[9,3] := {77} tii[9,4] := {83} tii[9,5] := {30} tii[9,6] := {48} tii[9,7] := {21} tii[9,8] := {68} tii[9,9] := {42} tii[9,10] := {12} tii[9,11] := {17} tii[9,12] := {54} tii[9,13] := {41} tii[9,14] := {75} tii[9,15] := {71} tii[9,16] := {62} tii[9,17] := {34} tii[9,18] := {57} tii[9,19] := {22} tii[9,20] := {31} tii[9,21] := {66} tii[9,22] := {56} tii[9,23] := {32} tii[9,24] := {81} tii[9,25] := {37} tii[9,26] := {70} tii[9,27] := {79} tii[9,28] := {49} tii[9,29] := {73} tii[9,30] := {60} tii[9,31] := {69} tii[9,32] := {82} tii[9,33] := {78} tii[9,34] := {80} tii[9,35] := {11} tii[9,36] := {5} tii[9,37] := {26} tii[9,38] := {8} tii[9,39] := {2} tii[9,40] := {39} tii[9,41] := {25} tii[9,42] := {3} tii[9,43] := {7} tii[9,44] := {51} tii[9,45] := {38} tii[9,46] := {24} tii[9,47] := {19} tii[9,48] := {23} tii[9,49] := {6} tii[9,50] := {59} tii[9,51] := {35} tii[9,52] := {9} tii[9,53] := {47} tii[9,54] := {18} tii[9,55] := {63} tii[9,56] := {58} tii[9,57] := {53} tii[9,58] := {27} tii[9,59] := {28} tii[9,60] := {40} tii[9,61] := {67} tii[9,62] := {52} tii[9,63] := {13} tii[9,64] := {20} tii[9,65] := {33} tii[9,66] := {74} tii[9,67] := {43} tii[9,68] := {65} tii[9,69] := {55} tii[9,70] := {44} tii[9,71] := {76} tii[9,72] := {64} tii[9,73] := {50} tii[9,74] := {72} tii[9,75] := {0} tii[9,76] := {1} tii[9,77] := {4} tii[9,78] := {10} tii[9,79] := {15} tii[9,80] := {16} tii[9,81] := {14} tii[9,82] := {36} tii[9,83] := {29} tii[9,84] := {46} cell#48 , |C| = 84 special orbit = [3, 2, 2, 2] special rep = [3, 2, 2, 2] , dim = 84 cell rep = phi[3,2,2,2] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[9,1] := {83} tii[9,2] := {75} tii[9,3] := {58} tii[9,4] := {38} tii[9,5] := {81} tii[9,6] := {69} tii[9,7] := {79} tii[9,8] := {48} tii[9,9] := {61} tii[9,10] := {73} tii[9,11] := {64} tii[9,12] := {55} tii[9,13] := {43} tii[9,14] := {35} tii[9,15] := {27} tii[9,16] := {16} tii[9,17] := {82} tii[9,18] := {68} tii[9,19] := {78} tii[9,20] := {71} tii[9,21] := {63} tii[9,22] := {53} tii[9,23] := {80} tii[9,24] := {24} tii[9,25] := {76} tii[9,26] := {51} tii[9,27] := {21} tii[9,28] := {67} tii[9,29] := {11} tii[9,30] := {39} tii[9,31] := {47} tii[9,32] := {34} tii[9,33] := {22} tii[9,34] := {25} tii[9,35] := {74} tii[9,36] := {66} tii[9,37] := {50} tii[9,38] := {56} tii[9,39] := {57} tii[9,40] := {46} tii[9,41] := {33} tii[9,42] := {44} tii[9,43] := {30} tii[9,44] := {32} tii[9,45] := {19} tii[9,46] := {9} tii[9,47] := {77} tii[9,48] := {70} tii[9,49] := {65} tii[9,50] := {41} tii[9,51] := {60} tii[9,52] := {54} tii[9,53] := {28} tii[9,54] := {42} tii[9,55] := {15} tii[9,56] := {36} tii[9,57] := {7} tii[9,58] := {49} tii[9,59] := {29} tii[9,60] := {3} tii[9,61] := {23} tii[9,62] := {8} tii[9,63] := {72} tii[9,64] := {62} tii[9,65] := {52} tii[9,66] := {10} tii[9,67] := {59} tii[9,68] := {4} tii[9,69] := {1} tii[9,70] := {40} tii[9,71] := {14} tii[9,72] := {5} tii[9,73] := {26} tii[9,74] := {12} tii[9,75] := {45} tii[9,76] := {31} tii[9,77] := {18} tii[9,78] := {13} tii[9,79] := {37} tii[9,80] := {20} tii[9,81] := {6} tii[9,82] := {17} tii[9,83] := {2} tii[9,84] := {0} cell#49 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {106} tii[15,2] := {180} tii[15,3] := {211} tii[15,4] := {131} tii[15,5] := {193} tii[15,6] := {183} tii[15,7] := {144} tii[15,8] := {198} tii[15,9] := {215} tii[15,10] := {124} tii[15,11] := {76} tii[15,12] := {188} tii[15,13] := {82} tii[15,14] := {160} tii[15,15] := {212} tii[15,16] := {125} tii[15,17] := {163} tii[15,18] := {197} tii[15,19] := {141} tii[15,20] := {214} tii[15,21] := {174} tii[15,22] := {196} tii[15,23] := {213} tii[15,24] := {205} tii[15,25] := {117} tii[15,26] := {186} tii[15,27] := {139} tii[15,28] := {95} tii[15,29] := {195} tii[15,30] := {96} tii[15,31] := {138} tii[15,32] := {187} tii[15,33] := {159} tii[15,34] := {137} tii[15,35] := {116} tii[15,36] := {72} tii[15,37] := {66} tii[15,38] := {154} tii[15,39] := {31} tii[15,40] := {203} tii[15,41] := {67} tii[15,42] := {112} tii[15,43] := {113} tii[15,44] := {185} tii[15,45] := {68} tii[15,46] := {114} tii[15,47] := {157} tii[15,48] := {115} tii[15,49] := {84} tii[15,50] := {45} tii[15,51] := {61} tii[15,52] := {165} tii[15,53] := {85} tii[15,54] := {107} tii[15,55] := {206} tii[15,56] := {129} tii[15,57] := {149} tii[15,58] := {90} tii[15,59] := {179} tii[15,60] := {18} tii[15,61] := {210} tii[15,62] := {146} tii[15,63] := {47} tii[15,64] := {46} tii[15,65] := {148} tii[15,66] := {170} tii[15,67] := {178} tii[15,68] := {91} tii[15,69] := {86} tii[15,70] := {181} tii[15,71] := {207} tii[15,72] := {136} tii[15,73] := {60} tii[15,74] := {201} tii[15,75] := {192} tii[15,76] := {93} tii[15,77] := {105} tii[15,78] := {87} tii[15,79] := {151} tii[15,80] := {88} tii[15,81] := {108} tii[15,82] := {202} tii[15,83] := {132} tii[15,84] := {150} tii[15,85] := {153} tii[15,86] := {194} tii[15,87] := {62} tii[15,88] := {168} tii[15,89] := {110} tii[15,90] := {169} tii[15,91] := {109} tii[15,92] := {89} tii[15,93] := {171} tii[15,94] := {152} tii[15,95] := {135} tii[15,96] := {92} tii[15,97] := {103} tii[15,98] := {145} tii[15,99] := {177} tii[15,100] := {44} tii[15,101] := {40} tii[15,102] := {83} tii[15,103] := {176} tii[15,104] := {122} tii[15,105] := {13} tii[15,106] := {126} tii[15,107] := {199} tii[15,108] := {41} tii[15,109] := {102} tii[15,110] := {81} tii[15,111] := {209} tii[15,112] := {143} tii[15,113] := {43} tii[15,114] := {127} tii[15,115] := {99} tii[15,116] := {38} tii[15,117] := {57} tii[15,118] := {162} tii[15,119] := {173} tii[15,120] := {98} tii[15,121] := {77} tii[15,122] := {189} tii[15,123] := {101} tii[15,124] := {142} tii[15,125] := {25} tii[15,126] := {161} tii[15,127] := {120} tii[15,128] := {204} tii[15,129] := {59} tii[15,130] := {58} tii[15,131] := {175} tii[15,132] := {121} tii[15,133] := {39} tii[15,134] := {164} tii[15,135] := {123} tii[15,136] := {100} tii[15,137] := {80} tii[15,138] := {208} tii[15,139] := {190} tii[15,140] := {42} tii[15,141] := {74} tii[15,142] := {118} tii[15,143] := {56} tii[15,144] := {55} tii[15,145] := {158} tii[15,146] := {97} tii[15,147] := {24} tii[15,148] := {75} tii[15,149] := {73} tii[15,150] := {54} tii[15,151] := {37} tii[15,152] := {172} tii[15,153] := {119} tii[15,154] := {12} tii[15,155] := {94} tii[15,156] := {36} tii[15,157] := {11} tii[15,158] := {35} tii[15,159] := {71} tii[15,160] := {10} tii[15,161] := {34} tii[15,162] := {9} tii[15,163] := {5} tii[15,164] := {23} tii[15,165] := {111} tii[15,166] := {52} tii[15,167] := {155} tii[15,168] := {33} tii[15,169] := {30} tii[15,170] := {184} tii[15,171] := {65} tii[15,172] := {70} tii[15,173] := {53} tii[15,174] := {32} tii[15,175] := {8} tii[15,176] := {29} tii[15,177] := {156} tii[15,178] := {69} tii[15,179] := {22} tii[15,180] := {4} tii[15,181] := {128} tii[15,182] := {166} tii[15,183] := {104} tii[15,184] := {20} tii[15,185] := {191} tii[15,186] := {147} tii[15,187] := {49} tii[15,188] := {19} tii[15,189] := {130} tii[15,190] := {28} tii[15,191] := {134} tii[15,192] := {200} tii[15,193] := {64} tii[15,194] := {167} tii[15,195] := {48} tii[15,196] := {51} tii[15,197] := {21} tii[15,198] := {182} tii[15,199] := {63} tii[15,200] := {133} tii[15,201] := {50} tii[15,202] := {2} tii[15,203] := {15} tii[15,204] := {1} tii[15,205] := {7} tii[15,206] := {79} tii[15,207] := {27} tii[15,208] := {14} tii[15,209] := {17} tii[15,210] := {3} tii[15,211] := {140} tii[15,212] := {26} tii[15,213] := {78} tii[15,214] := {16} tii[15,215] := {6} tii[15,216] := {0} cell#50 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {47} tii[14,2] := {101} tii[14,3] := {125} tii[14,4] := {82} tii[14,5] := {139} tii[14,6] := {122} tii[14,7] := {153} tii[14,8] := {152} tii[14,9] := {175} tii[14,10] := {167} tii[14,11] := {174} tii[14,12] := {181} tii[14,13] := {187} tii[14,14] := {184} tii[14,15] := {188} tii[14,16] := {45} tii[14,17] := {99} tii[14,18] := {80} tii[14,19] := {121} tii[14,20] := {120} tii[14,21] := {149} tii[14,22] := {44} tii[14,23] := {134} tii[14,24] := {148} tii[14,25] := {165} tii[14,26] := {79} tii[14,27] := {180} tii[14,28] := {116} tii[14,29] := {98} tii[14,30] := {172} tii[14,31] := {183} tii[14,32] := {135} tii[14,33] := {117} tii[14,34] := {161} tii[14,35] := {115} tii[14,36] := {179} tii[14,37] := {186} tii[14,38] := {162} tii[14,39] := {146} tii[14,40] := {171} tii[14,41] := {178} tii[14,42] := {163} tii[14,43] := {113} tii[14,44] := {144} tii[14,45] := {111} tii[14,46] := {16} tii[14,47] := {58} tii[14,48] := {42} tii[14,49] := {76} tii[14,50] := {75} tii[14,51] := {108} tii[14,52] := {93} tii[14,53] := {15} tii[14,54] := {107} tii[14,55] := {132} tii[14,56] := {41} tii[14,57] := {160} tii[14,58] := {71} tii[14,59] := {142} tii[14,60] := {57} tii[14,61] := {170} tii[14,62] := {94} tii[14,63] := {72} tii[14,64] := {7} tii[14,65] := {128} tii[14,66] := {70} tii[14,67] := {24} tii[14,68] := {159} tii[14,69] := {49} tii[14,70] := {177} tii[14,71] := {129} tii[14,72] := {39} tii[14,73] := {105} tii[14,74] := {141} tii[14,75] := {158} tii[14,76] := {65} tii[14,77] := {130} tii[14,78] := {50} tii[14,79] := {69} tii[14,80] := {68} tii[14,81] := {104} tii[14,82] := {103} tii[14,83] := {66} tii[14,84] := {67} tii[14,85] := {52} tii[14,86] := {157} tii[14,87] := {37} tii[14,88] := {127} tii[14,89] := {156} tii[14,90] := {63} tii[14,91] := {90} tii[14,92] := {102} tii[14,93] := {126} tii[14,94] := {91} tii[14,95] := {55} tii[14,96] := {35} tii[14,97] := {92} tii[14,98] := {61} tii[14,99] := {33} tii[14,100] := {54} tii[14,101] := {38} tii[14,102] := {10} tii[14,103] := {30} tii[14,104] := {8} tii[14,105] := {4} tii[14,106] := {18} tii[14,107] := {29} tii[14,108] := {19} tii[14,109] := {84} tii[14,110] := {60} tii[14,111] := {124} tii[14,112] := {48} tii[14,113] := {154} tii[14,114] := {140} tii[14,115] := {85} tii[14,116] := {169} tii[14,117] := {155} tii[14,118] := {25} tii[14,119] := {100} tii[14,120] := {53} tii[14,121] := {83} tii[14,122] := {86} tii[14,123] := {77} tii[14,124] := {168} tii[14,125] := {123} tii[14,126] := {182} tii[14,127] := {110} tii[14,128] := {176} tii[14,129] := {87} tii[14,130] := {114} tii[14,131] := {151} tii[14,132] := {145} tii[14,133] := {185} tii[14,134] := {112} tii[14,135] := {89} tii[14,136] := {2} tii[14,137] := {59} tii[14,138] := {6} tii[14,139] := {46} tii[14,140] := {20} tii[14,141] := {12} tii[14,142] := {138} tii[14,143] := {81} tii[14,144] := {166} tii[14,145] := {32} tii[14,146] := {21} tii[14,147] := {150} tii[14,148] := {36} tii[14,149] := {137} tii[14,150] := {62} tii[14,151] := {119} tii[14,152] := {164} tii[14,153] := {34} tii[14,154] := {173} tii[14,155] := {136} tii[14,156] := {23} tii[14,157] := {118} tii[14,158] := {11} tii[14,159] := {78} tii[14,160] := {31} tii[14,161] := {9} tii[14,162] := {147} tii[14,163] := {5} tii[14,164] := {88} tii[14,165] := {1} tii[14,166] := {28} tii[14,167] := {17} tii[14,168] := {97} tii[14,169] := {43} tii[14,170] := {133} tii[14,171] := {109} tii[14,172] := {96} tii[14,173] := {74} tii[14,174] := {131} tii[14,175] := {143} tii[14,176] := {95} tii[14,177] := {73} tii[14,178] := {27} tii[14,179] := {40} tii[14,180] := {56} tii[14,181] := {26} tii[14,182] := {106} tii[14,183] := {51} tii[14,184] := {14} tii[14,185] := {3} tii[14,186] := {13} tii[14,187] := {64} tii[14,188] := {22} tii[14,189] := {0} cell#51 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {128} tii[11,2] := {160} tii[11,3] := {161} tii[11,4] := {146} tii[11,5] := {165} tii[11,6] := {138} tii[11,7] := {82} tii[11,8] := {143} tii[11,9] := {154} tii[11,10] := {94} tii[11,11] := {137} tii[11,12] := {111} tii[11,13] := {167} tii[11,14] := {156} tii[11,15] := {166} tii[11,16] := {142} tii[11,17] := {162} tii[11,18] := {151} tii[11,19] := {133} tii[11,20] := {107} tii[11,21] := {104} tii[11,22] := {42} tii[11,23] := {131} tii[11,24] := {132} tii[11,25] := {103} tii[11,26] := {72} tii[11,27] := {118} tii[11,28] := {70} tii[11,29] := {57} tii[11,30] := {148} tii[11,31] := {140} tii[11,32] := {100} tii[11,33] := {150} tii[11,34] := {67} tii[11,35] := {117} tii[11,36] := {31} tii[11,37] := {127} tii[11,38] := {68} tii[11,39] := {87} tii[11,40] := {99} tii[11,41] := {130} tii[11,42] := {59} tii[11,43] := {102} tii[11,44] := {30} tii[11,45] := {155} tii[11,46] := {147} tii[11,47] := {98} tii[11,48] := {139} tii[11,49] := {126} tii[11,50] := {115} tii[11,51] := {85} tii[11,52] := {116} tii[11,53] := {52} tii[11,54] := {149} tii[11,55] := {86} tii[11,56] := {53} tii[11,57] := {97} tii[11,58] := {159} tii[11,59] := {124} tii[11,60] := {51} tii[11,61] := {121} tii[11,62] := {145} tii[11,63] := {95} tii[11,64] := {123} tii[11,65] := {84} tii[11,66] := {92} tii[11,67] := {50} tii[11,68] := {61} tii[11,69] := {163} tii[11,70] := {112} tii[11,71] := {158} tii[11,72] := {122} tii[11,73] := {153} tii[11,74] := {135} tii[11,75] := {80} tii[11,76] := {144} tii[11,77] := {63} tii[11,78] := {109} tii[11,79] := {113} tii[11,80] := {136} tii[11,81] := {47} tii[11,82] := {81} tii[11,83] := {77} tii[11,84] := {120} tii[11,85] := {35} tii[11,86] := {110} tii[11,87] := {48} tii[11,88] := {78} tii[11,89] := {79} tii[11,90] := {46} tii[11,91] := {62} tii[11,92] := {21} tii[11,93] := {164} tii[11,94] := {157} tii[11,95] := {152} tii[11,96] := {141} tii[11,97] := {134} tii[11,98] := {108} tii[11,99] := {119} tii[11,100] := {76} tii[11,101] := {20} tii[11,102] := {44} tii[11,103] := {19} tii[11,104] := {73} tii[11,105] := {14} tii[11,106] := {40} tii[11,107] := {106} tii[11,108] := {74} tii[11,109] := {33} tii[11,110] := {41} tii[11,111] := {13} tii[11,112] := {17} tii[11,113] := {75} tii[11,114] := {18} tii[11,115] := {60} tii[11,116] := {32} tii[11,117] := {105} tii[11,118] := {12} tii[11,119] := {88} tii[11,120] := {55} tii[11,121] := {37} tii[11,122] := {89} tii[11,123] := {101} tii[11,124] := {38} tii[11,125] := {27} tii[11,126] := {56} tii[11,127] := {69} tii[11,128] := {16} tii[11,129] := {39} tii[11,130] := {28} tii[11,131] := {54} tii[11,132] := {90} tii[11,133] := {26} tii[11,134] := {129} tii[11,135] := {36} tii[11,136] := {58} tii[11,137] := {9} tii[11,138] := {71} tii[11,139] := {29} tii[11,140] := {10} tii[11,141] := {8} tii[11,142] := {11} tii[11,143] := {66} tii[11,144] := {25} tii[11,145] := {125} tii[11,146] := {64} tii[11,147] := {96} tii[11,148] := {65} tii[11,149] := {114} tii[11,150] := {22} tii[11,151] := {91} tii[11,152] := {83} tii[11,153] := {23} tii[11,154] := {34} tii[11,155] := {49} tii[11,156] := {24} tii[11,157] := {93} tii[11,158] := {45} tii[11,159] := {15} tii[11,160] := {7} tii[11,161] := {6} tii[11,162] := {5} tii[11,163] := {2} tii[11,164] := {43} tii[11,165] := {3} tii[11,166] := {1} tii[11,167] := {4} tii[11,168] := {0} cell#52 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {121} tii[8,2] := {148} tii[8,3] := {161} tii[8,4] := {99} tii[8,5] := {131} tii[8,6] := {76} tii[8,7] := {156} tii[8,8] := {109} tii[8,9] := {54} tii[8,10] := {62} tii[8,11] := {129} tii[8,12] := {108} tii[8,13] := {160} tii[8,14] := {154} tii[8,15] := {143} tii[8,16] := {72} tii[8,17] := {106} tii[8,18] := {50} tii[8,19] := {142} tii[8,20] := {81} tii[8,21] := {33} tii[8,22] := {39} tii[8,23] := {104} tii[8,24] := {80} tii[8,25] := {37} tii[8,26] := {71} tii[8,27] := {153} tii[8,28] := {23} tii[8,29] := {30} tii[8,30] := {12} tii[8,31] := {140} tii[8,32] := {95} tii[8,33] := {123} tii[8,34] := {70} tii[8,35] := {17} tii[8,36] := {31} tii[8,37] := {118} tii[8,38] := {94} tii[8,39] := {69} tii[8,40] := {159} tii[8,41] := {151} tii[8,42] := {139} tii[8,43] := {150} tii[8,44] := {136} tii[8,45] := {116} tii[8,46] := {101} tii[8,47] := {135} tii[8,48] := {78} tii[8,49] := {88} tii[8,50] := {149} tii[8,51] := {134} tii[8,52] := {57} tii[8,53] := {100} tii[8,54] := {38} tii[8,55] := {98} tii[8,56] := {52} tii[8,57] := {112} tii[8,58] := {158} tii[8,59] := {120} tii[8,60] := {24} tii[8,61] := {132} tii[8,62] := {147} tii[8,63] := {97} tii[8,64] := {34} tii[8,65] := {53} tii[8,66] := {138} tii[8,67] := {157} tii[8,68] := {119} tii[8,69] := {96} tii[8,70] := {22} tii[8,71] := {11} tii[8,72] := {77} tii[8,73] := {45} tii[8,74] := {15} tii[8,75] := {86} tii[8,76] := {5} tii[8,77] := {35} tii[8,78] := {146} tii[8,79] := {67} tii[8,80] := {8} tii[8,81] := {110} tii[8,82] := {41} tii[8,83] := {44} tii[8,84] := {130} tii[8,85] := {16} tii[8,86] := {63} tii[8,87] := {91} tii[8,88] := {144} tii[8,89] := {2} tii[8,90] := {145} tii[8,91] := {128} tii[8,92] := {66} tii[8,93] := {84} tii[8,94] := {3} tii[8,95] := {43} tii[8,96] := {7} tii[8,97] := {85} tii[8,98] := {107} tii[8,99] := {14} tii[8,100] := {115} tii[8,101] := {155} tii[8,102] := {90} tii[8,103] := {127} tii[8,104] := {65} tii[8,105] := {42} tii[8,106] := {51} tii[8,107] := {61} tii[8,108] := {126} tii[8,109] := {19} tii[8,110] := {82} tii[8,111] := {25} tii[8,112] := {105} tii[8,113] := {40} tii[8,114] := {6} tii[8,115] := {124} tii[8,116] := {125} tii[8,117] := {58} tii[8,118] := {9} tii[8,119] := {103} tii[8,120] := {18} tii[8,121] := {59} tii[8,122] := {79} tii[8,123] := {32} tii[8,124] := {137} tii[8,125] := {141} tii[8,126] := {46} tii[8,127] := {117} tii[8,128] := {102} tii[8,129] := {93} tii[8,130] := {47} tii[8,131] := {48} tii[8,132] := {68} tii[8,133] := {152} tii[8,134] := {122} tii[8,135] := {92} tii[8,136] := {56} tii[8,137] := {64} tii[8,138] := {89} tii[8,139] := {13} tii[8,140] := {20} tii[8,141] := {113} tii[8,142] := {114} tii[8,143] := {36} tii[8,144] := {55} tii[8,145] := {0} tii[8,146] := {1} tii[8,147] := {73} tii[8,148] := {133} tii[8,149] := {4} tii[8,150] := {74} tii[8,151] := {10} tii[8,152] := {75} tii[8,153] := {21} tii[8,154] := {27} tii[8,155] := {111} tii[8,156] := {28} tii[8,157] := {87} tii[8,158] := {29} tii[8,159] := {26} tii[8,160] := {83} tii[8,161] := {60} tii[8,162] := {49} cell#53 , |C| = 216 special orbit = [4, 2, 2, 1] special rep = [4, 2, 2, 1] , dim = 216 cell rep = phi[4,2,2,1] TII depth = 3 TII multiplicity polynomial = 216*X TII subcells: tii[15,1] := {82} tii[15,2] := {165} tii[15,3] := {207} tii[15,4] := {153} tii[15,5] := {203} tii[15,6] := {170} tii[15,7] := {121} tii[15,8] := {188} tii[15,9] := {213} tii[15,10] := {146} tii[15,11] := {99} tii[15,12] := {198} tii[15,13] := {104} tii[15,14] := {175} tii[15,15] := {215} tii[15,16] := {145} tii[15,17] := {176} tii[15,18] := {187} tii[15,19] := {120} tii[15,20] := {212} tii[15,21] := {160} tii[15,22] := {189} tii[15,23] := {214} tii[15,24] := {208} tii[15,25] := {139} tii[15,26] := {196} tii[15,27] := {117} tii[15,28] := {73} tii[15,29] := {186} tii[15,30] := {74} tii[15,31] := {118} tii[15,32] := {195} tii[15,33] := {172} tii[15,34] := {116} tii[15,35] := {137} tii[15,36] := {94} tii[15,37] := {44} tii[15,38] := {130} tii[15,39] := {16} tii[15,40] := {194} tii[15,41] := {46} tii[15,42] := {89} tii[15,43] := {90} tii[15,44] := {171} tii[15,45] := {47} tii[15,46] := {91} tii[15,47] := {136} tii[15,48] := {93} tii[15,49] := {107} tii[15,50] := {63} tii[15,51] := {42} tii[15,52] := {180} tii[15,53] := {106} tii[15,54] := {84} tii[15,55] := {211} tii[15,56] := {149} tii[15,57] := {128} tii[15,58] := {113} tii[15,59] := {164} tii[15,60] := {30} tii[15,61] := {206} tii[15,62] := {125} tii[15,63] := {66} tii[15,64] := {64} tii[15,65] := {126} tii[15,66] := {185} tii[15,67] := {166} tii[15,68] := {114} tii[15,69] := {109} tii[15,70] := {167} tii[15,71] := {210} tii[15,72] := {157} tii[15,73] := {43} tii[15,74] := {192} tii[15,75] := {200} tii[15,76] := {115} tii[15,77] := {85} tii[15,78] := {108} tii[15,79] := {129} tii[15,80] := {110} tii[15,81] := {86} tii[15,82] := {193} tii[15,83] := {154} tii[15,84] := {131} tii[15,85] := {135} tii[15,86] := {202} tii[15,87] := {45} tii[15,88] := {183} tii[15,89] := {92} tii[15,90] := {182} tii[15,91] := {88} tii[15,92] := {111} tii[15,93] := {184} tii[15,94] := {133} tii[15,95] := {155} tii[15,96] := {112} tii[15,97] := {80} tii[15,98] := {123} tii[15,99] := {163} tii[15,100] := {62} tii[15,101] := {59} tii[15,102] := {105} tii[15,103] := {161} tii[15,104] := {144} tii[15,105] := {27} tii[15,106] := {148} tii[15,107] := {190} tii[15,108] := {60} tii[15,109] := {81} tii[15,110] := {103} tii[15,111] := {205} tii[15,112] := {124} tii[15,113] := {61} tii[15,114] := {147} tii[15,115] := {76} tii[15,116] := {57} tii[15,117] := {39} tii[15,118] := {177} tii[15,119] := {159} tii[15,120] := {77} tii[15,121] := {100} tii[15,122] := {199} tii[15,123] := {79} tii[15,124] := {122} tii[15,125] := {13} tii[15,126] := {174} tii[15,127] := {142} tii[15,128] := {209} tii[15,129] := {41} tii[15,130] := {40} tii[15,131] := {162} tii[15,132] := {141} tii[15,133] := {56} tii[15,134] := {178} tii[15,135] := {143} tii[15,136] := {78} tii[15,137] := {101} tii[15,138] := {204} tii[15,139] := {197} tii[15,140] := {58} tii[15,141] := {97} tii[15,142] := {140} tii[15,143] := {38} tii[15,144] := {37} tii[15,145] := {173} tii[15,146] := {75} tii[15,147] := {12} tii[15,148] := {96} tii[15,149] := {95} tii[15,150] := {36} tii[15,151] := {55} tii[15,152] := {158} tii[15,153] := {138} tii[15,154] := {24} tii[15,155] := {72} tii[15,156] := {54} tii[15,157] := {4} tii[15,158] := {21} tii[15,159] := {52} tii[15,160] := {3} tii[15,161] := {19} tii[15,162] := {2} tii[15,163] := {11} tii[15,164] := {35} tii[15,165] := {87} tii[15,166] := {71} tii[15,167] := {132} tii[15,168] := {18} tii[15,169] := {23} tii[15,170] := {169} tii[15,171] := {53} tii[15,172] := {50} tii[15,173] := {70} tii[15,174] := {17} tii[15,175] := {5} tii[15,176] := {22} tii[15,177] := {134} tii[15,178] := {49} tii[15,179] := {34} tii[15,180] := {10} tii[15,181] := {150} tii[15,182] := {181} tii[15,183] := {83} tii[15,184] := {32} tii[15,185] := {201} tii[15,186] := {127} tii[15,187] := {68} tii[15,188] := {31} tii[15,189] := {151} tii[15,190] := {20} tii[15,191] := {156} tii[15,192] := {191} tii[15,193] := {51} tii[15,194] := {179} tii[15,195] := {67} tii[15,196] := {69} tii[15,197] := {33} tii[15,198] := {168} tii[15,199] := {48} tii[15,200] := {152} tii[15,201] := {65} tii[15,202] := {9} tii[15,203] := {29} tii[15,204] := {8} tii[15,205] := {1} tii[15,206] := {102} tii[15,207] := {15} tii[15,208] := {28} tii[15,209] := {26} tii[15,210] := {7} tii[15,211] := {119} tii[15,212] := {14} tii[15,213] := {98} tii[15,214] := {25} tii[15,215] := {0} tii[15,216] := {6} cell#54 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {6} tii[14,2] := {43} tii[14,3] := {53} tii[14,4] := {18} tii[14,5] := {59} tii[14,6] := {44} tii[14,7] := {81} tii[14,8] := {80} tii[14,9] := {119} tii[14,10] := {98} tii[14,11] := {52} tii[14,12] := {135} tii[14,13] := {164} tii[14,14] := {78} tii[14,15] := {115} tii[14,16] := {47} tii[14,17] := {101} tii[14,18] := {84} tii[14,19] := {125} tii[14,20] := {124} tii[14,21] := {154} tii[14,22] := {123} tii[14,23] := {137} tii[14,24] := {83} tii[14,25] := {168} tii[14,26] := {153} tii[14,27] := {182} tii[14,28] := {176} tii[14,29] := {175} tii[14,30] := {100} tii[14,31] := {138} tii[14,32] := {185} tii[14,33] := {188} tii[14,34] := {163} tii[14,35] := {50} tii[14,36] := {180} tii[14,37] := {187} tii[14,38] := {165} tii[14,39] := {77} tii[14,40] := {114} tii[14,41] := {179} tii[14,42] := {186} tii[14,43] := {117} tii[14,44] := {149} tii[14,45] := {172} tii[14,46] := {15} tii[14,47] := {58} tii[14,48] := {41} tii[14,49] := {76} tii[14,50] := {75} tii[14,51] := {112} tii[14,52] := {94} tii[14,53] := {74} tii[14,54] := {40} tii[14,55] := {133} tii[14,56] := {111} tii[14,57] := {162} tii[14,58] := {146} tii[14,59] := {57} tii[14,60] := {145} tii[14,61] := {95} tii[14,62] := {171} tii[14,63] := {183} tii[14,64] := {39} tii[14,65] := {129} tii[14,66] := {21} tii[14,67] := {72} tii[14,68] := {160} tii[14,69] := {110} tii[14,70] := {178} tii[14,71] := {130} tii[14,72] := {109} tii[14,73] := {38} tii[14,74] := {69} tii[14,75] := {159} tii[14,76] := {144} tii[14,77] := {177} tii[14,78] := {170} tii[14,79] := {71} tii[14,80] := {70} tii[14,81] := {108} tii[14,82] := {107} tii[14,83] := {142} tii[14,84] := {143} tii[14,85] := {106} tii[14,86] := {158} tii[14,87] := {4} tii[14,88] := {127} tii[14,89] := {157} tii[14,90] := {12} tii[14,91] := {90} tii[14,92] := {34} tii[14,93] := {126} tii[14,94] := {156} tii[14,95] := {54} tii[14,96] := {35} tii[14,97] := {92} tii[14,98] := {65} tii[14,99] := {102} tii[14,100] := {128} tii[14,101] := {91} tii[14,102] := {10} tii[14,103] := {32} tii[14,104] := {61} tii[14,105] := {30} tii[14,106] := {1} tii[14,107] := {3} tii[14,108] := {2} tii[14,109] := {23} tii[14,110] := {17} tii[14,111] := {51} tii[14,112] := {7} tii[14,113] := {87} tii[14,114] := {79} tii[14,115] := {25} tii[14,116] := {116} tii[14,117] := {89} tii[14,118] := {82} tii[14,119] := {29} tii[14,120] := {121} tii[14,121] := {19} tii[14,122] := {152} tii[14,123] := {151} tii[14,124] := {99} tii[14,125] := {45} tii[14,126] := {136} tii[14,127] := {174} tii[14,128] := {120} tii[14,129] := {184} tii[14,130] := {118} tii[14,131] := {24} tii[14,132] := {150} tii[14,133] := {88} tii[14,134] := {173} tii[14,135] := {148} tii[14,136] := {13} tii[14,137] := {60} tii[14,138] := {37} tii[14,139] := {48} tii[14,140] := {68} tii[14,141] := {67} tii[14,142] := {140} tii[14,143] := {85} tii[14,144] := {169} tii[14,145] := {104} tii[14,146] := {141} tii[14,147] := {155} tii[14,148] := {36} tii[14,149] := {139} tii[14,150] := {66} tii[14,151] := {46} tii[14,152] := {167} tii[14,153] := {103} tii[14,154] := {122} tii[14,155] := {181} tii[14,156] := {64} tii[14,157] := {166} tii[14,158] := {11} tii[14,159] := {22} tii[14,160] := {33} tii[14,161] := {62} tii[14,162] := {86} tii[14,163] := {31} tii[14,164] := {147} tii[14,165] := {9} tii[14,166] := {28} tii[14,167] := {16} tii[14,168] := {97} tii[14,169] := {42} tii[14,170] := {134} tii[14,171] := {113} tii[14,172] := {96} tii[14,173] := {14} tii[14,174] := {132} tii[14,175] := {73} tii[14,176] := {161} tii[14,177] := {131} tii[14,178] := {27} tii[14,179] := {5} tii[14,180] := {56} tii[14,181] := {93} tii[14,182] := {49} tii[14,183] := {105} tii[14,184] := {55} tii[14,185] := {26} tii[14,186] := {0} tii[14,187] := {20} tii[14,188] := {63} tii[14,189] := {8} cell#55 , |C| = 168 special orbit = [3, 3, 2, 1] special rep = [3, 3, 2, 1] , dim = 168 cell rep = phi[3,3,2,1] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[11,1] := {117} tii[11,2] := {155} tii[11,3] := {115} tii[11,4] := {138} tii[11,5] := {163} tii[11,6] := {147} tii[11,7] := {95} tii[11,8] := {136} tii[11,9] := {160} tii[11,10] := {77} tii[11,11] := {145} tii[11,12] := {159} tii[11,13] := {166} tii[11,14] := {152} tii[11,15] := {167} tii[11,16] := {133} tii[11,17] := {164} tii[11,18] := {156} tii[11,19] := {141} tii[11,20] := {119} tii[11,21] := {90} tii[11,22] := {30} tii[11,23] := {118} tii[11,24] := {60} tii[11,25] := {89} tii[11,26] := {57} tii[11,27] := {132} tii[11,28] := {54} tii[11,29] := {69} tii[11,30] := {140} tii[11,31] := {150} tii[11,32] := {86} tii[11,33] := {88} tii[11,34] := {51} tii[11,35] := {130} tii[11,36] := {41} tii[11,37] := {116} tii[11,38] := {52} tii[11,39] := {149} tii[11,40] := {85} tii[11,41] := {56} tii[11,42] := {72} tii[11,43] := {27} tii[11,44] := {106} tii[11,45] := {161} tii[11,46] := {139} tii[11,47] := {83} tii[11,48] := {148} tii[11,49] := {114} tii[11,50] := {128} tii[11,51] := {100} tii[11,52] := {129} tii[11,53] := {66} tii[11,54] := {84} tii[11,55] := {101} tii[11,56] := {67} tii[11,57] := {80} tii[11,58] := {154} tii[11,59] := {111} tii[11,60] := {65} tii[11,61] := {113} tii[11,62] := {137} tii[11,63] := {78} tii[11,64] := {110} tii[11,65] := {98} tii[11,66] := {82} tii[11,67] := {127} tii[11,68] := {49} tii[11,69] := {165} tii[11,70] := {125} tii[11,71] := {153} tii[11,72] := {108} tii[11,73] := {158} tii[11,74] := {143} tii[11,75] := {96} tii[11,76] := {135} tii[11,77] := {46} tii[11,78] := {121} tii[11,79] := {123} tii[11,80] := {144} tii[11,81] := {63} tii[11,82] := {146} tii[11,83] := {92} tii[11,84] := {109} tii[11,85] := {21} tii[11,86] := {122} tii[11,87] := {124} tii[11,88] := {93} tii[11,89] := {94} tii[11,90] := {62} tii[11,91] := {45} tii[11,92] := {34} tii[11,93] := {162} tii[11,94] := {151} tii[11,95] := {157} tii[11,96] := {134} tii[11,97] := {142} tii[11,98] := {120} tii[11,99] := {107} tii[11,100] := {91} tii[11,101] := {13} tii[11,102] := {31} tii[11,103] := {12} tii[11,104] := {58} tii[11,105] := {20} tii[11,106] := {28} tii[11,107] := {33} tii[11,108] := {59} tii[11,109] := {43} tii[11,110] := {29} tii[11,111] := {75} tii[11,112] := {10} tii[11,113] := {14} tii[11,114] := {11} tii[11,115] := {74} tii[11,116] := {42} tii[11,117] := {32} tii[11,118] := {19} tii[11,119] := {104} tii[11,120] := {70} tii[11,121] := {24} tii[11,122] := {102} tii[11,123] := {87} tii[11,124] := {25} tii[11,125] := {39} tii[11,126] := {131} tii[11,127] := {53} tii[11,128] := {8} tii[11,129] := {26} tii[11,130] := {103} tii[11,131] := {68} tii[11,132] := {105} tii[11,133] := {38} tii[11,134] := {55} tii[11,135] := {23} tii[11,136] := {71} tii[11,137] := {17} tii[11,138] := {9} tii[11,139] := {40} tii[11,140] := {73} tii[11,141] := {16} tii[11,142] := {18} tii[11,143] := {50} tii[11,144] := {37} tii[11,145] := {112} tii[11,146] := {47} tii[11,147] := {79} tii[11,148] := {48} tii[11,149] := {126} tii[11,150] := {35} tii[11,151] := {81} tii[11,152] := {97} tii[11,153] := {99} tii[11,154] := {22} tii[11,155] := {64} tii[11,156] := {36} tii[11,157] := {76} tii[11,158] := {61} tii[11,159] := {7} tii[11,160] := {15} tii[11,161] := {2} tii[11,162] := {1} tii[11,163] := {6} tii[11,164] := {3} tii[11,165] := {44} tii[11,166] := {5} tii[11,167] := {0} tii[11,168] := {4} cell#56 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {121} tii[8,2] := {75} tii[8,3] := {35} tii[8,4] := {138} tii[8,5] := {97} tii[8,6] := {148} tii[8,7] := {16} tii[8,8] := {73} tii[8,9] := {129} tii[8,10] := {147} tii[8,11] := {84} tii[8,12] := {109} tii[8,13] := {29} tii[8,14] := {40} tii[8,15] := {59} tii[8,16] := {150} tii[8,17] := {117} tii[8,18] := {154} tii[8,19] := {11} tii[8,20] := {95} tii[8,21] := {141} tii[8,22] := {153} tii[8,23] := {104} tii[8,24] := {125} tii[8,25] := {161} tii[8,26] := {69} tii[8,27] := {22} tii[8,28] := {151} tii[8,29] := {159} tii[8,30] := {140} tii[8,31] := {27} tii[8,32] := {79} tii[8,33] := {43} tii[8,34] := {102} tii[8,35] := {152} tii[8,36] := {160} tii[8,37] := {103} tii[8,38] := {123} tii[8,39] := {139} tii[8,40] := {38} tii[8,41] := {45} tii[8,42] := {67} tii[8,43] := {68} tii[8,44] := {92} tii[8,45] := {115} tii[8,46] := {101} tii[8,47] := {54} tii[8,48] := {76} tii[8,49] := {51} tii[8,50] := {32} tii[8,51] := {18} tii[8,52] := {134} tii[8,53] := {99} tii[8,54] := {111} tii[8,55] := {56} tii[8,56] := {133} tii[8,57] := {74} tii[8,58] := {19} tii[8,59] := {64} tii[8,60] := {85} tii[8,61] := {50} tii[8,62] := {9} tii[8,63] := {88} tii[8,64] := {112} tii[8,65] := {100} tii[8,66] := {41} tii[8,67] := {20} tii[8,68] := {63} tii[8,69] := {55} tii[8,70] := {158} tii[8,71] := {145} tii[8,72] := {119} tii[8,73] := {48} tii[8,74] := {156} tii[8,75] := {96} tii[8,76] := {128} tii[8,77] := {108} tii[8,78] := {7} tii[8,79] := {61} tii[8,80] := {146} tii[8,81] := {72} tii[8,82] := {130} tii[8,83] := {82} tii[8,84] := {3} tii[8,85] := {157} tii[8,86] := {120} tii[8,87] := {83} tii[8,88] := {25} tii[8,89] := {110} tii[8,90] := {8} tii[8,91] := {39} tii[8,92] := {107} tii[8,93] := {49} tii[8,94] := {132} tii[8,95] := {127} tii[8,96] := {149} tii[8,97] := {98} tii[8,98] := {28} tii[8,99] := {131} tii[8,100] := {60} tii[8,101] := {17} tii[8,102] := {81} tii[8,103] := {47} tii[8,104] := {105} tii[8,105] := {80} tii[8,106] := {136} tii[8,107] := {116} tii[8,108] := {4} tii[8,109] := {124} tii[8,110] := {94} tii[8,111] := {142} tii[8,112] := {1} tii[8,113] := {137} tii[8,114] := {126} tii[8,115] := {14} tii[8,116] := {5} tii[8,117] := {70} tii[8,118] := {144} tii[8,119] := {26} tii[8,120] := {155} tii[8,121] := {118} tii[8,122] := {21} tii[8,123] := {143} tii[8,124] := {44} tii[8,125] := {12} tii[8,126] := {46} tii[8,127] := {66} tii[8,128] := {37} tii[8,129] := {90} tii[8,130] := {93} tii[8,131] := {122} tii[8,132] := {65} tii[8,133] := {23} tii[8,134] := {57} tii[8,135] := {91} tii[8,136] := {52} tii[8,137] := {31} tii[8,138] := {24} tii[8,139] := {62} tii[8,140] := {86} tii[8,141] := {33} tii[8,142] := {13} tii[8,143] := {77} tii[8,144] := {53} tii[8,145] := {89} tii[8,146] := {114} tii[8,147] := {36} tii[8,148] := {6} tii[8,149] := {135} tii[8,150] := {78} tii[8,151] := {113} tii[8,152] := {34} tii[8,153] := {87} tii[8,154] := {30} tii[8,155] := {2} tii[8,156] := {71} tii[8,157] := {15} tii[8,158] := {106} tii[8,159] := {58} tii[8,160] := {0} tii[8,161] := {10} tii[8,162] := {42} cell#57 , |C| = 42 special orbit = [2, 2, 2, 2, 1] special rep = [2, 2, 2, 2, 1] , dim = 42 cell rep = phi[2,2,2,2,1] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[5,1] := {41} tii[5,2] := {37} tii[5,3] := {31} tii[5,4] := {25} tii[5,5] := {19} tii[5,6] := {38} tii[5,7] := {34} tii[5,8] := {28} tii[5,9] := {24} tii[5,10] := {40} tii[5,11] := {17} tii[5,12] := {12} tii[5,13] := {36} tii[5,14] := {14} tii[5,15] := {39} tii[5,16] := {9} tii[5,17] := {5} tii[5,18] := {33} tii[5,19] := {27} tii[5,20] := {22} tii[5,21] := {32} tii[5,22] := {15} tii[5,23] := {10} tii[5,24] := {26} tii[5,25] := {13} tii[5,26] := {30} tii[5,27] := {23} tii[5,28] := {16} tii[5,29] := {8} tii[5,30] := {4} tii[5,31] := {35} tii[5,32] := {21} tii[5,33] := {2} tii[5,34] := {1} tii[5,35] := {18} tii[5,36] := {29} tii[5,37] := {7} tii[5,38] := {3} tii[5,39] := {20} tii[5,40] := {6} tii[5,41] := {11} tii[5,42] := {0} cell#58 , |C| = 42 special orbit = [2, 2, 2, 2, 1] special rep = [2, 2, 2, 2, 1] , dim = 42 cell rep = phi[2,2,2,2,1] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[5,1] := {19} tii[5,2] := {28} tii[5,3] := {36} tii[5,4] := {39} tii[5,5] := {41} tii[5,6] := {12} tii[5,7] := {9} tii[5,8] := {5} tii[5,9] := {27} tii[5,10] := {15} tii[5,11] := {32} tii[5,12] := {37} tii[5,13] := {10} tii[5,14] := {26} tii[5,15] := {13} tii[5,16] := {31} tii[5,17] := {25} tii[5,18] := {23} tii[5,19] := {16} tii[5,20] := {35} tii[5,21] := {21} tii[5,22] := {38} tii[5,23] := {34} tii[5,24] := {29} tii[5,25] := {40} tii[5,26] := {4} tii[5,27] := {2} tii[5,28] := {1} tii[5,29] := {18} tii[5,30] := {24} tii[5,31] := {7} tii[5,32] := {3} tii[5,33] := {17} tii[5,34] := {14} tii[5,35] := {20} tii[5,36] := {6} tii[5,37] := {33} tii[5,38] := {22} tii[5,39] := {11} tii[5,40] := {30} tii[5,41] := {0} tii[5,42] := {8} cell#59 , |C| = 84 special orbit = [3, 2, 2, 2] special rep = [3, 2, 2, 2] , dim = 84 cell rep = phi[3,2,2,2] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[9,1] := {74} tii[9,2] := {83} tii[9,3] := {78} tii[9,4] := {53} tii[9,5] := {65} tii[9,6] := {82} tii[9,7] := {51} tii[9,8] := {70} tii[9,9] := {77} tii[9,10] := {32} tii[9,11] := {50} tii[9,12] := {71} tii[9,13] := {56} tii[9,14] := {57} tii[9,15] := {46} tii[9,16] := {29} tii[9,17] := {63} tii[9,18] := {81} tii[9,19] := {47} tii[9,20] := {62} tii[9,21] := {79} tii[9,22] := {69} tii[9,23] := {61} tii[9,24] := {37} tii[9,25] := {73} tii[9,26] := {72} tii[9,27] := {27} tii[9,28] := {80} tii[9,29] := {15} tii[9,30] := {59} tii[9,31] := {68} tii[9,32] := {43} tii[9,33] := {26} tii[9,34] := {36} tii[9,35] := {35} tii[9,36] := {20} tii[9,37] := {67} tii[9,38] := {34} tii[9,39] := {10} tii[9,40] := {58} tii[9,41] := {41} tii[9,42] := {21} tii[9,43] := {12} tii[9,44] := {42} tii[9,45] := {25} tii[9,46] := {13} tii[9,47] := {49} tii[9,48] := {64} tii[9,49] := {19} tii[9,50] := {60} tii[9,51] := {76} tii[9,52] := {33} tii[9,53] := {45} tii[9,54] := {23} tii[9,55] := {30} tii[9,56] := {55} tii[9,57] := {18} tii[9,58] := {66} tii[9,59] := {39} tii[9,60] := {9} tii[9,61] := {40} tii[9,62] := {17} tii[9,63] := {31} tii[9,64] := {48} tii[9,65] := {38} tii[9,66] := {16} tii[9,67] := {75} tii[9,68] := {8} tii[9,69] := {2} tii[9,70] := {54} tii[9,71] := {22} tii[9,72] := {7} tii[9,73] := {44} tii[9,74] := {14} tii[9,75] := {4} tii[9,76] := {11} tii[9,77] := {6} tii[9,78] := {1} tii[9,79] := {52} tii[9,80] := {24} tii[9,81] := {5} tii[9,82] := {28} tii[9,83] := {3} tii[9,84] := {0} cell#60 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {120} tii[8,2] := {124} tii[8,3] := {68} tii[8,4] := {136} tii[8,5] := {139} tii[8,6] := {150} tii[8,7] := {52} tii[8,8] := {118} tii[8,9] := {158} tii[8,10] := {161} tii[8,11] := {137} tii[8,12] := {151} tii[8,13] := {79} tii[8,14] := {104} tii[8,15] := {127} tii[8,16] := {149} tii[8,17] := {109} tii[8,18] := {157} tii[8,19] := {25} tii[8,20] := {82} tii[8,21] := {145} tii[8,22] := {156} tii[8,23] := {107} tii[8,24] := {128} tii[8,25] := {148} tii[8,26] := {60} tii[8,27] := {49} tii[8,28] := {131} tii[8,29] := {147} tii[8,30] := {111} tii[8,31] := {74} tii[8,32] := {85} tii[8,33] := {102} tii[8,34] := {110} tii[8,35] := {132} tii[8,36] := {112} tii[8,37] := {59} tii[8,38] := {84} tii[8,39] := {58} tii[8,40] := {24} tii[8,41] := {45} tii[8,42] := {72} tii[8,43] := {23} tii[8,44] := {44} tii[8,45] := {22} tii[8,46] := {100} tii[8,47] := {101} tii[8,48] := {70} tii[8,49] := {42} tii[8,50] := {81} tii[8,51] := {55} tii[8,52] := {140} tii[8,53] := {95} tii[8,54] := {154} tii[8,55] := {98} tii[8,56] := {160} tii[8,57] := {67} tii[8,58] := {54} tii[8,59] := {122} tii[8,60] := {142} tii[8,61] := {99} tii[8,62] := {30} tii[8,63] := {141} tii[8,64] := {155} tii[8,65] := {143} tii[8,66] := {97} tii[8,67] := {41} tii[8,68] := {121} tii[8,69] := {96} tii[8,70] := {135} tii[8,71] := {115} tii[8,72] := {117} tii[8,73] := {38} tii[8,74] := {134} tii[8,75] := {93} tii[8,76] := {90} tii[8,77] := {152} tii[8,78] := {33} tii[8,79] := {62} tii[8,80] := {116} tii[8,81] := {119} tii[8,82] := {159} tii[8,83] := {89} tii[8,84] := {16} tii[8,85] := {91} tii[8,86] := {153} tii[8,87] := {37} tii[8,88] := {78} tii[8,89] := {65} tii[8,90] := {28} tii[8,91] := {103} tii[8,92] := {61} tii[8,93] := {94} tii[8,94] := {92} tii[8,95] := {36} tii[8,96] := {64} tii[8,97] := {138} tii[8,98] := {77} tii[8,99] := {51} tii[8,100] := {18} tii[8,101] := {53} tii[8,102] := {35} tii[8,103] := {105} tii[8,104] := {17} tii[8,105] := {10} tii[8,106] := {133} tii[8,107] := {114} tii[8,108] := {15} tii[8,109] := {129} tii[8,110] := {83} tii[8,111] := {146} tii[8,112] := {4} tii[8,113] := {130} tii[8,114] := {88} tii[8,115] := {48} tii[8,116] := {9} tii[8,117] := {57} tii[8,118] := {113} tii[8,119] := {73} tii[8,120] := {87} tii[8,121] := {108} tii[8,122] := {47} tii[8,123] := {76} tii[8,124] := {7} tii[8,125] := {26} tii[8,126] := {34} tii[8,127] := {21} tii[8,128] := {75} tii[8,129] := {6} tii[8,130] := {86} tii[8,131] := {50} tii[8,132] := {3} tii[8,133] := {8} tii[8,134] := {46} tii[8,135] := {14} tii[8,136] := {43} tii[8,137] := {20} tii[8,138] := {13} tii[8,139] := {126} tii[8,140] := {144} tii[8,141] := {71} tii[8,142] := {31} tii[8,143] := {125} tii[8,144] := {106} tii[8,145] := {40} tii[8,146] := {66} tii[8,147] := {69} tii[8,148] := {12} tii[8,149] := {39} tii[8,150] := {123} tii[8,151] := {29} tii[8,152] := {80} tii[8,153] := {11} tii[8,154] := {19} tii[8,155] := {5} tii[8,156] := {63} tii[8,157] := {56} tii[8,158] := {27} tii[8,159] := {2} tii[8,160] := {1} tii[8,161] := {32} tii[8,162] := {0} cell#61 , |C| = 70 special orbit = [5, 1, 1, 1, 1] special rep = [5, 1, 1, 1, 1] , dim = 70 cell rep = phi[5,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 70*X TII subcells: tii[19,1] := {4} tii[19,2] := {12} tii[19,3] := {25} tii[19,4] := {39} tii[19,5] := {53} tii[19,6] := {24} tii[19,7] := {38} tii[19,8] := {52} tii[19,9] := {61} tii[19,10] := {51} tii[19,11] := {60} tii[19,12] := {66} tii[19,13] := {65} tii[19,14] := {68} tii[19,15] := {69} tii[19,16] := {11} tii[19,17] := {23} tii[19,18] := {37} tii[19,19] := {50} tii[19,20] := {36} tii[19,21] := {49} tii[19,22] := {59} tii[19,23] := {58} tii[19,24] := {64} tii[19,25] := {67} tii[19,26] := {22} tii[19,27] := {35} tii[19,28] := {48} tii[19,29] := {47} tii[19,30] := {57} tii[19,31] := {63} tii[19,32] := {34} tii[19,33] := {46} tii[19,34] := {56} tii[19,35] := {45} tii[19,36] := {3} tii[19,37] := {10} tii[19,38] := {21} tii[19,39] := {33} tii[19,40] := {20} tii[19,41] := {32} tii[19,42] := {44} tii[19,43] := {43} tii[19,44] := {55} tii[19,45] := {62} tii[19,46] := {9} tii[19,47] := {19} tii[19,48] := {31} tii[19,49] := {30} tii[19,50] := {42} tii[19,51] := {54} tii[19,52] := {18} tii[19,53] := {29} tii[19,54] := {41} tii[19,55] := {28} tii[19,56] := {2} tii[19,57] := {8} tii[19,58] := {17} tii[19,59] := {16} tii[19,60] := {27} tii[19,61] := {40} tii[19,62] := {7} tii[19,63] := {15} tii[19,64] := {26} tii[19,65] := {14} tii[19,66] := {1} tii[19,67] := {6} tii[19,68] := {13} tii[19,69] := {5} tii[19,70] := {0} cell#62 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {48} tii[14,2] := {63} tii[14,3] := {128} tii[14,4] := {83} tii[14,5] := {99} tii[14,6] := {126} tii[14,7] := {162} tii[14,8] := {160} tii[14,9] := {179} tii[14,10] := {135} tii[14,11] := {180} tii[14,12] := {166} tii[14,13] := {182} tii[14,14] := {186} tii[14,15] := {188} tii[14,16] := {116} tii[14,17] := {60} tii[14,18] := {157} tii[14,19] := {120} tii[14,20] := {178} tii[14,21] := {185} tii[14,22] := {121} tii[14,23] := {96} tii[14,24] := {153} tii[14,25] := {133} tii[14,26] := {155} tii[14,27] := {165} tii[14,28] := {177} tii[14,29] := {122} tii[14,30] := {175} tii[14,31] := {184} tii[14,32] := {156} tii[14,33] := {168} tii[14,34] := {59} tii[14,35] := {118} tii[14,36] := {95} tii[14,37] := {132} tii[14,38] := {58} tii[14,39] := {150} tii[14,40] := {174} tii[14,41] := {94} tii[14,42] := {117} tii[14,43] := {172} tii[14,44] := {183} tii[14,45] := {173} tii[14,46] := {149} tii[14,47] := {29} tii[14,48] := {113} tii[14,49] := {73} tii[14,50] := {148} tii[14,51] := {171} tii[14,52] := {55} tii[14,53] := {74} tii[14,54] := {109} tii[14,55] := {91} tii[14,56] := {111} tii[14,57] := {130} tii[14,58] := {147} tii[14,59] := {145} tii[14,60] := {75} tii[14,61] := {170} tii[14,62] := {112} tii[14,63] := {138} tii[14,64] := {42} tii[14,65] := {28} tii[14,66] := {71} tii[14,67] := {78} tii[14,68] := {54} tii[14,69] := {115} tii[14,70] := {90} tii[14,71] := {27} tii[14,72] := {41} tii[14,73] := {106} tii[14,74] := {144} tii[14,75] := {53} tii[14,76] := {77} tii[14,77] := {70} tii[14,78] := {101} tii[14,79] := {30} tii[14,80] := {142} tii[14,81] := {57} tii[14,82] := {169} tii[14,83] := {143} tii[14,84] := {76} tii[14,85] := {114} tii[14,86] := {7} tii[14,87] := {38} tii[14,88] := {26} tii[14,89] := {51} tii[14,90] := {67} tii[14,91] := {6} tii[14,92] := {105} tii[14,93] := {25} tii[14,94] := {37} tii[14,95] := {3} tii[14,96] := {103} tii[14,97] := {12} tii[14,98] := {141} tii[14,99] := {104} tii[14,100] := {24} tii[14,101] := {50} tii[14,102] := {140} tii[14,103] := {102} tii[14,104] := {66} tii[14,105] := {36} tii[14,106] := {22} tii[14,107] := {11} tii[14,108] := {21} tii[14,109] := {88} tii[14,110] := {33} tii[14,111] := {129} tii[14,112] := {49} tii[14,113] := {164} tii[14,114] := {100} tii[14,115] := {87} tii[14,116] := {137} tii[14,117] := {163} tii[14,118] := {85} tii[14,119] := {62} tii[14,120] := {125} tii[14,121] := {86} tii[14,122] := {159} tii[14,123] := {84} tii[14,124] := {136} tii[14,125] := {127} tii[14,126] := {167} tii[14,127] := {124} tii[14,128] := {181} tii[14,129] := {139} tii[14,130] := {61} tii[14,131] := {161} tii[14,132] := {98} tii[14,133] := {187} tii[14,134] := {123} tii[14,135] := {158} tii[14,136] := {20} tii[14,137] := {32} tii[14,138] := {46} tii[14,139] := {47} tii[14,140] := {80} tii[14,141] := {19} tii[14,142] := {97} tii[14,143] := {82} tii[14,144] := {134} tii[14,145] := {45} tii[14,146] := {65} tii[14,147] := {154} tii[14,148] := {10} tii[14,149] := {35} tii[14,150] := {31} tii[14,151] := {119} tii[14,152] := {64} tii[14,153] := {44} tii[14,154] := {176} tii[14,155] := {93} tii[14,156] := {79} tii[14,157] := {131} tii[14,158] := {1} tii[14,159] := {81} tii[14,160] := {9} tii[14,161] := {18} tii[14,162] := {152} tii[14,163] := {43} tii[14,164] := {151} tii[14,165] := {17} tii[14,166] := {8} tii[14,167] := {16} tii[14,168] := {56} tii[14,169] := {40} tii[14,170] := {92} tii[14,171] := {110} tii[14,172] := {13} tii[14,173] := {72} tii[14,174] := {34} tii[14,175] := {146} tii[14,176] := {52} tii[14,177] := {89} tii[14,178] := {0} tii[14,179] := {39} tii[14,180] := {2} tii[14,181] := {5} tii[14,182] := {108} tii[14,183] := {107} tii[14,184] := {23} tii[14,185] := {4} tii[14,186] := {15} tii[14,187] := {69} tii[14,188] := {68} tii[14,189] := {14} cell#63 , |C| = 84 special orbit = [3, 2, 2, 2] special rep = [3, 2, 2, 2] , dim = 84 cell rep = phi[3,2,2,2] TII depth = 2 TII multiplicity polynomial = 84*X TII subcells: tii[9,1] := {54} tii[9,2] := {79} tii[9,3] := {83} tii[9,4] := {73} tii[9,5] := {39} tii[9,6] := {71} tii[9,7] := {28} tii[9,8] := {82} tii[9,9] := {60} tii[9,10] := {15} tii[9,11] := {29} tii[9,12] := {70} tii[9,13] := {56} tii[9,14] := {77} tii[9,15] := {67} tii[9,16] := {51} tii[9,17] := {43} tii[9,18] := {72} tii[9,19] := {26} tii[9,20] := {44} tii[9,21] := {78} tii[9,22] := {68} tii[9,23] := {36} tii[9,24] := {63} tii[9,25] := {55} tii[9,26] := {81} tii[9,27] := {49} tii[9,28] := {69} tii[9,29] := {32} tii[9,30] := {74} tii[9,31] := {80} tii[9,32] := {62} tii[9,33] := {47} tii[9,34] := {61} tii[9,35] := {17} tii[9,36] := {8} tii[9,37] := {46} tii[9,38] := {18} tii[9,39] := {2} tii[9,40] := {58} tii[9,41] := {41} tii[9,42] := {9} tii[9,43] := {12} tii[9,44] := {42} tii[9,45] := {25} tii[9,46] := {13} tii[9,47] := {22} tii[9,48] := {40} tii[9,49] := {7} tii[9,50] := {76} tii[9,51] := {57} tii[9,52] := {16} tii[9,53] := {65} tii[9,54] := {23} tii[9,55] := {52} tii[9,56] := {75} tii[9,57] := {35} tii[9,58] := {45} tii[9,59] := {38} tii[9,60] := {21} tii[9,61] := {66} tii[9,62] := {34} tii[9,63] := {14} tii[9,64] := {27} tii[9,65] := {37} tii[9,66] := {33} tii[9,67] := {59} tii[9,68] := {20} tii[9,69] := {10} tii[9,70] := {53} tii[9,71] := {48} tii[9,72] := {19} tii[9,73] := {64} tii[9,74] := {31} tii[9,75] := {0} tii[9,76] := {3} tii[9,77] := {6} tii[9,78] := {1} tii[9,79] := {30} tii[9,80] := {24} tii[9,81] := {5} tii[9,82] := {50} tii[9,83] := {11} tii[9,84] := {4} cell#64 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {30} tii[8,2] := {68} tii[8,3] := {119} tii[8,4] := {55} tii[8,5] := {101} tii[8,6] := {80} tii[8,7] := {141} tii[8,8] := {124} tii[8,9] := {105} tii[8,10] := {127} tii[8,11] := {142} tii[8,12] := {155} tii[8,13] := {151} tii[8,14] := {158} tii[8,15] := {161} tii[8,16] := {27} tii[8,17] := {66} tii[8,18] := {49} tii[8,19] := {115} tii[8,20] := {92} tii[8,21] := {74} tii[8,22] := {102} tii[8,23] := {116} tii[8,24] := {136} tii[8,25] := {26} tii[8,26] := {63} tii[8,27] := {132} tii[8,28] := {48} tii[8,29] := {73} tii[8,30] := {25} tii[8,31] := {148} tii[8,32] := {88} tii[8,33] := {157} tii[8,34] := {114} tii[8,35] := {47} tii[8,36] := {62} tii[8,37] := {112} tii[8,38] := {133} tii[8,39] := {113} tii[8,40] := {147} tii[8,41] := {156} tii[8,42] := {145} tii[8,43] := {146} tii[8,44] := {129} tii[8,45] := {109} tii[8,46] := {16} tii[8,47] := {52} tii[8,48] := {5} tii[8,49] := {11} tii[8,50] := {76} tii[8,51] := {51} tii[8,52] := {54} tii[8,53] := {12} tii[8,54] := {79} tii[8,55] := {98} tii[8,56] := {104} tii[8,57] := {20} tii[8,58] := {96} tii[8,59] := {120} tii[8,60] := {53} tii[8,61] := {41} tii[8,62] := {67} tii[8,63] := {140} tii[8,64] := {78} tii[8,65] := {97} tii[8,66] := {138} tii[8,67] := {95} tii[8,68] := {152} tii[8,69] := {139} tii[8,70] := {9} tii[8,71] := {24} tii[8,72] := {31} tii[8,73] := {36} tii[8,74] := {45} tii[8,75] := {43} tii[8,76] := {8} tii[8,77] := {81} tii[8,78] := {125} tii[8,79] := {58} tii[8,80] := {23} tii[8,81] := {70} tii[8,82] := {106} tii[8,83] := {85} tii[8,84] := {100} tii[8,85] := {35} tii[8,86] := {126} tii[8,87] := {83} tii[8,88] := {153} tii[8,89] := {4} tii[8,90] := {123} tii[8,91] := {160} tii[8,92] := {108} tii[8,93] := {99} tii[8,94] := {14} tii[8,95] := {84} tii[8,96] := {22} tii[8,97] := {143} tii[8,98] := {154} tii[8,99] := {44} tii[8,100] := {107} tii[8,101] := {137} tii[8,102] := {82} tii[8,103] := {159} tii[8,104] := {57} tii[8,105] := {34} tii[8,106] := {10} tii[8,107] := {19} tii[8,108] := {93} tii[8,109] := {50} tii[8,110] := {39} tii[8,111] := {75} tii[8,112] := {65} tii[8,113] := {94} tii[8,114] := {15} tii[8,115] := {134} tii[8,116] := {91} tii[8,117] := {64} tii[8,118] := {32} tii[8,119] := {150} tii[8,120] := {46} tii[8,121] := {117} tii[8,122] := {135} tii[8,123] := {72} tii[8,124] := {131} tii[8,125] := {111} tii[8,126] := {37} tii[8,127] := {110} tii[8,128] := {149} tii[8,129] := {87} tii[8,130] := {90} tii[8,131] := {89} tii[8,132] := {61} tii[8,133] := {130} tii[8,134] := {128} tii[8,135] := {86} tii[8,136] := {1} tii[8,137] := {2} tii[8,138] := {13} tii[8,139] := {33} tii[8,140] := {56} tii[8,141] := {28} tii[8,142] := {29} tii[8,143] := {77} tii[8,144] := {103} tii[8,145] := {0} tii[8,146] := {3} tii[8,147] := {69} tii[8,148] := {42} tii[8,149] := {7} tii[8,150] := {122} tii[8,151] := {21} tii[8,152] := {121} tii[8,153] := {6} tii[8,154] := {18} tii[8,155] := {71} tii[8,156] := {60} tii[8,157] := {144} tii[8,158] := {59} tii[8,159] := {17} tii[8,160] := {40} tii[8,161] := {118} tii[8,162] := {38} cell#65 , |C| = 120 special orbit = [3, 3, 1, 1, 1] special rep = [3, 3, 1, 1, 1] , dim = 120 cell rep = phi[3,3,1,1,1] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[10,1] := {59} tii[10,2] := {83} tii[10,3] := {89} tii[10,4] := {104} tii[10,5] := {115} tii[10,6] := {119} tii[10,7] := {57} tii[10,8] := {67} tii[10,9] := {79} tii[10,10] := {43} tii[10,11] := {102} tii[10,12] := {114} tii[10,13] := {56} tii[10,14] := {80} tii[10,15] := {98} tii[10,16] := {112} tii[10,17] := {118} tii[10,18] := {99} tii[10,19] := {111} tii[10,20] := {117} tii[10,21] := {32} tii[10,22] := {41} tii[10,23] := {52} tii[10,24] := {21} tii[10,25] := {77} tii[10,26] := {97} tii[10,27] := {31} tii[10,28] := {53} tii[10,29] := {73} tii[10,30] := {10} tii[10,31] := {95} tii[10,32] := {110} tii[10,33] := {74} tii[10,34] := {20} tii[10,35] := {38} tii[10,36] := {94} tii[10,37] := {109} tii[10,38] := {39} tii[10,39] := {62} tii[10,40] := {85} tii[10,41] := {93} tii[10,42] := {71} tii[10,43] := {92} tii[10,44] := {48} tii[10,45] := {70} tii[10,46] := {91} tii[10,47] := {28} tii[10,48] := {50} tii[10,49] := {72} tii[10,50] := {49} tii[10,51] := {15} tii[10,52] := {34} tii[10,53] := {69} tii[10,54] := {25} tii[10,55] := {84} tii[10,56] := {106} tii[10,57] := {58} tii[10,58] := {27} tii[10,59] := {45} tii[10,60] := {105} tii[10,61] := {42} tii[10,62] := {68} tii[10,63] := {116} tii[10,64] := {64} tii[10,65] := {108} tii[10,66] := {65} tii[10,67] := {87} tii[10,68] := {107} tii[10,69] := {33} tii[10,70] := {1} tii[10,71] := {24} tii[10,72] := {5} tii[10,73] := {82} tii[10,74] := {44} tii[10,75] := {103} tii[10,76] := {18} tii[10,77] := {88} tii[10,78] := {19} tii[10,79] := {81} tii[10,80] := {37} tii[10,81] := {23} tii[10,82] := {101} tii[10,83] := {113} tii[10,84] := {60} tii[10,85] := {66} tii[10,86] := {100} tii[10,87] := {4} tii[10,88] := {17} tii[10,89] := {35} tii[10,90] := {16} tii[10,91] := {14} tii[10,92] := {7} tii[10,93] := {55} tii[10,94] := {22} tii[10,95] := {78} tii[10,96] := {63} tii[10,97] := {54} tii[10,98] := {6} tii[10,99] := {76} tii[10,100] := {40} tii[10,101] := {96} tii[10,102] := {75} tii[10,103] := {13} tii[10,104] := {2} tii[10,105] := {30} tii[10,106] := {51} tii[10,107] := {26} tii[10,108] := {29} tii[10,109] := {61} tii[10,110] := {12} tii[10,111] := {8} tii[10,112] := {46} tii[10,113] := {90} tii[10,114] := {11} tii[10,115] := {47} tii[10,116] := {86} tii[10,117] := {0} tii[10,118] := {9} tii[10,119] := {36} tii[10,120] := {3} cell#66 , |C| = 189 special orbit = [4, 2, 1, 1, 1] special rep = [4, 2, 1, 1, 1] , dim = 189 cell rep = phi[4,2,1,1,1] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[14,1] := {48} tii[14,2] := {63} tii[14,3] := {128} tii[14,4] := {83} tii[14,5] := {32} tii[14,6] := {127} tii[14,7] := {84} tii[14,8] := {162} tii[14,9] := {181} tii[14,10] := {47} tii[14,11] := {101} tii[14,12] := {85} tii[14,13] := {124} tii[14,14] := {138} tii[14,15] := {168} tii[14,16] := {118} tii[14,17] := {13} tii[14,18] := {157} tii[14,19] := {59} tii[14,20] := {178} tii[14,21] := {186} tii[14,22] := {122} tii[14,23] := {31} tii[14,24] := {81} tii[14,25] := {60} tii[14,26] := {156} tii[14,27] := {96} tii[14,28] := {177} tii[14,29] := {176} tii[14,30] := {119} tii[14,31] := {152} tii[14,32] := {185} tii[14,33] := {188} tii[14,34] := {61} tii[14,35] := {121} tii[14,36] := {98} tii[14,37] := {136} tii[14,38] := {135} tii[14,39] := {153} tii[14,40] := {175} tii[14,41] := {167} tii[14,42] := {182} tii[14,43] := {173} tii[14,44] := {184} tii[14,45] := {174} tii[14,46] := {150} tii[14,47] := {2} tii[14,48] := {111} tii[14,49] := {27} tii[14,50] := {147} tii[14,51] := {171} tii[14,52] := {8} tii[14,53] := {73} tii[14,54] := {38} tii[14,55] := {28} tii[14,56] := {110} tii[14,57] := {56} tii[14,58] := {146} tii[14,59] := {70} tii[14,60] := {145} tii[14,61] := {106} tii[14,62] := {170} tii[14,63] := {183} tii[14,64] := {40} tii[14,65] := {29} tii[14,66] := {72} tii[14,67] := {75} tii[14,68] := {58} tii[14,69] := {115} tii[14,70] := {94} tii[14,71] := {93} tii[14,72] := {114} tii[14,73] := {107} tii[14,74] := {144} tii[14,75] := {132} tii[14,76] := {149} tii[14,77] := {165} tii[14,78] := {172} tii[14,79] := {74} tii[14,80] := {142} tii[14,81] := {113} tii[14,82] := {169} tii[14,83] := {143} tii[14,84] := {148} tii[14,85] := {112} tii[14,86] := {6} tii[14,87] := {37} tii[14,88] := {26} tii[14,89] := {54} tii[14,90] := {67} tii[14,91] := {53} tii[14,92] := {105} tii[14,93] := {90} tii[14,94] := {130} tii[14,95] := {25} tii[14,96] := {103} tii[14,97] := {52} tii[14,98] := {141} tii[14,99] := {104} tii[14,100] := {89} tii[14,101] := {51} tii[14,102] := {140} tii[14,103] := {102} tii[14,104] := {66} tii[14,105] := {36} tii[14,106] := {22} tii[14,107] := {11} tii[14,108] := {21} tii[14,109] := {88} tii[14,110] := {33} tii[14,111] := {129} tii[14,112] := {49} tii[14,113] := {164} tii[14,114] := {100} tii[14,115] := {87} tii[14,116] := {137} tii[14,117] := {163} tii[14,118] := {86} tii[14,119] := {10} tii[14,120] := {126} tii[14,121] := {20} tii[14,122] := {161} tii[14,123] := {160} tii[14,124] := {62} tii[14,125] := {46} tii[14,126] := {99} tii[14,127] := {180} tii[14,128] := {123} tii[14,129] := {187} tii[14,130] := {125} tii[14,131] := {65} tii[14,132] := {159} tii[14,133] := {139} tii[14,134] := {179} tii[14,135] := {158} tii[14,136] := {19} tii[14,137] := {3} tii[14,138] := {44} tii[14,139] := {9} tii[14,140] := {80} tii[14,141] := {79} tii[14,142] := {35} tii[14,143] := {30} tii[14,144] := {64} tii[14,145] := {117} tii[14,146] := {151} tii[14,147] := {95} tii[14,148] := {43} tii[14,149] := {97} tii[14,150] := {78} tii[14,151] := {45} tii[14,152] := {134} tii[14,153] := {116} tii[14,154] := {120} tii[14,155] := {166} tii[14,156] := {77} tii[14,157] := {133} tii[14,158] := {18} tii[14,159] := {82} tii[14,160] := {42} tii[14,161] := {76} tii[14,162] := {155} tii[14,163] := {41} tii[14,164] := {154} tii[14,165] := {17} tii[14,166] := {0} tii[14,167] := {1} tii[14,168] := {12} tii[14,169] := {7} tii[14,170] := {34} tii[14,171] := {55} tii[14,172] := {57} tii[14,173] := {16} tii[14,174] := {92} tii[14,175] := {71} tii[14,176] := {131} tii[14,177] := {91} tii[14,178] := {5} tii[14,179] := {39} tii[14,180] := {24} tii[14,181] := {50} tii[14,182] := {109} tii[14,183] := {108} tii[14,184] := {23} tii[14,185] := {4} tii[14,186] := {15} tii[14,187] := {69} tii[14,188] := {68} tii[14,189] := {14} cell#67 , |C| = 42 special orbit = [2, 2, 2, 2, 1] special rep = [2, 2, 2, 2, 1] , dim = 42 cell rep = phi[2,2,2,2,1] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[5,1] := {40} tii[5,2] := {41} tii[5,3] := {37} tii[5,4] := {30} tii[5,5] := {22} tii[5,6] := {36} tii[5,7] := {28} tii[5,8] := {18} tii[5,9] := {33} tii[5,10] := {35} tii[5,11] := {24} tii[5,12] := {16} tii[5,13] := {26} tii[5,14] := {21} tii[5,15] := {34} tii[5,16] := {13} tii[5,17] := {7} tii[5,18] := {39} tii[5,19] := {32} tii[5,20] := {29} tii[5,21] := {38} tii[5,22] := {20} tii[5,23] := {12} tii[5,24] := {31} tii[5,25] := {15} tii[5,26] := {19} tii[5,27] := {11} tii[5,28] := {5} tii[5,29] := {14} tii[5,30] := {8} tii[5,31] := {27} tii[5,32] := {10} tii[5,33] := {4} tii[5,34] := {1} tii[5,35] := {25} tii[5,36] := {17} tii[5,37] := {9} tii[5,38] := {3} tii[5,39] := {23} tii[5,40] := {6} tii[5,41] := {2} tii[5,42] := {0} cell#68 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {34} tii[4,2] := {39} tii[4,3] := {44} tii[4,4] := {47} tii[4,5] := {28} tii[4,6] := {37} tii[4,7] := {43} tii[4,8] := {32} tii[4,9] := {40} tii[4,10] := {33} tii[4,11] := {16} tii[4,12] := {26} tii[4,13] := {36} tii[4,14] := {19} tii[4,15] := {30} tii[4,16] := {20} tii[4,17] := {11} tii[4,18] := {18} tii[4,19] := {12} tii[4,20] := {6} tii[4,21] := {25} tii[4,22] := {15} tii[4,23] := {41} tii[4,24] := {24} tii[4,25] := {46} tii[4,26] := {42} tii[4,27] := {21} tii[4,28] := {29} tii[4,29] := {31} tii[4,30] := {45} tii[4,31] := {22} tii[4,32] := {14} tii[4,33] := {4} tii[4,34] := {17} tii[4,35] := {10} tii[4,36] := {5} tii[4,37] := {38} tii[4,38] := {2} tii[4,39] := {23} tii[4,40] := {1} tii[4,41] := {9} tii[4,42] := {27} tii[4,43] := {13} tii[4,44] := {3} tii[4,45] := {7} tii[4,46] := {35} tii[4,47] := {8} tii[4,48] := {0} cell#69 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {3} tii[13,2] := {9} tii[13,3] := {21} tii[13,4] := {33} tii[13,5] := {20} tii[13,6] := {32} tii[13,7] := {45} tii[13,8] := {44} tii[13,9] := {51} tii[13,10] := {55} tii[13,11] := {15} tii[13,12] := {27} tii[13,13] := {39} tii[13,14] := {38} tii[13,15] := {48} tii[13,16] := {52} tii[13,17] := {43} tii[13,18] := {50} tii[13,19] := {54} tii[13,20] := {53} tii[13,21] := {6} tii[13,22] := {14} tii[13,23] := {26} tii[13,24] := {25} tii[13,25] := {37} tii[13,26] := {46} tii[13,27] := {31} tii[13,28] := {42} tii[13,29] := {49} tii[13,30] := {47} tii[13,31] := {19} tii[13,32] := {30} tii[13,33] := {41} tii[13,34] := {36} tii[13,35] := {24} tii[13,36] := {1} tii[13,37] := {5} tii[13,38] := {13} tii[13,39] := {12} tii[13,40] := {23} tii[13,41] := {34} tii[13,42] := {18} tii[13,43] := {29} tii[13,44] := {40} tii[13,45] := {35} tii[13,46] := {8} tii[13,47] := {17} tii[13,48] := {28} tii[13,49] := {22} tii[13,50] := {11} tii[13,51] := {2} tii[13,52] := {7} tii[13,53] := {16} tii[13,54] := {10} tii[13,55] := {4} tii[13,56] := {0} cell#70 , |C| = 120 special orbit = [3, 3, 1, 1, 1] special rep = [3, 3, 1, 1, 1] , dim = 120 cell rep = phi[3,3,1,1,1] TII depth = 2 TII multiplicity polynomial = 120*X TII subcells: tii[10,1] := {36} tii[10,2] := {53} tii[10,3] := {57} tii[10,4] := {75} tii[10,5] := {96} tii[10,6] := {111} tii[10,7] := {70} tii[10,8] := {74} tii[10,9] := {90} tii[10,10] := {51} tii[10,11] := {108} tii[10,12] := {117} tii[10,13] := {71} tii[10,14] := {93} tii[10,15] := {105} tii[10,16] := {115} tii[10,17] := {119} tii[10,18] := {106} tii[10,19] := {116} tii[10,20] := {107} tii[10,21] := {89} tii[10,22] := {42} tii[10,23] := {104} tii[10,24] := {21} tii[10,25] := {86} tii[10,26] := {103} tii[10,27] := {39} tii[10,28] := {64} tii[10,29] := {114} tii[10,30] := {11} tii[10,31] := {101} tii[10,32] := {113} tii[10,33] := {84} tii[10,34] := {24} tii[10,35] := {46} tii[10,36] := {102} tii[10,37] := {85} tii[10,38] := {44} tii[10,39] := {68} tii[10,40] := {45} tii[10,41] := {118} tii[10,42] := {112} tii[10,43] := {99} tii[10,44] := {100} tii[10,45] := {82} tii[10,46] := {60} tii[10,47] := {83} tii[10,48] := {61} tii[10,49] := {38} tii[10,50] := {20} tii[10,51] := {8} tii[10,52] := {18} tii[10,53] := {37} tii[10,54] := {7} tii[10,55] := {58} tii[10,56] := {81} tii[10,57] := {33} tii[10,58] := {34} tii[10,59] := {16} tii[10,60] := {79} tii[10,61] := {54} tii[10,62] := {35} tii[10,63] := {98} tii[10,64] := {78} tii[10,65] := {80} tii[10,66] := {76} tii[10,67] := {97} tii[10,68] := {77} tii[10,69] := {50} tii[10,70] := {6} tii[10,71] := {31} tii[10,72] := {13} tii[10,73] := {94} tii[10,74] := {52} tii[10,75] := {110} tii[10,76] := {30} tii[10,77] := {95} tii[10,78] := {28} tii[10,79] := {91} tii[10,80] := {49} tii[10,81] := {32} tii[10,82] := {109} tii[10,83] := {92} tii[10,84] := {29} tii[10,85] := {72} tii[10,86] := {73} tii[10,87] := {48} tii[10,88] := {27} tii[10,89] := {12} tii[10,90] := {5} tii[10,91] := {69} tii[10,92] := {47} tii[10,93] := {65} tii[10,94] := {22} tii[10,95] := {88} tii[10,96] := {66} tii[10,97] := {62} tii[10,98] := {9} tii[10,99] := {87} tii[10,100] := {40} tii[10,101] := {63} tii[10,102] := {41} tii[10,103] := {67} tii[10,104] := {3} tii[10,105] := {43} tii[10,106] := {23} tii[10,107] := {26} tii[10,108] := {10} tii[10,109] := {25} tii[10,110] := {4} tii[10,111] := {2} tii[10,112] := {19} tii[10,113] := {59} tii[10,114] := {17} tii[10,115] := {56} tii[10,116] := {55} tii[10,117] := {1} tii[10,118] := {15} tii[10,119] := {14} tii[10,120] := {0} cell#71 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {101} tii[8,2] := {149} tii[8,3] := {103} tii[8,4] := {126} tii[8,5] := {158} tii[8,6] := {94} tii[8,7] := {80} tii[8,8] := {146} tii[8,9] := {60} tii[8,10] := {95} tii[8,11] := {152} tii[8,12] := {136} tii[8,13] := {110} tii[8,14] := {129} tii[8,15] := {98} tii[8,16] := {142} tii[8,17] := {161} tii[8,18] := {120} tii[8,19] := {42} tii[8,20] := {155} tii[8,21] := {90} tii[8,22] := {121} tii[8,23] := {159} tii[8,24] := {151} tii[8,25] := {107} tii[8,26] := {150} tii[8,27] := {74} tii[8,28] := {75} tii[8,29] := {108} tii[8,30] := {43} tii[8,31] := {87} tii[8,32] := {154} tii[8,33] := {54} tii[8,34] := {140} tii[8,35] := {76} tii[8,36] := {88} tii[8,37] := {160} tii[8,38] := {153} tii[8,39] := {139} tii[8,40] := {106} tii[8,41] := {116} tii[8,42] := {85} tii[8,43] := {138} tii[8,44] := {115} tii[8,45] := {84} tii[8,46] := {70} tii[8,47] := {132} tii[8,48] := {38} tii[8,49] := {71} tii[8,50] := {105} tii[8,51] := {72} tii[8,52] := {65} tii[8,53] := {67} tii[8,54] := {35} tii[8,55] := {130} tii[8,56] := {66} tii[8,57] := {102} tii[8,58] := {69} tii[8,59] := {137} tii[8,60] := {14} tii[8,61] := {131} tii[8,62] := {37} tii[8,63] := {113} tii[8,64] := {36} tii[8,65] := {49} tii[8,66] := {114} tii[8,67] := {68} tii[8,68] := {83} tii[8,69] := {50} tii[8,70] := {77} tii[8,71] := {45} tii[8,72] := {96} tii[8,73] := {134} tii[8,74] := {78} tii[8,75] := {127} tii[8,76] := {22} tii[8,77] := {31} tii[8,78] := {48} tii[8,79] := {145} tii[8,80] := {46} tii[8,81] := {147} tii[8,82] := {61} tii[8,83] := {124} tii[8,84] := {24} tii[8,85] := {58} tii[8,86] := {81} tii[8,87] := {157} tii[8,88] := {99} tii[8,89] := {5} tii[8,90] := {47} tii[8,91] := {64} tii[8,92] := {144} tii[8,93] := {125} tii[8,94] := {23} tii[8,95] := {123} tii[8,96] := {30} tii[8,97] := {112} tii[8,98] := {32} tii[8,99] := {59} tii[8,100] := {148} tii[8,101] := {79} tii[8,102] := {128} tii[8,103] := {62} tii[8,104] := {97} tii[8,105] := {63} tii[8,106] := {122} tii[8,107] := {143} tii[8,108] := {20} tii[8,109] := {57} tii[8,110] := {156} tii[8,111] := {91} tii[8,112] := {4} tii[8,113] := {111} tii[8,114] := {21} tii[8,115] := {55} tii[8,116] := {19} tii[8,117] := {141} tii[8,118] := {44} tii[8,119] := {29} tii[8,120] := {56} tii[8,121] := {135} tii[8,122] := {9} tii[8,123] := {89} tii[8,124] := {117} tii[8,125] := {41} tii[8,126] := {133} tii[8,127] := {86} tii[8,128] := {27} tii[8,129] := {53} tii[8,130] := {118} tii[8,131] := {119} tii[8,132] := {28} tii[8,133] := {73} tii[8,134] := {51} tii[8,135] := {52} tii[8,136] := {18} tii[8,137] := {40} tii[8,138] := {17} tii[8,139] := {3} tii[8,140] := {16} tii[8,141] := {104} tii[8,142] := {39} tii[8,143] := {26} tii[8,144] := {8} tii[8,145] := {1} tii[8,146] := {7} tii[8,147] := {100} tii[8,148] := {15} tii[8,149] := {13} tii[8,150] := {82} tii[8,151] := {34} tii[8,152] := {25} tii[8,153] := {12} tii[8,154] := {109} tii[8,155] := {6} tii[8,156] := {92} tii[8,157] := {11} tii[8,158] := {93} tii[8,159] := {33} tii[8,160] := {0} tii[8,161] := {2} tii[8,162] := {10} cell#72 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {35} tii[7,2] := {62} tii[7,3] := {55} tii[7,4] := {78} tii[7,5] := {75} tii[7,6] := {91} tii[7,7] := {92} tii[7,8] := {102} tii[7,9] := {41} tii[7,10] := {72} tii[7,11] := {59} tii[7,12] := {77} tii[7,13] := {42} tii[7,14] := {88} tii[7,15] := {101} tii[7,16] := {60} tii[7,17] := {73} tii[7,18] := {99} tii[7,19] := {104} tii[7,20] := {100} tii[7,21] := {25} tii[7,22] := {51} tii[7,23] := {39} tii[7,24] := {58} tii[7,25] := {69} tii[7,26] := {26} tii[7,27] := {87} tii[7,28] := {40} tii[7,29] := {52} tii[7,30] := {13} tii[7,31] := {85} tii[7,32] := {24} tii[7,33] := {98} tii[7,34] := {86} tii[7,35] := {33} tii[7,36] := {50} tii[7,37] := {96} tii[7,38] := {103} tii[7,39] := {97} tii[7,40] := {84} tii[7,41] := {11} tii[7,42] := {31} tii[7,43] := {21} tii[7,44] := {37} tii[7,45] := {47} tii[7,46] := {12} tii[7,47] := {67} tii[7,48] := {22} tii[7,49] := {32} tii[7,50] := {4} tii[7,51] := {65} tii[7,52] := {83} tii[7,53] := {10} tii[7,54] := {66} tii[7,55] := {16} tii[7,56] := {30} tii[7,57] := {2} tii[7,58] := {81} tii[7,59] := {5} tii[7,60] := {95} tii[7,61] := {9} tii[7,62] := {82} tii[7,63] := {64} tii[7,64] := {20} tii[7,65] := {36} tii[7,66] := {94} tii[7,67] := {80} tii[7,68] := {63} tii[7,69] := {45} tii[7,70] := {29} tii[7,71] := {18} tii[7,72] := {28} tii[7,73] := {56} tii[7,74] := {44} tii[7,75] := {76} tii[7,76] := {79} tii[7,77] := {27} tii[7,78] := {61} tii[7,79] := {43} tii[7,80] := {93} tii[7,81] := {54} tii[7,82] := {74} tii[7,83] := {6} tii[7,84] := {53} tii[7,85] := {14} tii[7,86] := {89} tii[7,87] := {23} tii[7,88] := {90} tii[7,89] := {38} tii[7,90] := {57} tii[7,91] := {0} tii[7,92] := {34} tii[7,93] := {1} tii[7,94] := {3} tii[7,95] := {70} tii[7,96] := {8} tii[7,97] := {71} tii[7,98] := {19} tii[7,99] := {68} tii[7,100] := {7} tii[7,101] := {17} tii[7,102] := {48} tii[7,103] := {49} tii[7,104] := {46} tii[7,105] := {15} cell#73 , |C| = 56 special orbit = [4, 1, 1, 1, 1, 1] special rep = [4, 1, 1, 1, 1, 1] , dim = 56 cell rep = phi[4,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 56*X TII subcells: tii[13,1] := {1} tii[13,2] := {6} tii[13,3] := {15} tii[13,4] := {27} tii[13,5] := {14} tii[13,6] := {26} tii[13,7] := {39} tii[13,8] := {38} tii[13,9] := {48} tii[13,10] := {53} tii[13,11] := {21} tii[13,12] := {33} tii[13,13] := {45} tii[13,14] := {44} tii[13,15] := {51} tii[13,16] := {55} tii[13,17] := {37} tii[13,18] := {47} tii[13,19] := {52} tii[13,20] := {54} tii[13,21] := {9} tii[13,22] := {20} tii[13,23] := {32} tii[13,24] := {31} tii[13,25] := {43} tii[13,26] := {50} tii[13,27] := {25} tii[13,28] := {36} tii[13,29] := {46} tii[13,30] := {49} tii[13,31] := {13} tii[13,32] := {24} tii[13,33] := {35} tii[13,34] := {42} tii[13,35] := {30} tii[13,36] := {3} tii[13,37] := {8} tii[13,38] := {19} tii[13,39] := {18} tii[13,40] := {29} tii[13,41] := {41} tii[13,42] := {12} tii[13,43] := {23} tii[13,44] := {34} tii[13,45] := {40} tii[13,46] := {5} tii[13,47] := {11} tii[13,48] := {22} tii[13,49] := {28} tii[13,50] := {17} tii[13,51] := {0} tii[13,52] := {4} tii[13,53] := {10} tii[13,54] := {16} tii[13,55] := {7} tii[13,56] := {2} cell#74 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {34} tii[7,2] := {42} tii[7,3] := {53} tii[7,4] := {27} tii[7,5] := {73} tii[7,6] := {90} tii[7,7] := {35} tii[7,8] := {55} tii[7,9] := {69} tii[7,10] := {11} tii[7,11] := {88} tii[7,12] := {100} tii[7,13] := {72} tii[7,14] := {17} tii[7,15] := {32} tii[7,16] := {89} tii[7,17] := {101} tii[7,18] := {33} tii[7,19] := {51} tii[7,20] := {70} tii[7,21] := {83} tii[7,22] := {6} tii[7,23] := {98} tii[7,24] := {103} tii[7,25] := {10} tii[7,26] := {86} tii[7,27] := {23} tii[7,28] := {99} tii[7,29] := {104} tii[7,30] := {68} tii[7,31] := {24} tii[7,32] := {85} tii[7,33] := {40} tii[7,34] := {58} tii[7,35] := {97} tii[7,36] := {102} tii[7,37] := {41} tii[7,38] := {59} tii[7,39] := {77} tii[7,40] := {84} tii[7,41] := {96} tii[7,42] := {1} tii[7,43] := {81} tii[7,44] := {94} tii[7,45] := {3} tii[7,46] := {65} tii[7,47] := {8} tii[7,48] := {82} tii[7,49] := {95} tii[7,50] := {47} tii[7,51] := {9} tii[7,52] := {21} tii[7,53] := {64} tii[7,54] := {37} tii[7,55] := {80} tii[7,56] := {92} tii[7,57] := {30} tii[7,58] := {22} tii[7,59] := {48} tii[7,60] := {38} tii[7,61] := {66} tii[7,62] := {57} tii[7,63] := {63} tii[7,64] := {78} tii[7,65] := {61} tii[7,66] := {7} tii[7,67] := {19} tii[7,68] := {36} tii[7,69] := {45} tii[7,70] := {29} tii[7,71] := {18} tii[7,72] := {12} tii[7,73] := {54} tii[7,74] := {26} tii[7,75] := {74} tii[7,76] := {60} tii[7,77] := {56} tii[7,78] := {13} tii[7,79] := {76} tii[7,80] := {43} tii[7,81] := {91} tii[7,82] := {75} tii[7,83] := {52} tii[7,84] := {4} tii[7,85] := {71} tii[7,86] := {25} tii[7,87] := {87} tii[7,88] := {50} tii[7,89] := {93} tii[7,90] := {79} tii[7,91] := {16} tii[7,92] := {2} tii[7,93] := {31} tii[7,94] := {49} tii[7,95] := {14} tii[7,96] := {62} tii[7,97] := {39} tii[7,98] := {44} tii[7,99] := {67} tii[7,100] := {28} tii[7,101] := {0} tii[7,102] := {5} tii[7,103] := {20} tii[7,104] := {46} tii[7,105] := {15} cell#75 , |C| = 42 special orbit = [2, 2, 2, 2, 1] special rep = [2, 2, 2, 2, 1] , dim = 42 cell rep = phi[2,2,2,2,1] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[5,1] := {26} tii[5,2] := {32} tii[5,3] := {39} tii[5,4] := {41} tii[5,5] := {37} tii[5,6] := {19} tii[5,7] := {14} tii[5,8] := {7} tii[5,9] := {36} tii[5,10] := {21} tii[5,11] := {40} tii[5,12] := {34} tii[5,13] := {13} tii[5,14] := {35} tii[5,15] := {17} tii[5,16] := {25} tii[5,17] := {16} tii[5,18] := {29} tii[5,19] := {20} tii[5,20] := {38} tii[5,21] := {23} tii[5,22] := {31} tii[5,23] := {22} tii[5,24] := {33} tii[5,25] := {30} tii[5,26] := {8} tii[5,27] := {4} tii[5,28] := {1} tii[5,29] := {28} tii[5,30] := {18} tii[5,31] := {11} tii[5,32] := {3} tii[5,33] := {10} tii[5,34] := {5} tii[5,35] := {27} tii[5,36] := {6} tii[5,37] := {24} tii[5,38] := {9} tii[5,39] := {12} tii[5,40] := {15} tii[5,41] := {0} tii[5,42] := {2} cell#76 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {6} tii[4,2] := {14} tii[4,3] := {23} tii[4,4] := {33} tii[4,5] := {25} tii[4,6] := {34} tii[4,7] := {42} tii[4,8] := {39} tii[4,9] := {45} tii[4,10] := {47} tii[4,11] := {11} tii[4,12] := {20} tii[4,13] := {31} tii[4,14] := {28} tii[4,15] := {37} tii[4,16] := {43} tii[4,17] := {17} tii[4,18] := {27} tii[4,19] := {36} tii[4,20] := {30} tii[4,21] := {3} tii[4,22] := {1} tii[4,23] := {13} tii[4,24] := {2} tii[4,25] := {22} tii[4,26] := {12} tii[4,27] := {29} tii[4,28] := {7} tii[4,29] := {38} tii[4,30] := {24} tii[4,31] := {44} tii[4,32] := {41} tii[4,33] := {9} tii[4,34] := {15} tii[4,35] := {16} tii[4,36] := {26} tii[4,37] := {35} tii[4,38] := {18} tii[4,39] := {46} tii[4,40] := {10} tii[4,41] := {5} tii[4,42] := {21} tii[4,43] := {40} tii[4,44] := {19} tii[4,45] := {0} tii[4,46] := {8} tii[4,47] := {32} tii[4,48] := {4} cell#77 , |C| = 162 special orbit = [3, 2, 2, 1, 1] special rep = [3, 2, 2, 1, 1] , dim = 162 cell rep = phi[3,2,2,1,1] TII depth = 2 TII multiplicity polynomial = 162*X TII subcells: tii[8,1] := {48} tii[8,2] := {110} tii[8,3] := {113} tii[8,4] := {71} tii[8,5] := {129} tii[8,6] := {102} tii[8,7] := {75} tii[8,8] := {147} tii[8,9] := {133} tii[8,10] := {149} tii[8,11] := {157} tii[8,12] := {161} tii[8,13] := {105} tii[8,14] := {130} tii[8,15] := {148} tii[8,16] := {97} tii[8,17] := {145} tii[8,18] := {123} tii[8,19] := {35} tii[8,20] := {156} tii[8,21] := {91} tii[8,22] := {118} tii[8,23] := {160} tii[8,24] := {154} tii[8,25] := {96} tii[8,26] := {143} tii[8,27] := {58} tii[8,28] := {62} tii[8,29] := {93} tii[8,30] := {37} tii[8,31] := {88} tii[8,32] := {155} tii[8,33] := {117} tii[8,34] := {141} tii[8,35] := {63} tii[8,36] := {94} tii[8,37] := {142} tii[8,38] := {121} tii[8,39] := {95} tii[8,40] := {87} tii[8,41] := {116} tii[8,42] := {85} tii[8,43] := {86} tii[8,44] := {55} tii[8,45] := {32} tii[8,46] := {29} tii[8,47] := {82} tii[8,48] := {13} tii[8,49] := {30} tii[8,50] := {52} tii[8,51] := {31} tii[8,52] := {77} tii[8,53] := {27} tii[8,54] := {111} tii[8,55] := {135} tii[8,56] := {136} tii[8,57] := {49} tii[8,58] := {81} tii[8,59] := {151} tii[8,60] := {79} tii[8,61] := {78} tii[8,62] := {50} tii[8,63] := {159} tii[8,64] := {112} tii[8,65] := {137} tii[8,66] := {138} tii[8,67] := {80} tii[8,68] := {153} tii[8,69] := {139} tii[8,70] := {70} tii[8,71] := {40} tii[8,72] := {44} tii[8,73] := {127} tii[8,74] := {67} tii[8,75] := {72} tii[8,76] := {21} tii[8,77] := {108} tii[8,78] := {47} tii[8,79] := {146} tii[8,80] := {41} tii[8,81] := {103} tii[8,82] := {134} tii[8,83] := {125} tii[8,84] := {25} tii[8,85] := {68} tii[8,86] := {150} tii[8,87] := {126} tii[8,88] := {106} tii[8,89] := {8} tii[8,90] := {46} tii[8,91] := {132} tii[8,92] := {100} tii[8,93] := {128} tii[8,94] := {23} tii[8,95] := {69} tii[8,96] := {43} tii[8,97] := {158} tii[8,98] := {107} tii[8,99] := {22} tii[8,100] := {104} tii[8,101] := {74} tii[8,102] := {73} tii[8,103] := {131} tii[8,104] := {45} tii[8,105] := {24} tii[8,106] := {66} tii[8,107] := {98} tii[8,108] := {19} tii[8,109] := {61} tii[8,110] := {124} tii[8,111] := {92} tii[8,112] := {7} tii[8,113] := {119} tii[8,114] := {20} tii[8,115] := {59} tii[8,116] := {18} tii[8,117] := {144} tii[8,118] := {39} tii[8,119] := {90} tii[8,120] := {65} tii[8,121] := {140} tii[8,122] := {60} tii[8,123] := {38} tii[8,124] := {57} tii[8,125] := {34} tii[8,126] := {122} tii[8,127] := {33} tii[8,128] := {89} tii[8,129] := {17} tii[8,130] := {120} tii[8,131] := {64} tii[8,132] := {6} tii[8,133] := {56} tii[8,134] := {54} tii[8,135] := {16} tii[8,136] := {5} tii[8,137] := {15} tii[8,138] := {4} tii[8,139] := {53} tii[8,140] := {84} tii[8,141] := {51} tii[8,142] := {14} tii[8,143] := {115} tii[8,144] := {83} tii[8,145] := {3} tii[8,146] := {12} tii[8,147] := {109} tii[8,148] := {28} tii[8,149] := {26} tii[8,150] := {152} tii[8,151] := {11} tii[8,152] := {114} tii[8,153] := {2} tii[8,154] := {101} tii[8,155] := {9} tii[8,156] := {99} tii[8,157] := {76} tii[8,158] := {42} tii[8,159] := {10} tii[8,160] := {1} tii[8,161] := {36} tii[8,162] := {0} cell#78 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {22} tii[7,2] := {30} tii[7,3] := {41} tii[7,4] := {49} tii[7,5] := {62} tii[7,6] := {82} tii[7,7] := {70} tii[7,8] := {87} tii[7,9] := {60} tii[7,10] := {36} tii[7,11] := {81} tii[7,12] := {95} tii[7,13] := {96} tii[7,14] := {54} tii[7,15] := {73} tii[7,16] := {102} tii[7,17] := {104} tii[7,18] := {69} tii[7,19] := {86} tii[7,20] := {98} tii[7,21] := {77} tii[7,22] := {18} tii[7,23] := {94} tii[7,24] := {101} tii[7,25] := {34} tii[7,26] := {78} tii[7,27] := {53} tii[7,28] := {92} tii[7,29] := {100} tii[7,30] := {59} tii[7,31] := {47} tii[7,32] := {79} tii[7,33] := {67} tii[7,34] := {84} tii[7,35] := {93} tii[7,36] := {85} tii[7,37] := {28} tii[7,38] := {46} tii[7,39] := {66} tii[7,40] := {52} tii[7,41] := {91} tii[7,42] := {6} tii[7,43] := {76} tii[7,44] := {90} tii[7,45] := {16} tii[7,46] := {56} tii[7,47] := {32} tii[7,48] := {74} tii[7,49] := {89} tii[7,50] := {37} tii[7,51] := {25} tii[7,52] := {44} tii[7,53] := {57} tii[7,54] := {64} tii[7,55] := {75} tii[7,56] := {65} tii[7,57] := {20} tii[7,58] := {11} tii[7,59] := {38} tii[7,60] := {24} tii[7,61] := {58} tii[7,62] := {43} tii[7,63] := {31} tii[7,64] := {45} tii[7,65] := {26} tii[7,66] := {2} tii[7,67] := {10} tii[7,68] := {23} tii[7,69] := {14} tii[7,70] := {5} tii[7,71] := {9} tii[7,72] := {4} tii[7,73] := {42} tii[7,74] := {13} tii[7,75] := {63} tii[7,76] := {50} tii[7,77] := {83} tii[7,78] := {29} tii[7,79] := {97} tii[7,80] := {71} tii[7,81] := {103} tii[7,82] := {99} tii[7,83] := {40} tii[7,84] := {19} tii[7,85] := {61} tii[7,86] := {55} tii[7,87] := {80} tii[7,88] := {88} tii[7,89] := {68} tii[7,90] := {48} tii[7,91] := {8} tii[7,92] := {7} tii[7,93] := {21} tii[7,94] := {39} tii[7,95] := {35} tii[7,96] := {27} tii[7,97] := {72} tii[7,98] := {12} tii[7,99] := {33} tii[7,100] := {3} tii[7,101] := {1} tii[7,102] := {17} tii[7,103] := {51} tii[7,104] := {15} tii[7,105] := {0} cell#79 , |C| = 105 special orbit = [3, 2, 1, 1, 1, 1] special rep = [3, 2, 1, 1, 1, 1] , dim = 105 cell rep = phi[3,2,1,1,1,1] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[7,1] := {7} tii[7,2] := {30} tii[7,3] := {18} tii[7,4] := {48} tii[7,5] := {35} tii[7,6] := {55} tii[7,7] := {68} tii[7,8] := {86} tii[7,9] := {29} tii[7,10] := {63} tii[7,11] := {49} tii[7,12] := {71} tii[7,13] := {70} tii[7,14] := {82} tii[7,15] := {97} tii[7,16] := {87} tii[7,17] := {99} tii[7,18] := {96} tii[7,19] := {102} tii[7,20] := {104} tii[7,21] := {12} tii[7,22] := {41} tii[7,23] := {27} tii[7,24] := {47} tii[7,25] := {61} tii[7,26] := {46} tii[7,27] := {81} tii[7,28] := {67} tii[7,29] := {85} tii[7,30] := {34} tii[7,31] := {80} tii[7,32] := {53} tii[7,33] := {94} tii[7,34] := {101} tii[7,35] := {72} tii[7,36] := {84} tii[7,37] := {92} tii[7,38] := {100} tii[7,39] := {93} tii[7,40] := {79} tii[7,41] := {3} tii[7,42] := {21} tii[7,43] := {11} tii[7,44] := {26} tii[7,45] := {39} tii[7,46] := {25} tii[7,47] := {59} tii[7,48] := {44} tii[7,49] := {65} tii[7,50] := {16} tii[7,51] := {58} tii[7,52] := {77} tii[7,53] := {32} tii[7,54] := {91} tii[7,55] := {51} tii[7,56] := {64} tii[7,57] := {6} tii[7,58] := {75} tii[7,59] := {15} tii[7,60] := {90} tii[7,61] := {31} tii[7,62] := {76} tii[7,63] := {57} tii[7,64] := {43} tii[7,65] := {24} tii[7,66] := {89} tii[7,67] := {74} tii[7,68] := {56} tii[7,69] := {37} tii[7,70] := {20} tii[7,71] := {1} tii[7,72] := {4} tii[7,73] := {19} tii[7,74] := {13} tii[7,75] := {36} tii[7,76] := {50} tii[7,77] := {54} tii[7,78] := {28} tii[7,79] := {73} tii[7,80] := {69} tii[7,81] := {88} tii[7,82] := {98} tii[7,83] := {17} tii[7,84] := {42} tii[7,85] := {33} tii[7,86] := {83} tii[7,87] := {52} tii[7,88] := {103} tii[7,89] := {66} tii[7,90] := {45} tii[7,91] := {0} tii[7,92] := {22} tii[7,93] := {5} tii[7,94] := {14} tii[7,95] := {62} tii[7,96] := {23} tii[7,97] := {95} tii[7,98] := {10} tii[7,99] := {60} tii[7,100] := {2} tii[7,101] := {9} tii[7,102] := {40} tii[7,103] := {78} tii[7,104] := {38} tii[7,105] := {8} cell#80 , |C| = 42 special orbit = [2, 2, 2, 2, 1] special rep = [2, 2, 2, 2, 1] , dim = 42 cell rep = phi[2,2,2,2,1] TII depth = 2 TII multiplicity polynomial = 42*X TII subcells: tii[5,1] := {36} tii[5,2] := {39} tii[5,3] := {41} tii[5,4] := {38} tii[5,5] := {30} tii[5,6] := {29} tii[5,7] := {21} tii[5,8] := {12} tii[5,9] := {40} tii[5,10] := {28} tii[5,11] := {35} tii[5,12] := {25} tii[5,13] := {18} tii[5,14] := {27} tii[5,15] := {26} tii[5,16] := {17} tii[5,17] := {9} tii[5,18] := {33} tii[5,19] := {24} tii[5,20] := {32} tii[5,21] := {31} tii[5,22] := {23} tii[5,23] := {14} tii[5,24] := {37} tii[5,25] := {22} tii[5,26] := {13} tii[5,27] := {7} tii[5,28] := {3} tii[5,29] := {20} tii[5,30] := {11} tii[5,31] := {19} tii[5,32] := {6} tii[5,33] := {5} tii[5,34] := {2} tii[5,35] := {34} tii[5,36] := {10} tii[5,37] := {16} tii[5,38] := {4} tii[5,39] := {15} tii[5,40] := {8} tii[5,41] := {1} tii[5,42] := {0} cell#81 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {12} tii[4,2] := {19} tii[4,3] := {31} tii[4,4] := {43} tii[4,5] := {30} tii[4,6] := {41} tii[4,7] := {47} tii[4,8] := {36} tii[4,9] := {45} tii[4,10] := {37} tii[4,11] := {40} tii[4,12] := {46} tii[4,13] := {39} tii[4,14] := {44} tii[4,15] := {34} tii[4,16] := {22} tii[4,17] := {35} tii[4,18] := {23} tii[4,19] := {15} tii[4,20] := {8} tii[4,21] := {7} tii[4,22] := {3} tii[4,23] := {20} tii[4,24] := {6} tii[4,25] := {33} tii[4,26] := {21} tii[4,27] := {26} tii[4,28] := {11} tii[4,29] := {38} tii[4,30] := {32} tii[4,31] := {27} tii[4,32] := {17} tii[4,33] := {24} tii[4,34] := {18} tii[4,35] := {16} tii[4,36] := {9} tii[4,37] := {42} tii[4,38] := {5} tii[4,39] := {25} tii[4,40] := {2} tii[4,41] := {29} tii[4,42] := {28} tii[4,43] := {14} tii[4,44] := {4} tii[4,45] := {1} tii[4,46] := {13} tii[4,47] := {10} tii[4,48] := {0} cell#82 , |C| = 48 special orbit = [2, 2, 2, 1, 1, 1] special rep = [2, 2, 2, 1, 1, 1] , dim = 48 cell rep = phi[2,2,2,1,1,1] TII depth = 2 TII multiplicity polynomial = 48*X TII subcells: tii[4,1] := {9} tii[4,2] := {15} tii[4,3] := {25} tii[4,4] := {38} tii[4,5] := {24} tii[4,6] := {36} tii[4,7] := {45} tii[4,8] := {41} tii[4,9] := {47} tii[4,10] := {42} tii[4,11] := {35} tii[4,12] := {44} tii[4,13] := {34} tii[4,14] := {46} tii[4,15] := {39} tii[4,16] := {28} tii[4,17] := {40} tii[4,18] := {29} tii[4,19] := {19} tii[4,20] := {11} tii[4,21] := {5} tii[4,22] := {2} tii[4,23] := {16} tii[4,24] := {4} tii[4,25] := {27} tii[4,26] := {17} tii[4,27] := {32} tii[4,28] := {8} tii[4,29] := {43} tii[4,30] := {26} tii[4,31] := {33} tii[4,32] := {21} tii[4,33] := {30} tii[4,34] := {14} tii[4,35] := {20} tii[4,36] := {12} tii[4,37] := {37} tii[4,38] := {7} tii[4,39] := {31} tii[4,40] := {3} tii[4,41] := {23} tii[4,42] := {22} tii[4,43] := {18} tii[4,44] := {6} tii[4,45] := {0} tii[4,46] := {10} tii[4,47] := {13} tii[4,48] := {1} cell#83 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {9} tii[3,2] := {15} tii[3,3] := {22} tii[3,4] := {21} tii[3,5] := {24} tii[3,6] := {26} tii[3,7] := {14} tii[3,8] := {20} tii[3,9] := {23} tii[3,10] := {19} tii[3,11] := {8} tii[3,12] := {13} tii[3,13] := {18} tii[3,14] := {12} tii[3,15] := {10} tii[3,16] := {2} tii[3,17] := {7} tii[3,18] := {11} tii[3,19] := {6} tii[3,20] := {4} tii[3,21] := {1} tii[3,22] := {3} tii[3,23] := {16} tii[3,24] := {25} tii[3,25] := {17} tii[3,26] := {5} tii[3,27] := {0} cell#84 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {4} tii[6,2] := {11} tii[6,3] := {19} tii[6,4] := {18} tii[6,5] := {24} tii[6,6] := {27} tii[6,7] := {10} tii[6,8] := {17} tii[6,9] := {23} tii[6,10] := {25} tii[6,11] := {7} tii[6,12] := {13} tii[6,13] := {20} tii[6,14] := {22} tii[6,15] := {26} tii[6,16] := {2} tii[6,17] := {6} tii[6,18] := {12} tii[6,19] := {16} tii[6,20] := {21} tii[6,21] := {15} tii[6,22] := {0} tii[6,23] := {1} tii[6,24] := {5} tii[6,25] := {9} tii[6,26] := {14} tii[6,27] := {8} tii[6,28] := {3} cell#85 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {1} tii[3,2] := {4} tii[3,3] := {10} tii[3,4] := {9} tii[3,5] := {15} tii[3,6] := {21} tii[3,7] := {16} tii[3,8] := {22} tii[3,9] := {25} tii[3,10] := {26} tii[3,11] := {8} tii[3,12] := {14} tii[3,13] := {20} tii[3,14] := {23} tii[3,15] := {19} tii[3,16] := {3} tii[3,17] := {7} tii[3,18] := {12} tii[3,19] := {18} tii[3,20] := {11} tii[3,21] := {6} tii[3,22] := {0} tii[3,23] := {5} tii[3,24] := {17} tii[3,25] := {24} tii[3,26] := {13} tii[3,27] := {2} cell#86 , |C| = 28 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [3, 1, 1, 1, 1, 1, 1] , dim = 28 cell rep = phi[3,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 28*X TII subcells: tii[6,1] := {2} tii[6,2] := {6} tii[6,3] := {13} tii[6,4] := {12} tii[6,5] := {19} tii[6,6] := {24} tii[6,7] := {18} tii[6,8] := {23} tii[6,9] := {26} tii[6,10] := {27} tii[6,11] := {11} tii[6,12] := {17} tii[6,13] := {22} tii[6,14] := {25} tii[6,15] := {21} tii[6,16] := {5} tii[6,17] := {10} tii[6,18] := {16} tii[6,19] := {20} tii[6,20] := {15} tii[6,21] := {9} tii[6,22] := {1} tii[6,23] := {4} tii[6,24] := {8} tii[6,25] := {14} tii[6,26] := {7} tii[6,27] := {3} tii[6,28] := {0} cell#87 , |C| = 27 special orbit = [2, 2, 1, 1, 1, 1, 1] special rep = [2, 2, 1, 1, 1, 1, 1] , dim = 27 cell rep = phi[2,2,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {3} tii[3,2] := {6} tii[3,3] := {11} tii[3,4] := {10} tii[3,5] := {15} tii[3,6] := {23} tii[3,7] := {14} tii[3,8] := {21} tii[3,9] := {26} tii[3,10] := {22} tii[3,11] := {19} tii[3,12] := {25} tii[3,13] := {20} tii[3,14] := {13} tii[3,15] := {9} tii[3,16] := {24} tii[3,17] := {18} tii[3,18] := {12} tii[3,19] := {8} tii[3,20] := {4} tii[3,21] := {2} tii[3,22] := {1} tii[3,23] := {7} tii[3,24] := {17} tii[3,25] := {16} tii[3,26] := {5} tii[3,27] := {0} cell#88 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {1} tii[2,2] := {3} tii[2,3] := {5} tii[2,4] := {7} tii[2,5] := {6} tii[2,6] := {4} tii[2,7] := {2} tii[2,8] := {0} cell#89 , |C| = 8 special orbit = [2, 1, 1, 1, 1, 1, 1, 1] special rep = [2, 1, 1, 1, 1, 1, 1, 1] , dim = 8 cell rep = phi[2,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {2} tii[2,3] := {4} tii[2,4] := {6} tii[2,5] := {7} tii[2,6] := {5} tii[2,7] := {3} tii[2,8] := {1} cell#90 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [1, 1, 1, 1, 1, 1, 1, 1, 1] , dim = 1 cell rep = phi[1,1,1,1,1,1,1,1,1] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}