#### Green Polynomials for B2 #### W-rep key: # x[1] = [[], [1, 1]] , orbit = [1, 1, 1, 1, 1] , A-rep = [] # x[2] = [[], [2]] , orbit = [2, 2, 1] , A-rep = [] # x[3] = [[1], [1]] , orbit = [3, 1, 1] , A-rep = [1] # x[4] = [[1, 1], []] , orbit = [3, 1, 1] , A-rep = [-1] # x[5] = [[2], []] , orbit = [5] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 10*V[0] Z_G(x)_0 = B2 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1, 1, 1],[] : [[2], []] Qxi[B2,1,1] = (x[1])*q^4 + (x[3])*q^3 + (x[2]+x[4])*q^2 + (x[3])*q + x[5] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[B2,1,1] = (x[1])*q^4 + (x[3])*q^3 + (x[2]+x[4])*q^2 + (x[3])*q + x[5] orbit #2 : [2, 2, 1] dim = 4 A(O) = 1 , |A(O)_0| = 1 g_s = 2*V[1]+V[2]+3*V[0] Z_G(x)_0 = O1+Sp2 # Green Polys by orbit reps #2.1 : x[2] : [2, 2, 1],[] : [[], [2]] Qxi[B2,2,1] = (x[2])*q^2 + (x[3])*q + x[5] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = q^4-1 Qxc[B2,2,1] = (x[2])*q^2 + (x[3])*q + x[5] orbit #3 : [3, 1, 1] dim = 6 A(O) = Z2 , |A(O)_0| = 2 g_s = 3*V[2]+V[0] Z_G(x)_0 = O2+O1 # Green Polys by orbit reps #3.1 : x[3] : [3, 1, 1],[1] : [[1], [1]] Qxi[B2,3,1] = (x[3])*q + x[5] #3.2 : x[4] : [3, 1, 1],[-1] : [[1, 1], []] Qxi[B2,3,2] = (x[4])*q # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = 1/2*q*(q+1)*(q^4-1) Qxc[B2,3,1] = (x[3]+x[4])*q + x[5] #3.2 : c = (1) |O_x_c^F| = 1/2*q*(q-1)*(q^4-1) Qxc[B2,3,2] = (x[3]-x[4])*q + x[5] orbit #4 : [5] dim = 8 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+V[2] Z_G(x)_0 = O1 # Green Polys by orbit reps #4.1 : x[5] : [5],[] : [[2], []] Qxi[B2,4,1] = x[5] # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = q^2*(q^2-1)*(q^4-1) Qxc[B2,4,1] = x[5]