TII subcells for the Spin(5,2) x PSp(6,R) block of Spin7 # cell#0 , |C| = 4 special orbit = [5, 1, 1] special rep = [[2], [1]] , dim = 3 cell rep = phi[[2],[1]]+phi[[],[3]] TII depth = 1 TII multiplicity polynomial = 2*X+X^2 TII subcells: tii[5,1] := {0} tii[5,2] := {2} tii[5,3] := {1, 3} cell#1 , |C| = 4 special orbit = [5, 1, 1] special rep = [[2], [1]] , dim = 3 cell rep = phi[[2],[1]]+phi[[],[3]] TII depth = 1 TII multiplicity polynomial = 2*X+X^2 TII subcells: tii[5,1] := {0} tii[5,2] := {2} tii[5,3] := {1, 3} cell#2 , |C| = 5 special orbit = [3, 1, 1, 1, 1] special rep = [[1], [1, 1]] , dim = 3 cell rep = phi[[1],[1, 1]]+phi[[],[2, 1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[2,1] := {2} tii[2,2] := {1, 3} tii[2,3] := {0, 4} cell#3 , |C| = 5 special orbit = [3, 1, 1, 1, 1] special rep = [[1], [1, 1]] , dim = 3 cell rep = phi[[1],[1, 1]]+phi[[],[2, 1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[2,1] := {2} tii[2,2] := {1, 3} tii[2,3] := {0, 4} cell#4 , |C| = 3 special orbit = [3, 3, 1] special rep = [[1], [2]] , dim = 3 cell rep = phi[[1],[2]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[4,1] := {1} tii[4,2] := {2} tii[4,3] := {0} cell#5 , |C| = 5 special orbit = [3, 1, 1, 1, 1] special rep = [[1], [1, 1]] , dim = 3 cell rep = phi[[1],[1, 1]]+phi[[],[2, 1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[2,1] := {1} tii[2,2] := {2, 3} tii[2,3] := {0, 4} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}