TII subcells for the SO(5,4) x Sp(2,2) block of SO9 # cell#0 , |C| = 1 special orbit = [9] special rep = [[4], []] , dim = 1 cell rep = phi[[4],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[10,1] := {0} cell#1 , |C| = 7 special orbit = [7, 1, 1] special rep = [[3], [1]] , dim = 4 cell rep = phi[[3, 1],[]]+phi[[3],[1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[9,1] := {5, 6} tii[9,2] := {3, 4} tii[9,3] := {1, 2} tii[9,4] := {0} cell#2 , |C| = 8 special orbit = [5, 3, 1] special rep = [[2], [2]] , dim = 6 cell rep = phi[[2, 2],[]]+phi[[2],[2]] TII depth = 1 TII multiplicity polynomial = 4*X+2*X^2 TII subcells: tii[8,1] := {0, 7} tii[8,2] := {3} tii[8,3] := {6} tii[8,4] := {1, 5} tii[8,5] := {4} tii[8,6] := {2} cell#3 , |C| = 8 special orbit = [5, 2, 2] special rep = [[2, 1], [1]] , dim = 8 cell rep = phi[[2, 1],[1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[7,1] := {7} tii[7,2] := {5} tii[7,3] := {3} tii[7,4] := {6} tii[7,5] := {1} tii[7,6] := {4} tii[7,7] := {0} tii[7,8] := {2} cell#4 , |C| = 8 special orbit = [5, 2, 2] special rep = [[2, 1], [1]] , dim = 8 cell rep = phi[[2, 1],[1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[7,1] := {7} tii[7,2] := {5} tii[7,3] := {3} tii[7,4] := {6} tii[7,5] := {1} tii[7,6] := {4} tii[7,7] := {0} tii[7,8] := {2} cell#5 , |C| = 10 special orbit = [3, 2, 2, 1, 1] special rep = [[1, 1], [1, 1]] , dim = 6 cell rep = phi[[1, 1, 1],[1]]+phi[[1, 1],[1, 1]] TII depth = 1 TII multiplicity polynomial = 2*X+4*X^2 TII subcells: tii[3,1] := {7, 8} tii[3,2] := {4, 5} tii[3,3] := {1} tii[3,4] := {6, 9} tii[3,5] := {2, 3} tii[3,6] := {0}