TII subcells for the SO(6,3) x Sp(8,R) block of SO9 # cell#0 , |C| = 5 special orbit = [7, 1, 1] special rep = [[3], [1]] , dim = 4 cell rep = phi[[3],[1]]+phi[[],[4]] TII depth = 1 TII multiplicity polynomial = 3*X+X^2 TII subcells: tii[9,1] := {0} tii[9,2] := {2} tii[9,3] := {1} tii[9,4] := {3, 4} cell#1 , |C| = 10 special orbit = [5, 3, 1] special rep = [[2], [2]] , dim = 6 cell rep = phi[[2],[2]]+phi[[1],[3]] TII depth = 1 TII multiplicity polynomial = 2*X+4*X^2 TII subcells: tii[8,1] := {5} tii[8,2] := {3, 8} tii[8,3] := {7, 9} tii[8,4] := {2} tii[8,5] := {0, 4} tii[8,6] := {1, 6} cell#2 , |C| = 10 special orbit = [5, 3, 1] special rep = [[2], [2]] , dim = 6 cell rep = phi[[2],[2]]+phi[[1],[3]] TII depth = 1 TII multiplicity polynomial = 2*X+4*X^2 TII subcells: tii[8,1] := {5} tii[8,2] := {3, 8} tii[8,3] := {7, 9} tii[8,4] := {2} tii[8,5] := {0, 4} tii[8,6] := {1, 6} cell#3 , |C| = 6 special orbit = [3, 3, 3] special rep = [[1, 1], [2]] , dim = 6 cell rep = phi[[1, 1],[2]] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[5,1] := {5} tii[5,2] := {1} tii[5,3] := {3} tii[5,4] := {2} tii[5,5] := {4} tii[5,6] := {0} cell#4 , |C| = 9 special orbit = [5, 1, 1, 1, 1] special rep = [[2], [1, 1]] , dim = 6 cell rep = phi[[2],[1, 1]]+phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X+3*X^2 TII subcells: tii[6,1] := {6} tii[6,2] := {1} tii[6,3] := {4, 5} tii[6,4] := {0} tii[6,5] := {2, 3} tii[6,6] := {7, 8} cell#5 , |C| = 9 special orbit = [5, 1, 1, 1, 1] special rep = [[2], [1, 1]] , dim = 6 cell rep = phi[[2],[1, 1]]+phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X+3*X^2 TII subcells: tii[6,1] := {3} tii[6,2] := {5} tii[6,3] := {4, 8} tii[6,4] := {2} tii[6,5] := {1, 6} tii[6,6] := {0, 7} cell#6 , |C| = 9 special orbit = [5, 1, 1, 1, 1] special rep = [[2], [1, 1]] , dim = 6 cell rep = phi[[2],[1, 1]]+phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X+3*X^2 TII subcells: tii[6,1] := {3} tii[6,2] := {5} tii[6,3] := {4, 8} tii[6,4] := {2} tii[6,5] := {1, 6} tii[6,6] := {0, 7} cell#7 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {3} tii[4,2] := {5} tii[4,3] := {4} tii[4,4] := {2} tii[4,5] := {6} tii[4,6] := {7} tii[4,7] := {1} tii[4,8] := {0} cell#8 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {3} tii[4,2] := {5} tii[4,3] := {4} tii[4,4] := {2} tii[4,5] := {6} tii[4,6] := {7} tii[4,7] := {1} tii[4,8] := {0} cell#9 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {6} tii[4,2] := {7} tii[4,3] := {2} tii[4,4] := {1} tii[4,5] := {5} tii[4,6] := {4} tii[4,7] := {3} tii[4,8] := {0} cell#10 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {6} tii[4,2] := {7} tii[4,3] := {2} tii[4,4] := {1} tii[4,5] := {5} tii[4,6] := {4} tii[4,7] := {3} tii[4,8] := {0} cell#11 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {1} tii[4,2] := {3} tii[4,3] := {4} tii[4,4] := {5} tii[4,5] := {6} tii[4,6] := {7} tii[4,7] := {0} tii[4,8] := {2} cell#12 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {3} tii[2,2] := {2, 4} tii[2,3] := {1, 5} tii[2,4] := {0, 6} cell#13 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {1} tii[4,2] := {3} tii[4,3] := {4} tii[4,4] := {5} tii[4,5] := {6} tii[4,6] := {7} tii[4,7] := {0} tii[4,8] := {2} cell#14 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {3} tii[2,2] := {2, 4} tii[2,3] := {1, 5} tii[2,4] := {0, 6} cell#15 , |C| = 8 special orbit = [3, 2, 2, 1, 1] special rep = [[1, 1], [1, 1]] , dim = 6 cell rep = phi[[1, 1],[1, 1]]+phi[[],[2, 2]] TII depth = 1 TII multiplicity polynomial = 4*X+2*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {0} tii[3,5] := {1} tii[3,6] := {3, 4} cell#16 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {2} tii[2,2] := {3, 4} tii[2,3] := {1, 6} tii[2,4] := {0, 5} cell#17 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {2} tii[2,2] := {3, 4} tii[2,3] := {1, 6} tii[2,4] := {0, 5} cell#18 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#19 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}