TII subcells for the Spin(7,2) x PSp(8,R) block of Spin9 # cell#0 , |C| = 9 special orbit = [5, 1, 1, 1, 1] special rep = [[2], [1, 1]] , dim = 6 cell rep = phi[[2],[1, 1]]+phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X+3*X^2 TII subcells: tii[6,1] := {0} tii[6,2] := {4} tii[6,3] := {1, 6} tii[6,4] := {5} tii[6,5] := {3, 7} tii[6,6] := {2, 8} cell#1 , |C| = 9 special orbit = [5, 1, 1, 1, 1] special rep = [[2], [1, 1]] , dim = 6 cell rep = phi[[2],[1, 1]]+phi[[],[3, 1]] TII depth = 1 TII multiplicity polynomial = 3*X+3*X^2 TII subcells: tii[6,1] := {0} tii[6,2] := {4} tii[6,3] := {1, 6} tii[6,4] := {5} tii[6,5] := {3, 7} tii[6,6] := {2, 8} cell#2 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {3} tii[2,2] := {2, 4} tii[2,3] := {1, 5} tii[2,4] := {0, 6} cell#3 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {3} tii[2,2] := {2, 4} tii[2,3] := {1, 5} tii[2,4] := {0, 6} cell#4 , |C| = 8 special orbit = [3, 3, 1, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {1} tii[4,2] := {3} tii[4,3] := {4} tii[4,4] := {5} tii[4,5] := {6} tii[4,6] := {7} tii[4,7] := {0} tii[4,8] := {2} cell#5 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {2, 3} tii[2,3] := {4, 5} tii[2,4] := {1, 6} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}