#### Green Polynomials for B5 #### W-rep key: # x[1] = [[], [1, 1, 1, 1, 1]] , orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] , A-rep = [] # x[2] = [[], [2, 1, 1, 1]] , orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1] , A-rep = [] # x[3] = [[], [2, 2, 1]] , orbit = [2, 2, 2, 2, 1, 1, 1] , A-rep = [] # x[4] = [[1], [1, 1, 1, 1]] , orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] , A-rep = [1] # x[5] = [[1, 1, 1, 1, 1], []] , orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] , A-rep = [-1] # x[6] = [[1, 1], [1, 1, 1]] , orbit = [3, 2, 2, 1, 1, 1, 1] , A-rep = [1] # x[7] = [[1, 1, 1, 1], [1]] , orbit = [3, 2, 2, 1, 1, 1, 1] , A-rep = [-1] # x[8] = [[1, 1, 1], [1, 1]] , orbit = [3, 2, 2, 2, 2] , A-rep = [] # x[9] = [[1], [2, 1, 1]] , orbit = [3, 3, 1, 1, 1, 1, 1] , A-rep = [1] # x[10] = [[], [3, 1, 1]] , orbit = [3, 3, 1, 1, 1, 1, 1] , A-rep = [-1] # x[11] = [[1], [2, 2]] , orbit = [3, 3, 2, 2, 1] , A-rep = [1] # x[12] = [[], [3, 2]] , orbit = [3, 3, 2, 2, 1] , A-rep = [-1] # x[13] = [[1, 1], [2, 1]] , orbit = [3, 3, 3, 1, 1] , A-rep = [1] # x[14] = [[1, 1, 1], [2]] , orbit = [3, 3, 3, 1, 1] , A-rep = [-1] # x[15] = [[1], [3, 1]] , orbit = [4, 4, 1, 1, 1] , A-rep = [] # x[16] = [[1, 1], [3]] , orbit = [4, 4, 3] , A-rep = [] # x[17] = [[2], [1, 1, 1]] , orbit = [5, 1, 1, 1, 1, 1, 1] , A-rep = [1] # x[18] = [[2, 1, 1, 1], []] , orbit = [5, 1, 1, 1, 1, 1, 1] , A-rep = [-1] # x[19] = [[2, 1], [1, 1]] , orbit = [5, 2, 2, 1, 1] , A-rep = [1] # x[20] = [[2, 1, 1], [1]] , orbit = [5, 2, 2, 1, 1] , A-rep = [-1] # x[21] = [[2], [2, 1]] , orbit = [5, 3, 1, 1, 1] , A-rep = [1, 1] # x[22] = [[], [4, 1]] , orbit = [5, 3, 1, 1, 1] , A-rep = [-1, 1] # x[23] = [[2, 2, 1], []] , orbit = [5, 3, 1, 1, 1] , A-rep = [1, -1] # x[24] = [[2, 1], [2]] , orbit = [5, 3, 3] , A-rep = [1] # x[25] = [[2, 2], [1]] , orbit = [5, 3, 3] , A-rep = [-1] # x[26] = [[2], [3]] , orbit = [5, 5, 1] , A-rep = [1] # x[27] = [[1], [4]] , orbit = [5, 5, 1] , A-rep = [-1] # x[28] = [[3], [1, 1]] , orbit = [7, 1, 1, 1, 1] , A-rep = [1] # x[29] = [[3, 1, 1], []] , orbit = [7, 1, 1, 1, 1] , A-rep = [-1] # x[30] = [[3, 1], [1]] , orbit = [7, 2, 2] , A-rep = [] # x[31] = [[3], [2]] , orbit = [7, 3, 1] , A-rep = [1, 1] # x[32] = [[3, 2], []] , orbit = [7, 3, 1] , A-rep = [-1, 1] # x[33] = [[], [5]] , orbit = [7, 3, 1] , A-rep = [1, -1] # x[34] = [[4], [1]] , orbit = [9, 1, 1] , A-rep = [1] # x[35] = [[4, 1], []] , orbit = [9, 1, 1] , A-rep = [-1] # x[36] = [[5], []] , orbit = [11] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 55*V[0] Z_G(x)_0 = B5 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[] : [[5], []] Qxi[B5,1,1] = (x[1])*q^25 + (x[4])*q^24 + (x[2]+x[6])*q^23 + (x[4]+x[8]+x[9])*q^22 + (x[2]+x[3]+x[6]+x[7]+x[13]+x[17])*q^21 + (x[4]+x[5]+x[8]+2*x[9]+x[11]+x[14]+x[19])*q^20 + (x[2]+x[3]+2*x[6]+x[7]+x[10]+2*x[13]+x[17]+x[20]+x[21])*q^19 + (x[4]+2*x[8]+3*x[9]+x[11]+x[14]+x[15]+x[18]+2*x[19]+x[24])*q^18 + (x[2]+x[3]+2*x[6]+x[7]+x[10]+x[12]+3*x[13]+x[16]+2*x[17]+2*x[20]+2*x[21]+x[25])*q^17 + (x[4]+2*x[8]+3*x[9]+2*x[11]+2*x[14]+2*x[15]+x[18]+3*x[19]+x[23]+2*x[24]+x[28])*q^16 + (x[3]+2*x[6]+x[7]+2*x[10]+x[12]+4*x[13]+x[16]+2*x[17]+3*x[20]+3*x[21]+x[25]+x[26]+x[30])*q^15 + (2*x[8]+3*x[9]+2*x[11]+2*x[14]+3*x[15]+x[18]+4*x[19]+x[23]+3*x[24]+x[28]+x[29]+x[31])*q^14 + (x[3]+x[6]+x[7]+x[10]+x[12]+4*x[13]+2*x[16]+2*x[17]+3*x[20]+4*x[21]+x[22]+2*x[25]+x[26]+2*x[30])*q^13 + (x[8]+2*x[9]+2*x[11]+2*x[14]+3*x[15]+x[18]+4*x[19]+x[23]+4*x[24]+x[27]+2*x[28]+x[29]+x[31]+x[32])*q^12 + (x[6]+x[10]+x[12]+3*x[13]+2*x[16]+x[17]+3*x[20]+4*x[21]+x[22]+2*x[25]+2*x[26]+3*x[30])*q^11 + (x[8]+x[9]+x[11]+x[14]+3*x[15]+3*x[19]+x[23]+4*x[24]+x[27]+2*x[28]+2*x[29]+2*x[31]+x[32])*q^10 + (x[12]+2*x[13]+2*x[16]+x[17]+2*x[20]+3*x[21]+x[22]+2*x[25]+2*x[26]+3*x[30]+x[34])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+3*x[24]+x[27]+2*x[28]+x[29]+2*x[31]+x[32]+x[35])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+3*x[30]+x[34])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[B5,1,1] = (x[1])*q^25 + (x[4])*q^24 + (x[2]+x[6])*q^23 + (x[4]+x[8]+x[9])*q^22 + (x[2]+x[3]+x[6]+x[7]+x[13]+x[17])*q^21 + (x[4]+x[5]+x[8]+2*x[9]+x[11]+x[14]+x[19])*q^20 + (x[2]+x[3]+2*x[6]+x[7]+x[10]+2*x[13]+x[17]+x[20]+x[21])*q^19 + (x[4]+2*x[8]+3*x[9]+x[11]+x[14]+x[15]+x[18]+2*x[19]+x[24])*q^18 + (x[2]+x[3]+2*x[6]+x[7]+x[10]+x[12]+3*x[13]+x[16]+2*x[17]+2*x[20]+2*x[21]+x[25])*q^17 + (x[4]+2*x[8]+3*x[9]+2*x[11]+2*x[14]+2*x[15]+x[18]+3*x[19]+x[23]+2*x[24]+x[28])*q^16 + (x[3]+2*x[6]+x[7]+2*x[10]+x[12]+4*x[13]+x[16]+2*x[17]+3*x[20]+3*x[21]+x[25]+x[26]+x[30])*q^15 + (2*x[8]+3*x[9]+2*x[11]+2*x[14]+3*x[15]+x[18]+4*x[19]+x[23]+3*x[24]+x[28]+x[29]+x[31])*q^14 + (x[3]+x[6]+x[7]+x[10]+x[12]+4*x[13]+2*x[16]+2*x[17]+3*x[20]+4*x[21]+x[22]+2*x[25]+x[26]+2*x[30])*q^13 + (x[8]+2*x[9]+2*x[11]+2*x[14]+3*x[15]+x[18]+4*x[19]+x[23]+4*x[24]+x[27]+2*x[28]+x[29]+x[31]+x[32])*q^12 + (x[6]+x[10]+x[12]+3*x[13]+2*x[16]+x[17]+3*x[20]+4*x[21]+x[22]+2*x[25]+2*x[26]+3*x[30])*q^11 + (x[8]+x[9]+x[11]+x[14]+3*x[15]+3*x[19]+x[23]+4*x[24]+x[27]+2*x[28]+2*x[29]+2*x[31]+x[32])*q^10 + (x[12]+2*x[13]+2*x[16]+x[17]+2*x[20]+3*x[21]+x[22]+2*x[25]+2*x[26]+3*x[30]+x[34])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+3*x[24]+x[27]+2*x[28]+x[29]+2*x[31]+x[32]+x[35])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+3*x[30]+x[34])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #2 : [2, 2, 1, 1, 1, 1, 1, 1, 1] dim = 16 A(O) = 1 , |A(O)_0| = 1 g_s = 14*V[1]+V[2]+24*V[0] Z_G(x)_0 = O7+Sp2 # Green Polys by orbit reps #2.1 : x[2] : [2, 2, 1, 1, 1, 1, 1, 1, 1],[] : [[], [2, 1, 1, 1]] Qxi[B5,2,1] = (x[2])*q^17 + (x[4]+x[9])*q^16 + (x[3]+x[6]+x[10]+x[13]+x[17])*q^15 + (x[8]+2*x[9]+x[11]+x[14]+x[15]+x[19])*q^14 + (x[3]+x[6]+x[7]+x[10]+x[12]+2*x[13]+x[16]+x[17]+x[20]+2*x[21])*q^13 + (x[8]+2*x[9]+2*x[11]+x[14]+2*x[15]+x[18]+2*x[19]+2*x[24]+x[28])*q^12 + (x[6]+x[10]+x[12]+3*x[13]+x[16]+x[17]+2*x[20]+3*x[21]+x[22]+x[25]+x[26]+x[30])*q^11 + (x[8]+x[9]+x[11]+x[14]+3*x[15]+3*x[19]+x[23]+3*x[24]+x[27]+x[28]+x[29]+x[31])*q^10 + (x[12]+2*x[13]+2*x[16]+x[17]+2*x[20]+3*x[21]+x[22]+2*x[25]+2*x[26]+2*x[30])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+3*x[24]+x[27]+2*x[28]+x[29]+2*x[31]+x[32])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+3*x[30]+x[34])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = (q^2+1)*(q^4+1)*(q^10-1) Qxc[B5,2,1] = (x[2])*q^17 + (x[4]+x[9])*q^16 + (x[3]+x[6]+x[10]+x[13]+x[17])*q^15 + (x[8]+2*x[9]+x[11]+x[14]+x[15]+x[19])*q^14 + (x[3]+x[6]+x[7]+x[10]+x[12]+2*x[13]+x[16]+x[17]+x[20]+2*x[21])*q^13 + (x[8]+2*x[9]+2*x[11]+x[14]+2*x[15]+x[18]+2*x[19]+2*x[24]+x[28])*q^12 + (x[6]+x[10]+x[12]+3*x[13]+x[16]+x[17]+2*x[20]+3*x[21]+x[22]+x[25]+x[26]+x[30])*q^11 + (x[8]+x[9]+x[11]+x[14]+3*x[15]+3*x[19]+x[23]+3*x[24]+x[27]+x[28]+x[29]+x[31])*q^10 + (x[12]+2*x[13]+2*x[16]+x[17]+2*x[20]+3*x[21]+x[22]+2*x[25]+2*x[26]+2*x[30])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+3*x[24]+x[27]+2*x[28]+x[29]+2*x[31]+x[32])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+3*x[30]+x[34])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #3 : [2, 2, 2, 2, 1, 1, 1] dim = 24 A(O) = 1 , |A(O)_0| = 1 g_s = 6*V[2]+12*V[1]+13*V[0] Z_G(x)_0 = O3+Sp4 # Green Polys by orbit reps #3.1 : x[3] : [2, 2, 2, 2, 1, 1, 1],[] : [[], [2, 2, 1]] Qxi[B5,3,1] = (x[3])*q^13 + (x[9]+x[11])*q^12 + (x[6]+x[10]+x[12]+x[13]+x[21])*q^11 + (x[8]+x[9]+x[11]+2*x[15]+x[19]+x[24])*q^10 + (x[12]+2*x[13]+x[16]+x[17]+x[20]+2*x[21]+x[22]+x[25]+x[26])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+2*x[24]+x[27]+x[28]+x[31])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+2*x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = q^2*(q^2-q+1)*(q^2+q+1)*(q^8-1)*(q^10-1) Qxc[B5,3,1] = (x[3])*q^13 + (x[9]+x[11])*q^12 + (x[6]+x[10]+x[12]+x[13]+x[21])*q^11 + (x[8]+x[9]+x[11]+2*x[15]+x[19]+x[24])*q^10 + (x[12]+2*x[13]+x[16]+x[17]+x[20]+2*x[21]+x[22]+x[25]+x[26])*q^9 + (x[11]+x[14]+2*x[15]+2*x[19]+x[23]+2*x[24]+x[27]+x[28]+x[31])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[22]+x[25]+2*x[26]+2*x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[27]+x[28]+x[29]+2*x[31]+x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[33]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #4 : [3, 1, 1, 1, 1, 1, 1, 1, 1] dim = 18 A(O) = Z2 , |A(O)_0| = 2 g_s = 9*V[2]+28*V[0] Z_G(x)_0 = O8+O1 # Green Polys by orbit reps #4.1 : x[4] : [3, 1, 1, 1, 1, 1, 1, 1, 1],[1] : [[1], [1, 1, 1, 1]] Qxi[B5,4,1] = (x[4])*q^16 + (x[6]+x[17])*q^15 + (x[8]+x[9]+x[19])*q^14 + (x[6]+x[7]+x[13]+x[17]+x[20]+x[21])*q^13 + (x[8]+x[9]+x[11]+x[14]+x[18]+2*x[19]+x[24]+x[28])*q^12 + (x[6]+2*x[13]+x[17]+2*x[20]+2*x[21]+x[25]+x[30])*q^11 + (x[8]+x[9]+x[14]+x[15]+3*x[19]+x[23]+2*x[24]+x[28]+x[29]+x[31])*q^10 + (2*x[13]+x[16]+x[17]+2*x[20]+2*x[21]+2*x[25]+x[26]+2*x[30])*q^9 + (x[11]+x[14]+x[15]+2*x[19]+x[23]+3*x[24]+2*x[28]+x[29]+x[31]+x[32])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[25]+x[26]+3*x[30]+x[34])*q^7 + (x[15]+x[19]+2*x[24]+x[28]+x[29]+2*x[31]+x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #4.2 : x[5] : [3, 1, 1, 1, 1, 1, 1, 1, 1],[-1] : [[1, 1, 1, 1, 1], []] Qxi[B5,4,2] = (x[5])*q^16 + (x[7])*q^15 + (x[8]+x[18])*q^14 + (x[6]+x[7]+x[20])*q^13 + (x[8]+x[14]+x[18]+x[19]+x[23])*q^12 + (x[7]+x[13]+2*x[20]+x[25])*q^11 + (x[8]+x[14]+x[18]+x[19]+x[23]+x[24]+x[29])*q^10 + (x[13]+2*x[20]+x[25]+x[30])*q^9 + (x[14]+x[19]+x[23]+x[24]+x[29]+x[32])*q^8 + (x[16]+x[20]+x[25]+x[30])*q^7 + (x[24]+x[29]+x[32])*q^6 + (x[30])*q^5 + (x[35])*q^4 # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = 1/2*q^4*(q^4+1)*(q^10-1) Qxc[B5,4,1] = (x[4]+x[5])*q^16 + (x[6]+x[7]+x[17])*q^15 + (2*x[8]+x[9]+x[18]+x[19])*q^14 + (2*x[6]+2*x[7]+x[13]+x[17]+2*x[20]+x[21])*q^13 + (2*x[8]+x[9]+x[11]+2*x[14]+2*x[18]+3*x[19]+x[23]+x[24]+x[28])*q^12 + (x[6]+x[7]+3*x[13]+x[17]+4*x[20]+2*x[21]+2*x[25]+x[30])*q^11 + (2*x[8]+x[9]+2*x[14]+x[15]+x[18]+4*x[19]+2*x[23]+3*x[24]+x[28]+2*x[29]+x[31])*q^10 + (3*x[13]+x[16]+x[17]+4*x[20]+2*x[21]+3*x[25]+x[26]+3*x[30])*q^9 + (x[11]+2*x[14]+x[15]+3*x[19]+2*x[23]+4*x[24]+2*x[28]+2*x[29]+x[31]+2*x[32])*q^8 + (x[13]+2*x[16]+2*x[20]+2*x[21]+2*x[25]+x[26]+4*x[30]+x[34])*q^7 + (x[15]+x[19]+3*x[24]+x[28]+2*x[29]+2*x[31]+2*x[32]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+3*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+2*x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #4.2 : c = (1) |O_x_c^F| = 1/2*q^4*(q^4-1)*(q^10-1) Qxc[B5,4,2] = (x[4]-x[5])*q^16 + (x[6]-x[7]+x[17])*q^15 + (x[9]-x[18]+x[19])*q^14 + (x[13]+x[17]+x[21])*q^13 + (x[9]+x[11]+x[19]-x[23]+x[24]+x[28])*q^12 + (x[6]-x[7]+x[13]+x[17]+2*x[21]+x[30])*q^11 + (x[9]+x[15]-x[18]+2*x[19]+x[24]+x[28]+x[31])*q^10 + (x[13]+x[16]+x[17]+2*x[21]+x[25]+x[26]+x[30])*q^9 + (x[11]+x[15]+x[19]+2*x[24]+2*x[28]+x[31])*q^8 + (x[13]+2*x[21]+x[26]+2*x[30]+x[34])*q^7 + (x[15]+x[19]+x[24]+x[28]+2*x[31]+x[35])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #5 : [3, 2, 2, 1, 1, 1, 1] dim = 28 A(O) = Z2 , |A(O)_0| = 2 g_s = 2*V[3]+6*V[2]+10*V[1]+9*V[0] Z_G(x)_0 = O4+Sp2+O1 # Green Polys by orbit reps #5.1 : x[6] : [3, 2, 2, 1, 1, 1, 1],[1] : [[1, 1], [1, 1, 1]] Qxi[B5,5,1] = (x[6])*q^11 + (x[8]+x[9]+x[19])*q^10 + (2*x[13]+x[17]+x[20]+x[21]+x[25])*q^9 + (x[11]+x[14]+x[15]+2*x[19]+x[23]+2*x[24]+x[28])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[25]+x[26]+2*x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[28]+x[29]+2*x[31]+x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #5.2 : x[7] : [3, 2, 2, 1, 1, 1, 1],[-1] : [[1, 1, 1, 1], [1]] Qxi[B5,5,2] = (x[7])*q^11 + (x[8]+x[14]+x[18])*q^10 + (x[13]+2*x[20])*q^9 + (x[14]+x[19]+x[23]+x[24]+x[29])*q^8 + (x[16]+x[20]+x[25]+x[30])*q^7 + (x[24]+x[29]+x[32])*q^6 + (x[30])*q^5 + (x[35])*q^4 # Green Polys by conj class in A(O) #5.1 : c = () |O_x_c^F| = 1/2*q^4*(q^2-q+1)*(q^2+q+1)*(q^2+1)*(q^8-1)*(q^10-1) Qxc[B5,5,1] = (x[6]+x[7])*q^11 + (2*x[8]+x[9]+x[14]+x[18]+x[19])*q^10 + (3*x[13]+x[17]+3*x[20]+x[21]+x[25])*q^9 + (x[11]+2*x[14]+x[15]+3*x[19]+2*x[23]+3*x[24]+x[28]+x[29])*q^8 + (x[13]+2*x[16]+2*x[20]+2*x[21]+2*x[25]+x[26]+3*x[30])*q^7 + (x[15]+x[19]+3*x[24]+x[28]+2*x[29]+2*x[31]+2*x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+3*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+2*x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #5.2 : c = (1) |O_x_c^F| = 1/2*q^4*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,5,2] = (x[6]-x[7])*q^11 + (x[9]-x[14]-x[18]+x[19])*q^10 + (x[13]+x[17]-x[20]+x[21]+x[25])*q^9 + (x[11]+x[15]+x[19]+x[24]+x[28]-x[29])*q^8 + (x[13]+2*x[21]+x[26]+x[30])*q^7 + (x[15]+x[19]+x[24]+x[28]+2*x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #6 : [3, 2, 2, 2, 2] dim = 30 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[3]+7*V[2]+4*V[1]+10*V[0] Z_G(x)_0 = O1+Sp4 # Green Polys by orbit reps #6.1 : x[8] : [3, 2, 2, 2, 2],[] : [[1, 1, 1], [1, 1]] Qxi[B5,6,1] = (x[8])*q^10 + (x[13]+x[20])*q^9 + (x[11]+x[14]+x[19]+x[23]+x[24])*q^8 + (x[13]+x[16]+x[20]+x[21]+x[25]+x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[29]+x[31]+x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #6.1 : c = () |O_x_c^F| = q^6*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,6,1] = (x[8])*q^10 + (x[13]+x[20])*q^9 + (x[11]+x[14]+x[19]+x[23]+x[24])*q^8 + (x[13]+x[16]+x[20]+x[21]+x[25]+x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[29]+x[31]+x[32])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #7 : [3, 3, 1, 1, 1, 1, 1] dim = 30 A(O) = Z2 , |A(O)_0| = 2 g_s = V[4]+13*V[2]+11*V[0] Z_G(x)_0 = O5+O2 # Green Polys by orbit reps #7.1 : x[9] : [3, 3, 1, 1, 1, 1, 1],[1] : [[1], [2, 1, 1]] Qxi[B5,7,1] = (x[9])*q^10 + (x[13]+x[17]+x[21])*q^9 + (x[11]+x[14]+x[15]+x[19]+x[24]+x[28])*q^8 + (x[13]+x[16]+x[20]+2*x[21]+x[26]+x[30])*q^7 + (x[15]+x[19]+2*x[24]+x[28]+x[29]+2*x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]+2*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #7.2 : x[10] : [3, 3, 1, 1, 1, 1, 1],[-1] : [[], [3, 1, 1]] Qxi[B5,7,2] = (x[10])*q^10 + (x[15])*q^9 + (x[12]+x[16]+x[22])*q^8 + (x[15]+x[27])*q^7 + (x[22]+x[26])*q^6 + (x[27])*q^5 + (x[33])*q^4 # Green Polys by conj class in A(O) #7.1 : c = () |O_x_c^F| = 1/2*q^7*(q^2+q+1)*(q^3+1)*(q^8-1)*(q^10-1) Qxc[B5,7,1] = (x[9]+x[10])*q^10 + (x[13]+x[15]+x[17]+x[21])*q^9 + (x[11]+x[12]+x[14]+x[15]+x[16]+x[19]+x[22]+x[24]+x[28])*q^8 + (x[13]+x[15]+x[16]+x[20]+2*x[21]+x[26]+x[27]+x[30])*q^7 + (x[15]+x[19]+x[22]+2*x[24]+x[26]+x[28]+x[29]+2*x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[27]+2*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[33]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #7.2 : c = (1) |O_x_c^F| = 1/2*q^7*(q^2-q+1)*(q^3-1)*(q^8-1)*(q^10-1) Qxc[B5,7,2] = (x[9]-x[10])*q^10 + (x[13]-x[15]+x[17]+x[21])*q^9 + (x[11]-x[12]+x[14]+x[15]-x[16]+x[19]-x[22]+x[24]+x[28])*q^8 + (x[13]-x[15]+x[16]+x[20]+2*x[21]+x[26]-x[27]+x[30])*q^7 + (x[15]+x[19]-x[22]+2*x[24]-x[26]+x[28]+x[29]+2*x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]-x[27]+2*x[30]+x[34])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]-x[33]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #8 : [3, 3, 2, 2, 1] dim = 34 A(O) = Z2 , |A(O)_0| = 2 g_s = V[4]+4*V[3]+6*V[2]+6*V[1]+4*V[0] Z_G(x)_0 = O2+Sp2+O1 # Green Polys by orbit reps #8.1 : x[11] : [3, 3, 2, 2, 1],[1] : [[1], [2, 2]] Qxi[B5,8,1] = (x[11])*q^8 + (x[13]+x[21])*q^7 + (x[15]+x[19]+x[24]+x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #8.2 : x[12] : [3, 3, 2, 2, 1],[-1] : [[], [3, 2]] Qxi[B5,8,2] = (x[12])*q^8 + (x[15])*q^7 + (x[22]+x[26])*q^6 + (x[27])*q^5 + (x[33])*q^4 # Green Polys by conj class in A(O) #8.1 : c = () |O_x_c^F| = 1/2*q^7*(q+1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,8,1] = (x[11]+x[12])*q^8 + (x[13]+x[15]+x[21])*q^7 + (x[15]+x[19]+x[22]+x[24]+x[26]+x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[27]+x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]+x[33])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #8.2 : c = (1) |O_x_c^F| = 1/2*q^7*(q-1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,8,2] = (x[11]-x[12])*q^8 + (x[13]-x[15]+x[21])*q^7 + (x[15]+x[19]-x[22]+x[24]-x[26]+x[31])*q^6 + (x[16]+x[21]+x[25]+x[26]-x[27]+x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32]-x[33])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #9 : [3, 3, 3, 1, 1] dim = 36 A(O) = Z2 , |A(O)_0| = 2 g_s = 3*V[4]+12*V[2]+4*V[0] Z_G(x)_0 = O3+O2 # Green Polys by orbit reps #9.1 : x[13] : [3, 3, 3, 1, 1],[1] : [[1, 1], [2, 1]] Qxi[B5,9,1] = (x[13])*q^7 + (x[15]+x[19]+x[24])*q^6 + (x[16]+x[21]+x[25]+x[26]+x[30])*q^5 + (x[24]+x[27]+x[28]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #9.2 : x[14] : [3, 3, 3, 1, 1],[-1] : [[1, 1, 1], [2]] Qxi[B5,9,2] = (x[14])*q^7 + (x[16]+x[20])*q^6 + (x[24]+x[29])*q^5 + (x[30])*q^4 + (x[35])*q^3 # Green Polys by conj class in A(O) #9.1 : c = () |O_x_c^F| = 1/2*q^9*(q+1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,9,1] = (x[13]+x[14])*q^7 + (x[15]+x[16]+x[19]+x[20]+x[24])*q^6 + (x[16]+x[21]+x[24]+x[25]+x[26]+x[29]+x[30])*q^5 + (x[24]+x[27]+x[28]+x[30]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34]+x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #9.2 : c = (1) |O_x_c^F| = 1/2*q^9*(q-1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,9,2] = (x[13]-x[14])*q^7 + (x[15]-x[16]+x[19]-x[20]+x[24])*q^6 + (x[16]+x[21]-x[24]+x[25]+x[26]-x[29]+x[30])*q^5 + (x[24]+x[27]+x[28]-x[30]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34]-x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #10 : [4, 4, 1, 1, 1] dim = 38 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+3*V[4]+6*V[3]+V[2]+6*V[0] Z_G(x)_0 = O3+Sp2 # Green Polys by orbit reps #10.1 : x[15] : [4, 4, 1, 1, 1],[] : [[1], [3, 1]] Qxi[B5,10,1] = (x[15])*q^6 + (x[16]+x[21]+x[22]+x[26])*q^5 + (x[24]+2*x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]+x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #10.1 : c = () |O_x_c^F| = q^12*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,10,1] = (x[15])*q^6 + (x[16]+x[21]+x[22]+x[26])*q^5 + (x[24]+2*x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]+x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #11 : [4, 4, 3] dim = 40 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+2*V[5]+3*V[4]+2*V[3]+2*V[2]+2*V[1]+3*V[0] Z_G(x)_0 = O1+Sp2 # Green Polys by orbit reps #11.1 : x[16] : [4, 4, 3],[] : [[1, 1], [3]] Qxi[B5,11,1] = (x[16])*q^5 + (x[24]+x[27])*q^4 + (x[26]+x[30])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #11.1 : c = () |O_x_c^F| = q^12*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,11,1] = (x[16])*q^5 + (x[24]+x[27])*q^4 + (x[26]+x[30])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #12 : [5, 1, 1, 1, 1, 1, 1] dim = 32 A(O) = Z2 , |A(O)_0| = 2 g_s = V[6]+6*V[4]+V[2]+15*V[0] Z_G(x)_0 = O6+O1 # Green Polys by orbit reps #12.1 : x[17] : [5, 1, 1, 1, 1, 1, 1],[1] : [[2], [1, 1, 1]] Qxi[B5,12,1] = (x[17])*q^9 + (x[19]+x[28])*q^8 + (x[20]+x[21]+x[30])*q^7 + (x[19]+x[24]+x[28]+x[29]+x[31])*q^6 + (x[21]+x[25]+2*x[30]+x[34])*q^5 + (x[24]+x[28]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #12.2 : x[18] : [5, 1, 1, 1, 1, 1, 1],[-1] : [[2, 1, 1, 1], []] Qxi[B5,12,2] = (x[18])*q^9 + (x[20])*q^8 + (x[19]+x[23]+x[29])*q^7 + (x[20]+x[25]+x[30])*q^6 + (x[23]+x[24]+x[29]+x[32])*q^5 + (x[25]+x[30])*q^4 + (x[32]+x[35])*q^3 # Green Polys by conj class in A(O) #12.1 : c = () |O_x_c^F| = 1/2*q^11*(q^3+1)*(q^8-1)*(q^10-1) Qxc[B5,12,1] = (x[17]+x[18])*q^9 + (x[19]+x[20]+x[28])*q^8 + (x[19]+x[20]+x[21]+x[23]+x[29]+x[30])*q^7 + (x[19]+x[20]+x[24]+x[25]+x[28]+x[29]+x[30]+x[31])*q^6 + (x[21]+x[23]+x[24]+x[25]+x[29]+2*x[30]+x[32]+x[34])*q^5 + (x[24]+x[25]+x[28]+x[30]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]+x[32]+x[34]+x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #12.2 : c = (1) |O_x_c^F| = 1/2*q^11*(q^3-1)*(q^8-1)*(q^10-1) Qxc[B5,12,2] = (x[17]-x[18])*q^9 + (x[19]-x[20]+x[28])*q^8 + (-x[19]+x[20]+x[21]-x[23]-x[29]+x[30])*q^7 + (x[19]-x[20]+x[24]-x[25]+x[28]+x[29]-x[30]+x[31])*q^6 + (x[21]-x[23]-x[24]+x[25]-x[29]+2*x[30]-x[32]+x[34])*q^5 + (x[24]-x[25]+x[28]-x[30]+x[31]+x[32]+x[35])*q^4 + (x[26]+x[30]-x[32]+x[34]-x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #13 : [5, 2, 2, 1, 1] dim = 38 A(O) = Z2 , |A(O)_0| = 2 g_s = V[6]+2*V[5]+2*V[4]+2*V[3]+2*V[2]+4*V[1]+4*V[0] Z_G(x)_0 = O2+Sp2+O1 # Green Polys by orbit reps #13.1 : x[19] : [5, 2, 2, 1, 1],[1] : [[2, 1], [1, 1]] Qxi[B5,13,1] = (x[19])*q^6 + (x[21]+x[25]+x[30])*q^5 + (x[24]+x[28]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #13.2 : x[20] : [5, 2, 2, 1, 1],[-1] : [[2, 1, 1], [1]] Qxi[B5,13,2] = (x[20])*q^6 + (x[23]+x[24]+x[29])*q^5 + (x[25]+x[30])*q^4 + (x[32]+x[35])*q^3 # Green Polys by conj class in A(O) #13.1 : c = () |O_x_c^F| = 1/2*q^11*(q+1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,13,1] = (x[19]+x[20])*q^6 + (x[21]+x[23]+x[24]+x[25]+x[29]+x[30])*q^5 + (x[24]+x[25]+x[28]+x[30]+x[31]+x[32])*q^4 + (x[26]+x[30]+x[32]+x[34]+x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #13.2 : c = (1) |O_x_c^F| = 1/2*q^11*(q-1)*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,13,2] = (x[19]-x[20])*q^6 + (x[21]-x[23]-x[24]+x[25]-x[29]+x[30])*q^5 + (x[24]-x[25]+x[28]-x[30]+x[31]+x[32])*q^4 + (x[26]+x[30]-x[32]+x[34]-x[35])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #14 : [5, 3, 1, 1, 1] dim = 40 A(O) = Z2^2 , |A(O)_0| = 3 g_s = 2*V[6]+4*V[4]+6*V[2]+3*V[0] Z_G(x)_0 = O3+2*O1 # Green Polys by orbit reps #14.1 : x[21] : [5, 3, 1, 1, 1],[1, 1] : [[2], [2, 1]] Qxi[B5,14,1] = (x[21])*q^5 + (x[24]+x[28]+x[31])*q^4 + (x[26]+x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #14.2 : x[22] : [5, 3, 1, 1, 1],[-1, 1] : [[], [4, 1]] Qxi[B5,14,2] = (x[22])*q^5 + (x[27])*q^4 + (x[33])*q^3 #14.3 : x[23] : [5, 3, 1, 1, 1],[1, -1] : [[2, 2, 1], []] Qxi[B5,14,3] = (x[23])*q^5 + (x[25])*q^4 + (x[32])*q^3 # Green Polys by conj class in A(O) #14.1 : c = () |O_x_c^F| = 1/4*q^12*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,14,1] = (x[21]+x[22]+x[23])*q^5 + (x[24]+x[25]+x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]+x[32]+x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #14.2 : c = (1) |O_x_c^F| = 1/4*q^12*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,14,2] = (x[21]-x[22]+x[23])*q^5 + (x[24]+x[25]-x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]+x[32]-x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #14.3 : c = (2) |O_x_c^F| = 1/4*q^12*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,14,3] = (x[21]+x[22]-x[23])*q^5 + (x[24]-x[25]+x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]-x[32]+x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #14.4 : c = (12) |O_x_c^F| = 1/4*q^12*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,14,4] = (x[21]-x[22]-x[23])*q^5 + (x[24]-x[25]-x[27]+x[28]+x[31])*q^4 + (x[26]+x[30]-x[32]-x[33]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #15 : [5, 3, 3] dim = 42 A(O) = Z2 , |A(O)_0| = 2 g_s = 3*V[6]+3*V[4]+6*V[2]+V[0] Z_G(x)_0 = O2+O1 # Green Polys by orbit reps #15.1 : x[24] : [5, 3, 3],[1] : [[2, 1], [2]] Qxi[B5,15,1] = (x[24])*q^4 + (x[26]+x[30])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #15.2 : x[25] : [5, 3, 3],[-1] : [[2, 2], [1]] Qxi[B5,15,2] = (x[25])*q^4 + (x[32])*q^3 # Green Polys by conj class in A(O) #15.1 : c = () |O_x_c^F| = 1/2*q^13*(q+1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,15,1] = (x[24]+x[25])*q^4 + (x[26]+x[30]+x[32])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #15.2 : c = (1) |O_x_c^F| = 1/2*q^13*(q-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,15,2] = (x[24]-x[25])*q^4 + (x[26]+x[30]-x[32])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] orbit #16 : [5, 5, 1] dim = 44 A(O) = Z2 , |A(O)_0| = 2 g_s = V[8]+3*V[6]+3*V[4]+3*V[2]+V[0] Z_G(x)_0 = O2+O1 # Green Polys by orbit reps #16.1 : x[26] : [5, 5, 1],[1] : [[2], [3]] Qxi[B5,16,1] = (x[26])*q^3 + (x[31])*q^2 + (x[34])*q + x[36] #16.2 : x[27] : [5, 5, 1],[-1] : [[1], [4]] Qxi[B5,16,2] = (x[27])*q^3 + (x[33])*q^2 # Green Polys by conj class in A(O) #16.1 : c = () |O_x_c^F| = 1/2*q^15*(q+1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,16,1] = (x[26]+x[27])*q^3 + (x[31]+x[33])*q^2 + (x[34])*q + x[36] #16.2 : c = (1) |O_x_c^F| = 1/2*q^15*(q-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,16,2] = (x[26]-x[27])*q^3 + (x[31]-x[33])*q^2 + (x[34])*q + x[36] orbit #17 : [7, 1, 1, 1, 1] dim = 42 A(O) = Z2 , |A(O)_0| = 2 g_s = V[10]+5*V[6]+V[2]+6*V[0] Z_G(x)_0 = O4+O1 # Green Polys by orbit reps #17.1 : x[28] : [7, 1, 1, 1, 1],[1] : [[3], [1, 1]] Qxi[B5,17,1] = (x[28])*q^4 + (x[30]+x[34])*q^3 + (x[31]+x[35])*q^2 + (x[34])*q + x[36] #17.2 : x[29] : [7, 1, 1, 1, 1],[-1] : [[3, 1, 1], []] Qxi[B5,17,2] = (x[29])*q^4 + (x[30])*q^3 + (x[32]+x[35])*q^2 # Green Polys by conj class in A(O) #17.1 : c = () |O_x_c^F| = 1/2*q^16*(q^2+1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,17,1] = (x[28]+x[29])*q^4 + (2*x[30]+x[34])*q^3 + (x[31]+x[32]+2*x[35])*q^2 + (x[34])*q + x[36] #17.2 : c = (1) |O_x_c^F| = 1/2*q^16*(q^2-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,17,2] = (x[28]-x[29])*q^4 + (x[34])*q^3 + (x[31]-x[32])*q^2 + (x[34])*q + x[36] orbit #18 : [7, 2, 2] dim = 44 A(O) = 1 , |A(O)_0| = 1 g_s = V[10]+2*V[7]+V[6]+2*V[5]+2*V[2]+3*V[0] Z_G(x)_0 = O1+Sp2 # Green Polys by orbit reps #18.1 : x[30] : [7, 2, 2],[] : [[3, 1], [1]] Qxi[B5,18,1] = (x[30])*q^3 + (x[31]+x[32]+x[35])*q^2 + (x[34])*q + x[36] # Green Polys by conj class in A(O) #18.1 : c = () |O_x_c^F| = q^16*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,18,1] = (x[30])*q^3 + (x[31]+x[32]+x[35])*q^2 + (x[34])*q + x[36] orbit #19 : [7, 3, 1] dim = 46 A(O) = Z2^2 , |A(O)_0| = 3 g_s = V[10]+V[8]+3*V[6]+V[4]+3*V[2] Z_G(x)_0 = 3*O1 # Green Polys by orbit reps #19.1 : x[31] : [7, 3, 1],[1, 1] : [[3], [2]] Qxi[B5,19,1] = (x[31])*q^2 + (x[34])*q + x[36] #19.2 : x[32] : [7, 3, 1],[-1, 1] : [[3, 2], []] Qxi[B5,19,2] = (x[32])*q^2 #19.3 : x[33] : [7, 3, 1],[1, -1] : [[], [5]] Qxi[B5,19,3] = (x[33])*q^2 # Green Polys by conj class in A(O) #19.1 : c = () |O_x_c^F| = 1/4*q^16*(q^2-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,19,1] = (x[31]+x[32]+x[33])*q^2 + (x[34])*q + x[36] #19.2 : c = (1) |O_x_c^F| = 1/4*q^16*(q^2-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,19,2] = (x[31]-x[32]+x[33])*q^2 + (x[34])*q + x[36] #19.3 : c = (2) |O_x_c^F| = 1/4*q^16*(q^2-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,19,3] = (x[31]+x[32]-x[33])*q^2 + (x[34])*q + x[36] #19.4 : c = (12) |O_x_c^F| = 1/4*q^16*(q^2-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,19,4] = (x[31]-x[32]-x[33])*q^2 + (x[34])*q + x[36] orbit #20 : [9, 1, 1] dim = 48 A(O) = Z2 , |A(O)_0| = 2 g_s = V[14]+V[10]+2*V[8]+V[6]+V[2]+V[0] Z_G(x)_0 = O2+O1 # Green Polys by orbit reps #20.1 : x[34] : [9, 1, 1],[1] : [[4], [1]] Qxi[B5,20,1] = (x[34])*q + x[36] #20.2 : x[35] : [9, 1, 1],[-1] : [[4, 1], []] Qxi[B5,20,2] = (x[35])*q # Green Polys by conj class in A(O) #20.1 : c = () |O_x_c^F| = 1/2*q^19*(q+1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,20,1] = (x[34]+x[35])*q + x[36] #20.2 : c = (1) |O_x_c^F| = 1/2*q^19*(q-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,20,2] = (x[34]-x[35])*q + x[36] orbit #21 : [11] dim = 50 A(O) = 1 , |A(O)_0| = 1 g_s = V[18]+V[14]+V[10]+V[6]+V[2] Z_G(x)_0 = O1 # Green Polys by orbit reps #21.1 : x[36] : [11],[] : [[5], []] Qxi[B5,21,1] = x[36] # Green Polys by conj class in A(O) #21.1 : c = () |O_x_c^F| = q^20*(q^2-1)*(q^4-1)*(q^6-1)*(q^8-1)*(q^10-1) Qxc[B5,21,1] = x[36]