### B5 : Left Cell Data ## cell #0 : |C| = 1 W-rep = phi[[5],[]] special rep = phi[[5],[]] , dim = 1 orbit = [11] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 1 1 tau_infinity subcells with 1 member(s) subcells = [ [0] ] cell #1 : |C| = 9 W-rep = phi[[4, 1],[]]+phi[[4],[1]] special rep = phi[[4],[1]] , dim = 5 orbit = [9, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [176], [1,699],[7,491],[25,346],[70,258] ] cell #2 : |C| = 9 W-rep = phi[[4, 1],[]]+phi[[4],[1]] special rep = phi[[4],[1]] , dim = 5 orbit = [9, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [98], [2,322],[6,484],[10,216],[34,154] ] cell #3 : |C| = 9 W-rep = phi[[4, 1],[]]+phi[[4],[1]] special rep = phi[[4],[1]] , dim = 5 orbit = [9, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [48], [3,124],[8,196],[14,83],[20,315] ] cell #4 : |C| = 9 W-rep = phi[[4, 1],[]]+phi[[4],[1]] special rep = phi[[4],[1]] , dim = 5 orbit = [9, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [19], [4,39],[11,64],[23,109],[50,190] ] cell #5 : |C| = 6 W-rep = phi[[4],[1]]+phi[[],[5]] special rep = phi[[4],[1]] , dim = 5 orbit = [9, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 4 tau_infinity subcells with 1 member(s) 1 tau_infinity subcells with 2 member(s) subcells = [ [15],[29],[54],[104], [5,49] ] cell #6 : |C| = 15 W-rep = phi[[3, 2],[]]+phi[[3],[2]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [97],[173],[276],[388],[676], [9,215],[22,321],[33,153],[67,255],[117,343] ] cell #7 : |C| = 15 W-rep = phi[[3, 2],[]]+phi[[3],[2]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [46],[95],[166],[248],[469], [12,81],[27,122],[31,151],[53,195],[60,213] ] cell #8 : |C| = 15 W-rep = phi[[3, 2],[]]+phi[[3],[2]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [47],[92],[94],[148],[307], [13,82],[28,123],[30,150],[59,212],[107,320] ] cell #9 : |C| = 15 W-rep = phi[[3],[2]]+phi[[1],[4]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [36],[62],[76],[108],[120], [16,100],[41,182],[89,279],[145,391],[304,679] ] cell #10 : |C| = 15 W-rep = phi[[3],[2]]+phi[[1],[4]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [37],[63],[75],[119],[194], [17,101],[40,181],[44,169],[79,251],[185,472] ] cell #11 : |C| = 15 W-rep = phi[[3],[2]]+phi[[1],[4]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [77],[121],[140],[208],[319], [18,280],[38,392],[42,183],[84,299],[102,680] ] cell #12 : |C| = 15 W-rep = phi[[3, 2],[]]+phi[[3],[2]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [175],[286],[426],[570],[925], [24,345],[52,490],[69,257],[127,398],[205,515] ] cell #13 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [21],[56],[112],[131],[225],[290],[363],[402],[446],[519],[590],[651],[706],[738],[827] ] cell #14 : |C| = 15 W-rep = phi[[3, 2],[]]+phi[[3],[2]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [96],[167],[171],[249],[470], [32,152],[61,214],[65,253],[115,341],[193,489] ] cell #15 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [26],[55],[71],[106],[130],[136],[177],[259],[289],[295],[347],[401],[407],[518],[705] ] cell #16 : |C| = 15 W-rep = phi[[3],[2]]+phi[[1],[4]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [143],[211],[238],[336],[488], [45,432],[80,576],[87,302],[156,459],[186,931] ] cell #17 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [35],[68],[99],[118],[125],[155],[174],[203],[256],[284],[318],[344],[396],[513],[704] ] cell #18 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [43],[78],[86],[142],[184],[210],[301],[431],[575],[930] ] cell #19 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [51],[57],[111],[132],[224],[230],[291],[403],[445],[451],[520],[589],[595],[737],[964] ] cell #20 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [58],[73],[110],[133],[179],[192],[223],[261],[292],[404],[444],[521],[588],[736],[963] ] cell #21 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [105],[113],[135],[198],[226],[294],[356],[406],[447],[591],[644],[739],[820],[997],[1260] ] cell #22 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [316],[328],[371],[493],[535],[659],[750],[835],[890],[1095],[1166],[1297],[1394],[1615],[1923] ] cell #23 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [165],[247],[266],[378],[468],[510],[666],[865],[1070],[1535] ] cell #24 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [700],[713],[772],[966],[1016],[1188],[1307],[1416],[1481],[1724],[1804],[1956],[2052],[2286],[2586] ] cell #25 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [172],[275],[387],[421],[565],[675],[767],[920],[1183],[1411], [66,254],[116,342],[200,497],[229,549],[358,754],[450,904],[594,1109],[646,1170],[822,1398],[999,1619] ] cell #26 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [91],[147],[159],[241],[306],[339],[462],[627],[803],[1219] ] cell #27 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [274],[386],[414],[558],[674],[726],[913],[1142],[1370],[1867] ] cell #28 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [485],[498],[550],[708],[755],[905],[1011],[1110],[1171],[1399],[1476],[1620],[1719],[1951],[2262] ] cell #29 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [624],[800],[843],[1048],[1216],[1280],[1513],[1777],[2025],[2522] ] cell #30 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [427],[439],[571],[619],[773],[795],[926],[1189],[1211],[1417], [72,1034],[128,1311],[178,1499],[206,970],[218,583],[260,1742],[287,1808],[331,731],[399,2056],[516,2290] ] cell #31 : |C| = 15 W-rep = phi[[3],[2]]+phi[[1],[4]] special rep = phi[[3],[2]] , dim = 10 orbit = [7, 3, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [242],[340],[375],[507],[703], [93,628],[149,804],[160,463],[263,663],[308,1220] ] cell #32 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [74],[129],[180],[207],[217],[262],[288],[330],[400],[438],[487],[517],[582],[730],[962] ] cell #33 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [191],[201],[233],[324],[359],[454],[531],[598],[647],[823],[886],[1000],[1091],[1293],[1584] ] cell #34 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [88],[144],[158],[240],[303],[338],[461],[626],[802],[1218] ] cell #35 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [278],[390],[415],[559],[678],[727],[914],[1143],[1371],[1868] ] cell #36 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [141],[209],[327],[367],[534],[655],[831],[889],[1094],[1296], [85,300],[162,430],[244,574],[271,615],[383,791],[465,929],[545,1030],[671,1207],[900,1495],[1105,1738] ] cell #37 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [114],[138],[197],[227],[297],[317],[355],[409],[448],[592],[643],[740],[819],[996],[1259] ] cell #38 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [429],[573],[607],[783],[928],[985],[1199],[1450],[1693],[2201] ] cell #39 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [329],[372],[492],[536],[660],[701],[749],[836],[891],[1096],[1165],[1298],[1393],[1614],[1922] ] cell #40 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [366],[377],[509],[526],[654],[719],[830],[881],[1086],[1288], [90,1135],[146,1363],[161,864],[234,1655],[243,1069],[265,665],[305,1860],[455,2163],[464,1534],[599,2406] ] cell #41 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [139],[222],[298],[335],[348],[410],[443],[500],[587],[636],[702],[735],[812],[989],[1258] ] cell #42 : |C| = 14 W-rep = phi[[3],[1, 1]]+phi[[],[4, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [252],[380],[512],[555],[723],[961], [103,698],[170,473],[268,668],[411,910] ] cell #43 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [285],[425],[569],[614],[790],[924],[1029],[1206],[1494],[1737], [126,397],[204,514],[326,712],[362,771],[533,1015],[650,1187],[826,1415],[888,1480],[1093,1723],[1295,1955] ] cell #44 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [621],[638],[797],[857],[1036],[1062],[1213],[1501],[1527],[1744], [134,1332],[220,1633],[293,1829],[333,1266],[350,814],[405,2077],[441,2141],[502,991],[585,2384],[733,2610] ] cell #45 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [168],[250],[267],[379],[471],[511],[667],[866],[1071],[1536] ] cell #46 : |C| = 10 W-rep = phi[[2],[3]] special rep = phi[[2],[3]] , dim = 10 orbit = [5, 5, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [862],[1067],[1119],[1347],[1532],[1602],[1844],[2110],[2353],[2818] ] cell #47 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [622],[637],[798],[856],[1037],[1061],[1214],[1502],[1526],[1745], [137,1331],[221,1632],[296,1828],[334,1265],[349,813],[408,2076],[442,2140],[501,990],[586,2383],[734,2609] ] cell #48 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [239],[337],[496],[544],[753],[899],[1104],[1169],[1397],[1618], [157,460],[163,851],[245,1056],[270,625],[368,1326],[382,801],[466,1521],[656,1823],[670,1217],[832,2071] ] cell #49 : |C| = 15 W-rep = phi[[3, 1],[1]] special rep = phi[[3, 1],[1]] , dim = 15 orbit = [7, 2, 2] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [202],[236],[323],[360],[457],[486],[530],[601],[648],[824],[885],[1001],[1090],[1292],[1583] ] cell #50 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [543],[557],[725],[745],[898],[977],[1103],[1161],[1389],[1610], [164,1442],[246,1685],[269,1141],[369,1988],[381,1369],[413,912],[467,2193],[657,2485],[669,1866],[833,2713] ] cell #51 : |C| = 14 W-rep = phi[[3],[1, 1]]+phi[[],[4, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [810],[1051],[1283],[1343],[1598],[1920], [479,953],[634,1226],[846,1516],[1115,1840] ] cell #52 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [556],[724],[969],[1027],[1310],[1492],[1735],[1807],[2055],[2289], [412,911],[422,1434],[566,1677],[612,1140],[768,1980],[788,1368],[921,2185],[1184,2477],[1204,1865],[1412,2705] ] cell #53 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [860],[878],[1065],[1132],[1335],[1360],[1530],[1832],[1857],[2080], [235,1652],[353,1966],[456,2160],[505,1588],[523,1083],[600,2403],[641,2463],[716,1285],[817,2691],[994,2900] ] cell #54 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [393],[560],[728],[780],[982], [187,955],[281,681],[310,1233],[416,915],[434,1459],[578,1702],[604,1196],[616,1144],[792,1372],[848,1447],[933,2210],[1053,1690],[1208,1869],[1251,2577],[1518,2198] ] cell #55 : |C| = 14 W-rep = phi[[3],[1, 1]]+phi[[],[4, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [581],[786],[988],[1044],[1276],[1581], [313,697],[437,936],[610,1202],[839,1509] ] cell #56 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1136],[1159],[1364],[1440],[1656],[1683],[1861],[2164],[2191],[2407], [370,1986],[527,2300],[658,2483],[720,1927],[743,1387],[834,2711],[882,2765],[975,1608],[1087,2970],[1289,3154] ] cell #57 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [764],[781],[983],[1006],[1180],[1272],[1408],[1471],[1714],[1946], [273,1769],[385,2017],[418,1448],[547,2319],[562,1691],[605,1197],[673,2514],[902,2784],[917,2199],[1107,2989] ] cell #58 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1330],[1346],[1601],[1625],[1827],[1932],[2075],[2133],[2376],[2602], [623,2429],[799,2657],[855,2109],[1038,2920],[1060,2352],[1118,1843],[1215,3073],[1503,3275],[1525,2817],[1746,3419] ] cell #59 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [577],[784],[986],[1046],[1278], [188,1552],[282,1786],[309,1250],[394,2034],[423,1451],[433,932],[567,1694],[608,1200],[611,1775],[682,2531],[787,2023],[841,1511],[922,2202],[956,2872],[1203,2520] ] cell #60 : |C| = 14 W-rep = phi[[3],[1, 1]]+phi[[],[4, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [395],[561],[729],[779],[981],[1257], [189,483],[283,683],[417,916],[603,1195] ] cell #61 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [440],[620],[796],[858],[1063],[1212],[1333],[1528],[1830],[2078], [219,584],[228,1035],[332,732],[351,1312],[449,1500],[503,971],[593,1743],[639,1809],[815,2057],[992,2291] ] cell #62 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [1243],[1506],[1810],[2136], [958,2882],[972,2292],[1041,1749],[1261,2605],[1313,2058],[1628,2379] ] cell #63 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [950],[1193],[1482],[1803], [714,1957],[777,1421],[965,2285],[1017,1725],[1255,2585],[1306,2051] ] cell #64 : |C| = 25 W-rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1242],[1505],[1558],[1792],[1802],[2040],[2105],[2130],[2245],[2348],[2426],[2537],[2654],[2813],[3070], [1040,1748],[1305,2050],[1597,2284],[1622,2373],[1929,2599] ] cell #65 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1564],[1836],[1901],[2142],[2170], [199,1585],[357,1963],[539,2302],[645,2460],[760,1975],[821,2688],[894,2767],[998,2897],[1099,2972],[1176,2472],[1267,2611],[1339,2084],[1404,2700],[1634,2385],[1662,2413] ] cell #66 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [770],[782],[984],[1007],[1186],[1273],[1414],[1472],[1715],[1947], [277,1770],[389,2018],[424,1449],[551,2320],[568,1692],[606,1198],[677,2515],[906,2785],[923,2200],[1111,2990] ] cell #67 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1443],[1469],[1686],[1767],[1989],[2015],[2194],[2486],[2512],[2714], [548,2317],[746,2617],[903,2782],[978,2265],[1004,1712],[1108,2987],[1162,3033],[1270,1944],[1390,3209],[1611,3364] ] cell #68 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [482],[662],[884],[1157], [374,838],[529,1089],[722,1291],[741,1385],[973,1606],[1256,1921] ] cell #69 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1380],[1671],[1940],[2001],[2273], [692,1886],[876,2118],[943,1568],[1081,2361],[1138,2437],[1152,1877],[1249,3129],[1366,2665],[1428,2179],[1438,2738],[1546,2826],[1681,2943],[1753,2498],[1863,3081],[2189,3298] ] cell #70 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [695],[909],[1172],[1475], [499,1621],[554,1114],[707,1950],[756,1400],[959,2261],[1010,1718] ] cell #71 : |C| = 25 W-rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [948],[1191],[1231],[1457],[1473],[1700],[1771],[1797],[2019],[2100],[2208],[2343],[2516],[2575],[2808], [775,1419],[1008,1716],[1274,1948],[1300,2045],[1592,2279] ] cell #72 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [951],[1194],[1241],[1504],[1801], [231,1025],[361,1314],[452,1490],[525,1623],[596,1733],[649,1811],[718,1930],[778,1422],[825,2059],[880,2131],[1039,1747],[1085,2374],[1287,2600],[1304,2049],[1596,2283] ] cell #73 : |C| = 30 W-rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [859],[879],[1064],[1133],[1334],[1361],[1529],[1831],[1858],[2079], [232,1653],[352,1967],[453,2161],[504,1589],[524,1084],[597,2404],[640,2464],[717,1286],[816,2692],[993,2901] ] cell #74 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [314],[458],[642],[877], [237,602],[354,818],[506,995],[522,1082],[715,1284],[960,1582] ] cell #75 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [376],[508],[711],[765],[1014],[1181],[1409],[1479],[1722],[1954], [264,664],[272,1127],[384,1355],[419,863],[546,1647],[563,1068],[672,1852],[901,2155],[918,1533],[1106,2398] ] cell #76 : |C| = 30 W-rep = phi[[2, 1],[2]]+phi[[1, 1],[3]] special rep = phi[[2, 1],[2]] , dim = 20 orbit = [5, 3, 3] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1033],[1047],[1279],[1303],[1498],[1595],[1741],[1800],[2048],[2282], [428,2103],[572,2346],[618,1776],[774,2634],[794,2024],[842,1512],[927,2811],[1190,3050],[1210,2521],[1418,3226] ] cell #77 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [805],[1049],[1281],[1345],[1600], [311,1887],[435,2119],[474,1573],[579,2362],[617,1778],[629,1221],[793,2026],[844,1514],[847,2108],[934,2827],[1052,2351],[1117,1842],[1209,2523],[1252,3130],[1517,2816] ] cell #78 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [580],[785],[987],[1045],[1277], [312,696],[436,935],[476,941],[609,1201],[631,1150],[807,1378],[840,1510],[853,1452],[1058,1695],[1124,1774],[1223,1875],[1352,2022],[1523,2203],[1575,2253],[1849,2519] ] cell #79 : |C| = 16 W-rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] special rep = phi[[3],[1, 1]] , dim = 10 orbit = [7, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [694],[908],[1164],[1467], [553,1113],[748,1392],[980,1613],[1002,1710],[1268,1942],[1580,2260] ] cell #80 : |C| = 25 W-rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [949],[1192],[1238],[1464],[1474],[1707],[1772],[1796],[1908],[2020],[2099],[2215],[2342],[2517],[2807], [776,1420],[1009,1717],[1275,1949],[1299,2044],[1591,2278] ] cell #81 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1565],[1837],[1900],[2169],[2465], [325,1924],[532,2297],[540,1642],[759,1969],[887,2762],[895,2150],[1092,2967],[1100,2393],[1175,2466],[1294,3151],[1340,2085],[1403,2694],[1590,2902],[1661,2412],[1968,2693] ] cell #82 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1705],[2005],[2277],[2331],[2594], [946,2230],[1155,2451],[1236,1906],[1383,2679],[1445,2742],[1462,2213],[1571,2863],[1688,2947],[1757,2502],[1765,3010],[1880,3095],[2013,3186],[2088,2796],[2196,3302],[2510,3474] ] cell #83 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1244],[1507],[1563],[1835],[2135], [364,1321],[495,2267],[538,1635],[652,1818],[752,1958],[828,2066],[893,2143],[1042,1750],[1098,2386],[1168,2455],[1338,2083],[1396,2683],[1617,2892],[1627,2378],[1934,2604] ] cell #84 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1078],[1349],[1604],[1667],[1936], [480,1551],[635,1785],[689,1246],[811,2033],[854,2112],[873,1543],[954,2871],[1059,2355],[1121,1846],[1123,2433],[1227,2530],[1351,2661],[1424,2175],[1524,2820],[1848,3077] ] cell #85 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1704],[2004],[2276],[2332],[2595], [947,2222],[1156,2443],[1235,1905],[1384,2671],[1453,2741],[1461,2212],[1572,3344],[1696,2946],[1756,2501],[1773,3011],[1881,3087],[2021,3187],[2089,2797],[2204,3301],[2518,3475] ] cell #86 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1245],[1508],[1562],[1834],[2134], [365,1329],[537,1643],[653,1826],[744,1959],[829,2074],[892,2151],[976,2268],[1043,1751],[1097,2394],[1160,2456],[1337,2082],[1388,2684],[1609,2893],[1626,2377],[1933,2603] ] cell #87 : |C| = 25 W-rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [481],[661],[687],[871],[883],[1076],[1137],[1158],[1365],[1439],[1541],[1682],[1862],[1914],[2190], [373,837],[528,1088],[721,1290],[742,1386],[974,1607] ] cell #88 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1079],[1350],[1605],[1666],[1935], [690,1247],[874,1544],[945,1559],[1122,1847],[1154,1793],[1382,2041],[1423,2174],[1437,2113],[1570,2246],[1680,2356],[1758,2432],[1879,2538],[2006,2660],[2188,2821],[2503,3076] ] cell #89 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1902],[2171],[2236],[2491],[2766], [494,2263],[751,2615],[761,1983],[1020,2308],[1167,3031],[1177,2480],[1395,3207],[1405,2708],[1485,2773],[1616,3362],[1663,2414],[1728,2978],[1928,3155],[1994,2719],[2301,2971] ] cell #90 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1381],[1672],[1941],[2000],[2272], [691,1894],[875,2126],[944,1569],[1080,2369],[1130,2438],[1153,1878],[1248,2568],[1358,2666],[1429,2180],[1430,2737],[1545,2834],[1673,2942],[1752,2497],[1855,3082],[2181,3297] ] cell #91 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2561],[2793],[2853],[3055],[3262], [967,2883],[1308,3157],[1319,2636],[1637,2917],[1805,3445],[1816,3052],[2053,3557],[2064,3228],[2145,3272],[2287,3651],[2328,2998],[2388,3416],[2589,3530],[2639,3231],[2907,3406] ] cell #92 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1237],[1463],[1706],[1764],[1907],[2012],[2214],[2238],[2493],[2509], [420,2093],[564,2336],[766,2624],[919,2801],[1022,2314],[1182,3040],[1410,3216],[1487,2779],[1730,2984],[1996,2721] ] cell #93 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2239],[2494],[2558],[2790],[3034], [709,2587],[1012,2905],[1023,2322],[1316,2630],[1477,3260],[1488,2787],[1720,3404],[1731,2992],[1813,3046],[1952,3528],[1997,2722],[2061,3222],[2266,3365],[2325,2995],[2618,3210] ] cell #94 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2038],[2335],[2598],[2645],[2888], [1239,2552],[1465,2754],[1556,2243],[1708,2959],[1780,3014],[1790,2535],[1909,3121],[2028,3190],[2092,2800],[2106,3243],[2216,3314],[2349,3387],[2417,3061],[2525,3478],[2814,3608] ] cell #95 : |C| = 25 W-rep = phi[[2, 1],[1, 1]]+phi[[],[3, 2]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1031],[1264],[1323],[1496],[1631],[1739],[1820],[2042],[2068],[2139],[2366],[2382],[2608],[2648],[2891], [1560,2247],[1794,2539],[1891,2565],[2123,2831],[2420,3064] ] cell #96 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [809],[1050],[1282],[1344],[1599], [478,952],[633,1225],[686,1232],[845,1515],[870,1458],[1075,1701],[1116,1841],[1129,1779],[1357,2027],[1431,2107],[1540,2209],[1674,2350],[1854,2524],[1913,2576],[2182,2815] ] cell #97 : |C| = 25 W-rep = phi[[2, 1],[1, 1]]+phi[[],[3, 2]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1649],[1925],[1977],[2157],[2298],[2400],[2474],[2681],[2702],[2763],[2956],[2968],[3152],[3178],[3358], [2232,2865],[2453,3097],[2549,3118],[2751,3311],[3002,3466] ] cell #98 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1125],[1327],[1353],[1645],[1824],[1850],[2072],[2153],[2370],[2396], [475,2228],[630,2449],[806,2677],[852,2731],[1057,2936],[1222,3093],[1522,3291],[1574,2861],[1895,2569],[2127,2835] ] cell #99 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1073],[1348],[1603],[1668],[1937], [477,2223],[632,2444],[684,1911],[808,2672],[861,2111],[868,1538],[1066,2354],[1120,1845],[1131,2434],[1224,3088],[1359,2662],[1425,2176],[1531,2819],[1576,3345],[1856,3078] ] cell #100 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1566],[1838],[1899],[2168],[2459], [541,1650],[710,2590],[758,1976],[896,2158],[1013,2293],[1101,2401],[1174,2473],[1341,2086],[1402,2701],[1478,2758],[1660,2411],[1721,2963],[1953,3147],[1962,2687],[2271,2896] ] cell #101 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1567],[1839],[1898],[2167],[2458], [542,1658],[757,1984],[897,2166],[1005,2294],[1102,2409],[1173,2481],[1271,2591],[1342,2087],[1401,2709],[1470,2759],[1659,2410],[1713,2964],[1945,3148],[1961,2686],[2270,2895] ] cell #102 : |C| = 25 W-rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [693],[907],[940],[1149],[1163],[1377],[1444],[1468],[1687],[1766],[1874],[2014],[2195],[2252],[2511], [552,1112],[747,1391],[979,1612],[1003,1711],[1269,1943] ] cell #103 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1557],[1791],[2039],[2098],[2244],[2341],[2536],[2560],[2792],[2806], [613,2421],[789,2649],[1028,2912],[1205,3065],[1318,2629],[1493,3267],[1736,3411],[1815,3045],[2063,3221],[2327,2997] ] cell #104 : |C| = 25 W-rep = phi[[2, 1],[1, 1]]+phi[[],[3, 2]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1328],[1587],[1644],[1825],[1965],[2073],[2152],[2371],[2395],[2462],[2676],[2690],[2899],[2932],[3146], [1896,2570],[2128,2836],[2227,2860],[2448,3092],[2727,3287] ] cell #105 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1432],[1648],[1675],[1978],[2156],[2183],[2399],[2475],[2680],[2703], [685,2550],[869,2752],[1074,2957],[1128,3005],[1356,3181],[1539,3312],[1853,3469],[1912,3119],[2231,2864],[2452,3096] ] cell #106 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1374],[1670],[1939],[2002],[2274], [688,2545],[872,2747],[937,2249],[1077,2952],[1145,2436],[1146,1871],[1373,2664],[1427,2178],[1446,2739],[1542,3307],[1689,2944],[1754,2499],[1870,3080],[1915,3514],[2197,3299] ] cell #107 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1903],[2172],[2235],[2490],[2761], [762,1991],[968,2885],[1019,2315],[1178,2488],[1309,2612],[1406,2716],[1484,2780],[1664,2415],[1727,2985],[1806,3028],[1993,2718],[2054,3204],[2288,3359],[2296,2966],[2593,3150] ] cell #108 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1904],[2173],[2234],[2489],[2760], [763,1336],[1018,1651],[1179,1833],[1301,1960],[1407,2081],[1483,2159],[1593,2269],[1665,2416],[1726,2402],[1798,2457],[1992,2717],[2046,2685],[2280,2894],[2295,2965],[2592,3149] ] cell #109 : |C| = 35 W-rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] special rep = phi[[2],[2, 1]] , dim = 20 orbit = [5, 3, 1, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [1669],[1697],[1938],[2003],[2275], [867,2740],[942,2841],[1072,2945],[1139,2435],[1151,3018],[1228,2572],[1367,2663],[1379,3194],[1426,2177],[1454,2205],[1537,3300],[1755,2500],[1864,3079],[1876,3482],[2254,3640] ] cell #110 : |C| = 25 W-rep = phi[[2, 1],[1, 1]]+phi[[],[3, 2]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [769],[1026],[1185],[1302],[1413],[1491],[1594],[1709],[1734],[1799],[2037],[2047],[2281],[2334],[2597], [1240,1910],[1466,2217],[1555,2242],[1789,2534],[2091,2799] ] cell #111 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1892],[2124],[2367],[2425],[2566],[2653],[2832],[2855],[3057],[3069], [849,2728],[1054,2933],[1324,3162],[1519,3288],[1639,2916],[1821,3450],[2069,3562],[2147,3271],[2390,3415],[2641,3233] ] cell #112 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1893],[2125],[2368],[2431],[2567],[2659],[2833],[2856],[3058],[3075], [850,2732],[1055,2937],[1325,3166],[1520,3292],[1640,2922],[1822,3454],[2070,3566],[2148,3277],[2391,3421],[2642,3234] ] cell #113 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2240],[2495],[2557],[2789],[3030], [1024,1657],[1263,1926],[1315,1985],[1489,2165],[1630,2299],[1732,2408],[1812,2482],[1998,2723],[2060,2710],[2138,2764],[2324,2994],[2381,2969],[2607,3153],[2614,3206],[2887,3361] ] cell #114 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1760],[1981],[2008],[2310],[2478],[2505],[2706],[2775],[2960],[2980], [938,2846],[1147,3023],[1375,3199],[1435,3242],[1678,3386],[1872,3487],[2186,3607],[2250,3335],[2553,3122],[2755,3315] ] cell #115 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2857],[3059],[3111],[3279],[3446], [1262,2588],[1629,2906],[1641,2321],[1970,2631],[2137,3261],[2149,2786],[2380,3405],[2392,2991],[2467,3047],[2606,3529],[2643,3235],[2695,3223],[2884,3652],[2924,3423],[3158,3558] ] cell #116 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1759],[1982],[2007],[2309],[2479],[2504],[2707],[2774],[2961],[2979], [939,2845],[1148,3022],[1376,3198],[1436,3239],[1679,3383],[1873,3486],[2187,3604],[2251,3334],[2554,3123],[2756,3316] ] cell #117 : |C| = 25 W-rep = phi[[2, 1],[1, 1]]+phi[[],[3, 2]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 15 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [1032],[1322],[1497],[1624],[1740],[1819],[1931],[2043],[2067],[2132],[2365],[2375],[2601],[2647],[2890], [1561,2248],[1795,2540],[1890,2564],[2122,2830],[2419,3063] ] cell #118 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [1703],[2029],[2333],[2596], [957,2881],[1234,2578],[1460,2211],[1547,2867],[1781,2526],[2090,2798] ] cell #119 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1550],[1784],[2032],[2104],[2347],[2529],[2812],[2870],[3115],[3283], [1134,2427],[1362,2655],[1654,2918],[1859,3071],[1974,2635],[2162,3273],[2405,3417],[2471,3051],[2699,3227],[2928,3427] ] cell #120 : |C| = 35 W-rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] special rep = phi[[2, 1],[1, 1]] , dim = 20 orbit = [5, 2, 2, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 5 tau_infinity subcells with 1 member(s) 15 tau_infinity subcells with 2 member(s) subcells = [ [2562],[2794],[2852],[3054],[3259], [1320,1990],[1586,2264],[1636,2316],[1817,2487],[1964,2616],[2065,2715],[2144,2781],[2329,2999],[2387,2986],[2461,3032],[2638,3230],[2689,3208],[2898,3363],[2904,3403],[3143,3527] ] cell #121 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2094],[2313],[2337],[2625],[2778],[2802],[2983],[3041],[3202],[3217], [1230,3105],[1456,3253],[1699,3397],[1763,3431],[2011,3543],[2207,3618],[2508,3702],[2574,3505],[2849,3338],[3026,3490] ] cell #122 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1021],[1486],[1729],[1995],[2237],[2307],[2492],[2720],[2772],[2977] ] cell #123 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2229],[2450],[2678],[2736],[2862],[2941],[3094],[3114],[3282],[3296], [1126,3006],[1354,3182],[1646,3372],[1851,3470],[1973,3170],[2154,3593],[2397,3675],[2470,3458],[2698,3570],[2927,3426] ] cell #124 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2095],[2312],[2338],[2626],[2777],[2803],[2982],[3042],[3201],[3218], [1229,3106],[1455,3254],[1698,3398],[1762,3434],[2010,3546],[2206,3619],[2507,3705],[2573,3506],[2848,3337],[3025,3489] ] cell #125 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1761],[2009],[2311],[2506],[2627],[2776],[2981],[3043],[3219],[3399], [1548,2847],[1782,3024],[2030,3200],[2096,3246],[2339,3390],[2527,3488],[2804,3611],[2868,3336],[3107,3507],[3255,3620] ] cell #126 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [2364],[2667],[2930],[3144], [1578,2880],[1889,3132],[2121,2829],[2218,3340],[2439,3083],[2725,3285] ] cell #127 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2428],[2656],[2919],[3072],[3164],[3274],[3418],[3452],[3564],[3667], [2220,2840],[2441,3017],[2669,3193],[2730,3245],[2935,3389],[3085,3481],[3290,3610],[3342,3639],[3497,3723],[3585,3773] ] cell #128 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2543],[2745],[2950],[3008],[3184],[3305],[3472],[3512],[3630],[3698], [2101,2734],[2344,2939],[2632,3168],[2809,3294],[2910,3374],[3048,3456],[3224,3568],[3265,3595],[3409,3677],[3539,3754] ] cell #129 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2551],[2753],[2958],[3009],[3120],[3185],[3313],[3330],[3462],[3473], [1433,3240],[1676,3384],[1979,3534],[2184,3605],[2305,3375],[2476,3693],[2704,3749],[2770,3596],[2975,3678],[3174,3574] ] cell #130 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [1253],[1553],[1787],[1883],[2035],[2115],[2358],[2423],[2532],[2651],[2823],[2873],[3067],[3126],[3139] ] cell #131 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [2036],[2357],[2646],[2889], [1254,2584],[1554,2874],[1788,2533],[1882,3125],[2114,2822],[2418,3062] ] cell #132 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [1885],[2117],[2360],[2430],[2658],[2825],[3074],[3128],[3331],[3463], [1441,2733],[1684,2938],[1987,3167],[2192,3293],[2306,2921],[2484,3455],[2712,3567],[2771,3276],[2976,3420],[3175,3575] ] cell #133 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2422],[2628],[2650],[2913],[3044],[3066],[3220],[3268],[3400],[3412], [1549,3323],[1783,3440],[2031,3552],[2097,3579],[2340,3661],[2528,3711],[2805,3767],[2869,3633],[3108,3508],[3256,3621] ] cell #134 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1317],[1814],[2062],[2326],[2559],[2623],[2791],[2996],[3039],[3215] ] cell #135 : |C| = 30 W-rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2102],[2345],[2633],[2810],[2915],[3049],[3225],[3270],[3414],[3554], [1884,2544],[2116,2746],[2359,2951],[2424,3013],[2652,3189],[2824,3306],[3068,3477],[3127,3513],[3325,3635],[3442,3713] ] cell #136 : |C| = 30 W-rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] special rep = phi[[1, 1],[2, 1]] , dim = 20 orbit = [3, 3, 3, 1, 1] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 20 10 tau_infinity subcells with 1 member(s) 10 tau_infinity subcells with 2 member(s) subcells = [ [2221],[2442],[2670],[2735],[2940],[3086],[3295],[3343],[3502],[3600], [1768,3007],[2016,3183],[2318,3373],[2513,3471],[2622,3169],[2783,3594],[2988,3676],[3038,3457],[3214,3569],[3379,3682] ] cell #137 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [1577],[1888],[2120],[2219],[2363],[2440],[2668],[2729],[2828],[2934],[3084],[3131],[3289],[3341],[3354] ] cell #138 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [2372],[2675],[2931],[3145], [1579,2259],[1897,2571],[2129,2837],[2226,2859],[2447,3091],[2726,3286] ] cell #139 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1638],[2146],[2389],[2640],[2854],[2911],[3056],[3232],[3266],[3410] ] cell #140 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [1916],[2224],[2445],[2542],[2673],[2744],[2949],[3004],[3089],[3180],[3304],[3346],[3468],[3511],[3523] ] cell #141 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [2962],[3197],[3381],[3525], [2257,2879],[2555,3124],[2757,3317],[2844,3333],[3021,3485],[3237,3602] ] cell #142 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [1917],[2225],[2446],[2541],[2674],[2743],[2948],[3003],[3090],[3138],[3179],[3303],[3347],[3467],[3510] ] cell #143 : |C| = 16 W-rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 4 tau_infinity subcells with 1 member(s) 6 tau_infinity subcells with 2 member(s) subcells = [ [2682],[2955],[3177],[3357], [1918,2583],[2233,2866],[2454,3098],[2548,3117],[2750,3310],[3001,3465] ] cell #144 : |C| = 14 W-rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [1919],[2241],[2496],[2556],[2788],[3029], [1999,2724],[2323,2993],[2613,3205],[2886,3360] ] cell #145 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1971],[2468],[2696],[2925],[3112],[3161],[3280],[3424],[3449],[3561] ] cell #146 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [1972],[2469],[2697],[2926],[3113],[3165],[3281],[3425],[3453],[3565] ] cell #147 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2255],[2546],[2748],[2839],[2953],[3016],[3192],[3241],[3308],[3385],[3480],[3515],[3606],[3638],[3648] ] cell #148 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2256],[2547],[2749],[2838],[2954],[3015],[3191],[3238],[3309],[3353],[3382],[3479],[3516],[3603],[3637] ] cell #149 : |C| = 14 W-rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [2258],[2563],[2795],[2851],[3053],[3258], [2330,3000],[2637,3229],[2903,3402],[3142,3526] ] cell #150 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [2303],[2768],[2973],[3172],[3328],[3368],[3460],[3572],[3589],[3671] ] cell #151 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [2304],[2769],[2974],[3173],[3329],[3371],[3461],[3573],[3592],[3674] ] cell #152 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2579],[2842],[3019],[3100],[3195],[3248],[3392],[3433],[3483],[3545],[3613],[3641],[3704],[3726],[3734] ] cell #153 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2580],[2843],[3020],[3099],[3196],[3247],[3391],[3430],[3484],[3522],[3542],[3612],[3642],[3701],[3725] ] cell #154 : |C| = 14 W-rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [2878],[3116],[3284],[3327],[3459],[3587], [2929,3428],[3141,3736],[3171,3571],[3366,3669] ] cell #155 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2581],[2850],[3027],[3104],[3137],[3203],[3252],[3339],[3396],[3429],[3491],[3504],[3541],[3617],[3700] ] cell #156 : |C| = 14 W-rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] special rep = phi[[2],[1, 1, 1]] , dim = 10 orbit = [5, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 6 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [2582],[2858],[3060],[3110],[3278],[3444], [2644,3236],[2923,3422],[3156,3556],[3356,3650] ] cell #157 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2877],[3109],[3257],[3322],[3352],[3401],[3439],[3509],[3551],[3577],[3622],[3632],[3659],[3710],[3765] ] cell #158 : |C| = 15 W-rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3136],[3332],[3464],[3499],[3597], [2619,3531],[3035,3690],[3176,3576],[3211,3746],[3376,3679] ] cell #159 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [2620],[3036],[3212],[3377],[3500],[3533],[3598],[3680],[3692],[3748] ] cell #160 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [2621],[3037],[3213],[3378],[3501],[3536],[3599],[3681],[3695],[3751] ] cell #161 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2875],[3102],[3244],[3250],[3319],[3388],[3394],[3436],[3548],[3609],[3615],[3707],[3728],[3782],[3788] ] cell #162 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [2876],[3103],[3251],[3318],[3395],[3435],[3547],[3578],[3616],[3647],[3660],[3706],[3729],[3766],[3781] ] cell #163 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [3135],[3326],[3443],[3495],[3521],[3555],[3583],[3636],[3665],[3684],[3714],[3721],[3740],[3771],[3804] ] cell #164 : |C| = 15 W-rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3351],[3503],[3601],[3628],[3696], [2908,3653],[3263,3759],[3380,3683],[3407,3794],[3537,3752] ] cell #165 : |C| = 10 W-rep = phi[[1, 1, 1],[1, 1]] special rep = phi[[1, 1, 1],[1, 1]] , dim = 10 orbit = [3, 2, 2, 2, 2] depth of tau_infinity partitioning = 2 number of tau_infinity subcells = 10 10 tau_infinity subcells with 1 member(s) subcells = [ [2909],[3264],[3408],[3538],[3629],[3655],[3697],[3753],[3761],[3796] ] cell #166 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [3012],[3101],[3133],[3188],[3249],[3320],[3393],[3437],[3476],[3549],[3614],[3708],[3727],[3783],[3818] ] cell #167 : |C| = 15 W-rep = phi[[1],[2, 1, 1]] special rep = phi[[1],[2, 1, 1]] , dim = 15 orbit = [3, 3, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 3 number of tau_infinity subcells = 15 15 tau_infinity subcells with 1 member(s) subcells = [ [3134],[3321],[3432],[3438],[3492],[3544],[3550],[3580],[3662],[3703],[3709],[3733],[3768],[3784],[3813] ] cell #168 : |C| = 15 W-rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [2914],[3269],[3413],[3553],[3664], [3324,3634],[3349,3787],[3441,3712],[3494,3815],[3582,3770] ] cell #169 : |C| = 15 W-rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3163],[3451],[3563],[3666],[3742], [3496,3722],[3518,3817],[3584,3772],[3624,3830],[3686,3806] ] cell #170 : |C| = 15 W-rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3370],[3591],[3673],[3744],[3793], [3626,3779],[3644,3786],[3688,3808],[3717,3812],[3758,3827] ] cell #171 : |C| = 15 W-rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3719],[3731],[3763],[3777],[3803], [3160,3535],[3448,3694],[3560,3750],[3657,3798],[3739,3823] ] cell #172 : |C| = 9 W-rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [3663], [3140,3838],[3348,3832],[3493,3814],[3581,3769] ] cell #173 : |C| = 15 W-rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3520],[3631],[3699],[3718],[3762], [3159,3737],[3447,3801],[3540,3755],[3559,3821],[3656,3797] ] cell #174 : |C| = 15 W-rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3369],[3590],[3668],[3672],[3743], [3350,3646],[3498,3724],[3586,3774],[3625,3778],[3687,3807] ] cell #175 : |C| = 15 W-rep = phi[[1, 1],[1, 1, 1]]+phi[[],[2, 2, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3532],[3691],[3745],[3747],[3792], [3519,3732],[3627,3780],[3689,3809],[3716,3811],[3757,3826] ] cell #176 : |C| = 15 W-rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] special rep = phi[[1, 1],[1, 1, 1]] , dim = 10 orbit = [3, 2, 2, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 10 5 tau_infinity subcells with 1 member(s) 5 tau_infinity subcells with 2 member(s) subcells = [ [3645],[3720],[3764],[3776],[3802], [3367,3654],[3588,3760],[3658,3799],[3670,3795],[3738,3822] ] cell #177 : |C| = 9 W-rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [3741], [3355,3833],[3517,3837],[3623,3829],[3685,3805] ] cell #178 : |C| = 9 W-rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [3791], [3524,3819],[3643,3831],[3715,3836],[3756,3825] ] cell #179 : |C| = 9 W-rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 1 tau_infinity subcells with 1 member(s) 4 tau_infinity subcells with 2 member(s) subcells = [ [3820], [3649,3789],[3730,3816],[3775,3828],[3800,3835] ] cell #180 : |C| = 6 W-rep = phi[[1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1]] special rep = phi[[1],[1, 1, 1, 1]] , dim = 5 orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 5 4 tau_infinity subcells with 1 member(s) 1 tau_infinity subcells with 2 member(s) subcells = [ [3735],[3785],[3810],[3824], [3790,3834] ] cell #181 : |C| = 1 W-rep = phi[[],[1, 1, 1, 1, 1]] special rep = phi[[],[1, 1, 1, 1, 1]] , dim = 1 orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] depth of tau_infinity partitioning = 1 number of tau_infinity subcells = 1 1 tau_infinity subcells with 1 member(s) subcells = [ [3839] ]