TII subcells for the SO(9,2) x Sp(10,R) block of SO11 # cell#0 , |C| = 16 special orbit = [5, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[7,1] := {0} tii[7,2] := {6} tii[7,3] := {1, 9} tii[7,4] := {8} tii[7,5] := {5, 11} tii[7,6] := {2, 12} tii[7,7] := {10} tii[7,8] := {7, 13} tii[7,9] := {4, 14} tii[7,10] := {3, 15} cell#1 , |C| = 9 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {4} tii[2,2] := {3, 5} tii[2,3] := {2, 6} tii[2,4] := {1, 7} tii[2,5] := {0, 8} cell#2 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {9} tii[5,7] := {7} tii[5,8] := {10} tii[5,9] := {11} tii[5,10] := {12} tii[5,11] := {13} tii[5,12] := {14} tii[5,13] := {0} tii[5,14] := {2} tii[5,15] := {8} cell#3 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {9} tii[5,7] := {7} tii[5,8] := {10} tii[5,9] := {11} tii[5,10] := {12} tii[5,11] := {13} tii[5,12] := {14} tii[5,13] := {0} tii[5,14] := {2} tii[5,15] := {8} cell#4 , |C| = 9 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {4, 5} tii[2,4] := {6, 7} tii[2,5] := {3, 8} cell#5 , |C| = 9 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {4, 5} tii[2,4] := {6, 7} tii[2,5] := {3, 8} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#7 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}