TII subcells for the Spin(6,5) x PSp(3,2) block of Spin11 # cell#0 , |C| = 1 special orbit = [11] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#1 , |C| = 9 special orbit = [9, 1, 1] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {6, 8} tii[15,2] := {3, 7} tii[15,3] := {1, 5} tii[15,4] := {0, 4} tii[15,5] := {2} cell#2 , |C| = 15 special orbit = [7, 3, 1] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3, 2],[]]+phi[[3],[2]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {0, 14} tii[14,2] := {3, 10} tii[14,3] := {9} tii[14,4] := {13} tii[14,5] := {2, 12} tii[14,6] := {4, 11} tii[14,7] := {7} tii[14,8] := {1, 8} tii[14,9] := {5} tii[14,10] := {6} cell#3 , |C| = 15 special orbit = [7, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {8} tii[13,3] := {2} tii[13,4] := {13} tii[13,5] := {12} tii[13,6] := {11} tii[13,7] := {10} tii[13,8] := {9} tii[13,9] := {6} tii[13,10] := {7} tii[13,11] := {4} tii[13,12] := {5} tii[13,13] := {3} tii[13,14] := {1} tii[13,15] := {0} cell#4 , |C| = 30 special orbit = [5, 3, 3] special rep = [[2, 1], [2]] , dim = 20 cell rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[10,1] := {18, 29} tii[10,2] := {23} tii[10,3] := {2, 24} tii[10,4] := {8, 27} tii[10,5] := {12} tii[10,6] := {20} tii[10,7] := {0, 25} tii[10,8] := {13, 28} tii[10,9] := {3, 21} tii[10,10] := {7} tii[10,11] := {10, 26} tii[10,12] := {15} tii[10,13] := {11} tii[10,14] := {17} tii[10,15] := {6, 19} tii[10,16] := {14} tii[10,17] := {1, 16} tii[10,18] := {9} tii[10,19] := {5, 22} tii[10,20] := {4} cell#5 , |C| = 15 special orbit = [7, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {12} tii[13,3] := {8} tii[13,4] := {6} tii[13,5] := {13} tii[13,6] := {3} tii[13,7] := {11} tii[13,8] := {5} tii[13,9] := {9} tii[13,10] := {0} tii[13,11] := {2} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {1} tii[13,15] := {4} cell#6 , |C| = 35 special orbit = [5, 2, 2, 1, 1] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {17, 32} tii[8,2] := {20, 34} tii[8,3] := {12, 29} tii[8,4] := {11, 30} tii[8,5] := {5, 24} tii[8,6] := {13} tii[8,7] := {21, 22} tii[8,8] := {14} tii[8,9] := {16, 33} tii[8,10] := {9, 26} tii[8,11] := {8, 27} tii[8,12] := {18, 19} tii[8,13] := {3, 31} tii[8,14] := {1, 15} tii[8,15] := {6} tii[8,16] := {10, 25} tii[8,17] := {2} tii[8,18] := {0, 28} tii[8,19] := {4, 23} tii[8,20] := {7} cell#7 , |C| = 10 special orbit = [3, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1]] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {7} tii[4,2] := {8} tii[4,3] := {4} tii[4,4] := {5} tii[4,5] := {1} tii[4,6] := {9} tii[4,7] := {3} tii[4,8] := {6} tii[4,9] := {2} tii[4,10] := {0}