TII subcells for the Spin(8,3) x PSp(10,R) block of Spin11 # cell#0 , |C| = 16 special orbit = [7, 1, 1, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {0, 2} tii[12,2] := {8, 9} tii[12,3] := {1, 4} tii[12,4] := {10} tii[12,5] := {13, 14} tii[12,6] := {6, 7} tii[12,7] := {12} tii[12,8] := {3, 5} tii[12,9] := {11} tii[12,10] := {15} cell#1 , |C| = 35 special orbit = [5, 3, 1, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2],[2, 1]]+phi[[1],[3, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[9,1] := {8} tii[9,2] := {4, 19} tii[9,3] := {14, 24} tii[9,4] := {15} tii[9,5] := {17} tii[9,6] := {12, 25} tii[9,7] := {16, 27} tii[9,8] := {21, 29} tii[9,9] := {18, 30} tii[9,10] := {10, 32} tii[9,11] := {26, 33} tii[9,12] := {31, 34} tii[9,13] := {2} tii[9,14] := {0, 7} tii[9,15] := {11} tii[9,16] := {1, 13} tii[9,17] := {9, 22} tii[9,18] := {3, 23} tii[9,19] := {6, 20} tii[9,20] := {5, 28} cell#2 , |C| = 30 special orbit = [3, 3, 3, 1, 1] special rep = [[1, 1], [2, 1]] , dim = 20 cell rep = phi[[1, 1, 1],[2]]+phi[[1, 1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[6,1] := {14, 15} tii[6,2] := {21, 22} tii[6,3] := {24} tii[6,4] := {28} tii[6,5] := {26, 27} tii[6,6] := {29} tii[6,7] := {2, 3} tii[6,8] := {6, 7} tii[6,9] := {4, 5} tii[6,10] := {18} tii[6,11] := {11, 12} tii[6,12] := {23} tii[6,13] := {13} tii[6,14] := {20} tii[6,15] := {9, 10} tii[6,16] := {19} tii[6,17] := {16, 17} tii[6,18] := {25} tii[6,19] := {0, 1} tii[6,20] := {8} cell#3 , |C| = 14 special orbit = [5, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[7,1] := {11, 12} tii[7,2] := {6, 7} tii[7,3] := {10} tii[7,4] := {2, 3} tii[7,5] := {5} tii[7,6] := {9} tii[7,7] := {0, 1} tii[7,8] := {4} tii[7,9] := {8} tii[7,10] := {13} cell#4 , |C| = 16 special orbit = [5, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2],[1, 1, 1]]+phi[[],[3, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[7,1] := {3} tii[7,2] := {7} tii[7,3] := {4, 11} tii[7,4] := {9} tii[7,5] := {6, 13} tii[7,6] := {5, 15} tii[7,7] := {8} tii[7,8] := {2, 10} tii[7,9] := {1, 12} tii[7,10] := {0, 14} cell#5 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {5} tii[5,2] := {8} tii[5,3] := {7} tii[5,4] := {4} tii[5,5] := {10} tii[5,6] := {11} tii[5,7] := {9} tii[5,8] := {6} tii[5,9] := {12} tii[5,10] := {3} tii[5,11] := {13} tii[5,12] := {14} tii[5,13] := {2} tii[5,14] := {1} tii[5,15] := {0} cell#6 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {9} tii[5,7] := {7} tii[5,8] := {10} tii[5,9] := {11} tii[5,10] := {12} tii[5,11] := {13} tii[5,12] := {14} tii[5,13] := {0} tii[5,14] := {2} tii[5,15] := {8} cell#7 , |C| = 9 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {4} tii[2,2] := {3, 5} tii[2,3] := {2, 6} tii[2,4] := {1, 7} tii[2,5] := {0, 8} cell#8 , |C| = 15 special orbit = [3, 3, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1]] , dim = 15 cell rep = phi[[1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[5,1] := {4} tii[5,2] := {8} tii[5,3] := {9} tii[5,4] := {12} tii[5,5] := {13} tii[5,6] := {14} tii[5,7] := {3} tii[5,8] := {5} tii[5,9] := {6} tii[5,10] := {2} tii[5,11] := {11} tii[5,12] := {10} tii[5,13] := {1} tii[5,14] := {7} tii[5,15] := {0} cell#9 , |C| = 15 special orbit = [3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1]] , dim = 10 cell rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[3,1] := {4, 5} tii[3,2] := {7, 8} tii[3,3] := {9} tii[3,4] := {10, 11} tii[3,5] := {13} tii[3,6] := {14} tii[3,7] := {0, 1} tii[3,8] := {2, 3} tii[3,9] := {6} tii[3,10] := {12} cell#10 , |C| = 9 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1],[1, 1, 1, 1]]+phi[[],[2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[2,1] := {1} tii[2,2] := {3, 4} tii[2,3] := {5, 6} tii[2,4] := {2, 8} tii[2,5] := {0, 7} cell#11 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}