Full list of non-zero Kazhdan-Lusztig-Vogan polynomials: 0: 0: 1 1: 1: 1 2: 2: 1 3: 3: 1 4: 4: 1 5: 5: 1 6: 6: 1 7: 7: 1 8: 8: 1 9: 9: 1 10: 5: 1 7: 1 10: 1 11: 8: 1 9: 1 11: 1 12: 3: 1 5: 1 12: 1 13: 6: 1 8: 1 13: 1 14: 1: 1 3: 1 14: 1 15: 4: 1 6: 1 15: 1 16: 0: 1 1: 1 16: 1 17: 2: 1 4: 1 17: 1 18: 0: 1 2: 1 18: 1 19: 3: 1 5: 1 7: 1 10: 1 12: 1 19: 1 20: 6: 1 8: 1 9: 1 11: 1 13: 1 20: 1 21: 1: 1 3: 1 5: 1 12: 1 14: 1 21: 1 22: 4: 1 6: 1 8: 1 13: 1 15: 1 22: 1 23: 0: 1 1: 1 3: 1 14: 1 16: 1 23: 1 24: 2: 1 4: 1 6: 1 15: 1 17: 1 24: 1 25: 0: 1 1: 1 2: 1 4: 1 16: 1 17: 1 18: 1 25: 1 26: 0: 1 1: 1 2: 1 16: 1 18: 1 26: 1 27: 0: 1 2: 1 4: 1 17: 1 18: 1 27: 1 28: 0: 1 1: 1 2: 1 4: 1 16: 1 17: 1 18: 1 25: 1 26: 1 27: 1 28: 1 29: 1: q 4: q 25: 1 29: 1 30: 1: 1 3: 1 5: 1 7: 1 10: 1 12: 1 14: 1 19: 1 21: 1 30: 1 31: 4: 1 6: 1 8: 1 9: 1 11: 1 13: 1 15: 1 20: 1 22: 1 31: 1 32: 0: 1 1: 1 2: 1 3: 1 4: 1 6: 1 14: 1 15: 1 16: 1 17: 1 18: 1 23: 1 24: 1 25: 1 32: 1 33: 0: 1 1: 1 3: 1 5: 1 12: 1 14: 1 16: 1 21: 1 23: 1 33: 1 34: 2: 1 4: 1 6: 1 8: 1 13: 1 15: 1 17: 1 22: 1 24: 1 34: 1 35: 0: 1 1: 1 2: 1 3: 1 14: 1 16: 1 18: 1 23: 1 26: 1 35: 1 36: 0: 1 2: 1 4: 1 6: 1 15: 1 17: 1 18: 1 24: 1 27: 1 36: 1 37: 0: q+1 1: 1 2: q+1 3: 1 4: 1 6: 1 14: 1 15: 1 16: 1 17: 1 18: q+1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 35: 1 36: 1 37: 1 38: 1: q 3: q 4: q 6: q 14: q 15: q 25: 1 29: 1 32: 1 38: 1 39: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 21: 1 22: 1 23: 1 24: 1 25: 1 32: 1 33: 1 34: 1 39: 1 40: 0: 1 1: 1 3: 1 5: 1 7: 1 10: 1 12: 1 14: 1 16: 1 19: 1 21: 1 23: 1 30: 1 33: 1 40: 1 41: 2: 1 4: 1 6: 1 8: 1 9: 1 11: 1 13: 1 15: 1 17: 1 20: 1 22: 1 24: 1 31: 1 34: 1 41: 1 42: 0: 1 1: 1 2: 1 3: 1 4: 1 14: 1 16: 1 17: 1 18: 1 23: 1 25: 1 26: 1 27: 1 28: 1 35: 1 42: 1 43: 0: 1 1: 1 2: 1 4: 1 6: 1 15: 1 16: 1 17: 1 18: 1 24: 1 25: 1 26: 1 27: 1 28: 1 36: 1 43: 1 44: 0: 1 1: 1 2: 1 3: 1 5: 1 12: 1 14: 1 16: 1 18: 1 21: 1 23: 1 26: 1 33: 1 35: 1 44: 1 45: 0: 1 2: 1 4: 1 6: 1 8: 1 13: 1 15: 1 17: 1 18: 1 22: 1 24: 1 27: 1 34: 1 36: 1 45: 1 46: 0: 1 1: 1 2: 1 3: 1 4: 1 6: 1 14: 1 15: 1 16: 1 17: 1 18: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 35: 1 36: 1 37: 1 42: 1 43: 1 46: 1 47: 3: q^2 6: q^2 32: 1 38: 1 47: 1 48: 0: q+1 1: 1 2: q+1 3: 1 4: 1 5: 1 6: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: q+1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 44: 1 45: 1 48: 1 49: 1: q 3: q 4: q 5: q 6: q 8: q 12: q 13: q 14: q 15: q 21: q 22: q 25: 1 29: 1 32: 1 38: 1 39: 1 49: 1 50: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 30: 1 31: 1 32: 1 33: 1 34: 1 39: 1 40: 1 41: 1 50: 1 51: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 12: 1 14: 1 16: 1 17: 1 18: 1 21: 1 23: 1 25: 1 26: 1 27: 1 28: 1 33: 1 35: 1 42: 1 44: 1 51: 1 52: 0: 1 1: 1 2: 1 4: 1 6: 1 8: 1 13: 1 15: 1 16: 1 17: 1 18: 1 22: 1 24: 1 25: 1 26: 1 27: 1 28: 1 34: 1 36: 1 43: 1 45: 1 52: 1 53: 0: 1 1: 1 2: 1 3: 1 5: 1 7: 1 10: 1 12: 1 14: 1 16: 1 18: 1 19: 1 21: 1 23: 1 26: 1 30: 1 33: 1 35: 1 40: 1 44: 1 53: 1 54: 0: 1 2: 1 4: 1 6: 1 8: 1 9: 1 11: 1 13: 1 15: 1 17: 1 18: 1 20: 1 22: 1 24: 1 27: 1 31: 1 34: 1 36: 1 41: 1 45: 1 54: 1 55: 0: q+1 1: q+1 2: q+1 3: 1 4: q+1 5: 1 6: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: q+1 17: q+1 18: q+1 21: 1 22: 1 23: 1 24: 1 25: q+1 26: q+1 27: q+1 28: q+1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 51: 1 52: 1 55: 1 56: 3: q^2 5: q^2 6: q^2 8: q^2 12: q^2 13: q^2 32: 1 38: 1 39: 1 47: 1 49: 1 56: 1 57: 0: q+1 1: 1 2: q+1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: q+1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 40: 1 41: 1 44: 1 45: 1 48: 1 50: 1 53: 1 54: 1 57: 1 58: 1: q 3: q 4: q 5: q 6: q 7: q 8: q 9: q 10: q 11: q 12: q 13: q 14: q 15: q 19: q 20: q 21: q 22: q 25: 1 29: 1 30: q 31: q 32: 1 38: 1 39: 1 49: 1 50: 1 58: 1 59: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 12: 1 14: 1 15: 1 16: 1 17: 1 18: 1 21: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 33: 1 35: 1 36: 1 37: 1 42: 1 43: 1 44: 1 46: 1 51: 1 59: 1 60: 0: 1 1: 1 2: 1 3: 1 4: 1 6: 1 8: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 34: 1 35: 1 36: 1 37: 1 42: 1 43: 1 45: 1 46: 1 52: 1 60: 1 61: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 7: 1 10: 1 12: 1 14: 1 16: 1 17: 1 18: 1 19: 1 21: 1 23: 1 25: 1 26: 1 27: 1 28: 1 30: 1 33: 1 35: 1 40: 1 42: 1 44: 1 51: 1 53: 1 61: 1 62: 0: 1 1: 1 2: 1 4: 1 6: 1 8: 1 9: 1 11: 1 13: 1 15: 1 16: 1 17: 1 18: 1 20: 1 22: 1 24: 1 25: 1 26: 1 27: 1 28: 1 31: 1 34: 1 36: 1 41: 1 43: 1 45: 1 52: 1 54: 1 62: 1 63: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 8: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 51: 1 52: 1 55: 1 59: 1 60: 1 63: 1 64: 5: q^3 8: q^3 39: 1 49: 1 56: 1 64: 1 65: 0: q+1 1: q+1 2: q+1 3: 1 4: q+1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: q+1 17: q+1 18: q+1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: q+1 26: q+1 27: q+1 28: q+1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 40: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 50: 1 51: 1 52: 1 53: 1 54: 1 55: 1 57: 1 61: 1 62: 1 65: 1 66: 3: q^2 5: q^2 6: q^2 7: q^2 8: q^2 9: q^2 10: q^2 11: q^2 12: q^2 13: q^2 19: q^2 20: q^2 32: 1 38: 1 39: 1 47: 1 49: 1 50: 1 56: 1 58: 1 66: 1 67: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 10: 1 12: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 21: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 30: 1 32: 1 33: 1 35: 1 36: 1 37: 1 40: 1 42: 1 43: 1 44: 1 46: 1 51: 1 53: 1 59: 1 61: 1 67: 1 68: 0: 1 1: 1 2: 1 3: 1 4: 1 6: 1 8: 1 9: 1 11: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 20: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 31: 1 32: 1 34: 1 35: 1 36: 1 37: 1 41: 1 42: 1 43: 1 45: 1 46: 1 52: 1 54: 1 60: 1 62: 1 68: 1 69: 0: q+1 1: q+1 2: q+1 3: q+1 4: q+1 5: 1 6: q+1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: q+1 15: q+1 16: q+1 17: q+1 18: q+1 19: 1 20: 1 21: 1 22: 1 23: q+1 24: q+1 25: q+1 26: q+1 27: q+1 28: q+1 30: 1 31: 1 32: q+1 33: 1 34: 1 35: q+1 36: q+1 37: q+1 39: 1 40: 1 41: 1 42: q+1 43: q+1 44: 1 45: 1 46: q+1 48: 1 50: 1 51: 1 52: 1 53: 1 54: 1 55: 1 57: 1 59: 1 60: 1 61: 1 62: 1 63: 1 65: 1 67: 1 68: 1 69: 1 70: 5: q^3 7: q^3 8: q^3 9: q^3 10: q^3 11: q^3 39: 1 49: 1 50: 1 56: 1 58: 1 64: 1 66: 1 70: 1 71: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 10: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 30: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 40: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 51: 1 52: 1 53: 1 55: 1 59: 1 60: 1 61: 1 63: 1 67: 1 71: 1 72: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 8: 1 9: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 51: 1 52: 1 54: 1 55: 1 59: 1 60: 1 62: 1 63: 1 68: 1 72: 1 73: 0: 1 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 11: 1 12: 1 13: 1 14: 1 15: 1 16: 1 17: 1 18: 1 19: 1 20: 1 21: 1 22: 1 23: 1 24: 1 25: 1 26: 1 27: 1 28: 1 30: 1 31: 1 32: 1 33: 1 34: 1 35: 1 36: 1 37: 1 39: 1 40: 1 41: 1 42: 1 43: 1 44: 1 45: 1 46: 1 48: 1 50: 1 51: 1 52: 1 53: 1 54: 1 55: 1 57: 1 59: 1 60: 1 61: 1 62: 1 63: 1 65: 1 67: 1 68: 1 69: 1 71: 1 72: 1 73: 1 74: 7: q^4 9: q^4 50: 1 58: 1 66: 1 70: 1 74: 1 1230 nonzero polynomials, and 175 zero polynomials, at 1405 Bruhat-comparable pairs.