TII subcells for the SO(7,6) x Sp(4,2) block of SO13 # cell#0 , |C| = 1 special orbit = [13] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 11 special orbit = [11, 1, 1] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {5, 10} tii[25,2] := {3, 9} tii[25,3] := {2, 8} tii[25,4] := {0, 7} tii[25,5] := {1, 6} tii[25,6] := {4} cell#2 , |C| = 24 special orbit = [9, 3, 1] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[24,1] := {0, 23} tii[24,2] := {4, 19} tii[24,3] := {9, 18} tii[24,4] := {17} tii[24,5] := {21} tii[24,6] := {2, 22} tii[24,7] := {5, 20} tii[24,8] := {7, 15} tii[24,9] := {11} tii[24,10] := {1, 16} tii[24,11] := {3, 12} tii[24,12] := {8} tii[24,13] := {6, 14} tii[24,14] := {10} tii[24,15] := {13} cell#3 , |C| = 24 special orbit = [9, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {21} tii[23,2] := {12} tii[23,3] := {1} tii[23,4] := {11} tii[23,5] := {23} tii[23,6] := {17} tii[23,7] := {22} tii[23,8] := {13} tii[23,9] := {20} tii[23,10] := {5} tii[23,11] := {18} tii[23,12] := {14} tii[23,13] := {19} tii[23,14] := {16} tii[23,15] := {4} tii[23,16] := {15} tii[23,17] := {2} tii[23,18] := {6} tii[23,19] := {10} tii[23,20] := {8} tii[23,21] := {0} tii[23,22] := {3} tii[23,23] := {9} tii[23,24] := {7} cell#4 , |C| = 75 special orbit = [7, 3, 3] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[20,1] := {63, 73} tii[20,2] := {45, 70} tii[20,3] := {74} tii[20,4] := {4, 71} tii[20,5] := {17, 51} tii[20,6] := {38, 59} tii[20,7] := {31, 34} tii[20,8] := {48} tii[20,9] := {65} tii[20,10] := {0, 72} tii[20,11] := {52, 68} tii[20,12] := {5, 67} tii[20,13] := {6, 37} tii[20,14] := {43, 61} tii[20,15] := {9, 60} tii[20,16] := {15, 50} tii[20,17] := {33} tii[20,18] := {24, 54} tii[20,19] := {55} tii[20,20] := {16, 44} tii[20,21] := {29, 62} tii[20,22] := {28, 32} tii[20,23] := {49} tii[20,24] := {23, 53} tii[20,25] := {66} tii[20,26] := {57} tii[20,27] := {69} tii[20,28] := {10, 64} tii[20,29] := {19, 56} tii[20,30] := {41} tii[20,31] := {1, 58} tii[20,32] := {3, 46} tii[20,33] := {27, 47} tii[20,34] := {8, 42} tii[20,35] := {12, 40} tii[20,36] := {22} tii[20,37] := {7, 30} tii[20,38] := {35} tii[20,39] := {21, 25} tii[20,40] := {2, 26} tii[20,41] := {11} tii[20,42] := {14, 18} tii[20,43] := {20} tii[20,44] := {13, 39} tii[20,45] := {36} cell#5 , |C| = 24 special orbit = [9, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {21} tii[23,3] := {17} tii[23,4] := {11} tii[23,5] := {9} tii[23,6] := {22} tii[23,7] := {4} tii[23,8] := {20} tii[23,9] := {8} tii[23,10] := {18} tii[23,11] := {12} tii[23,12] := {15} tii[23,13] := {0} tii[23,14] := {3} tii[23,15] := {19} tii[23,16] := {7} tii[23,17] := {16} tii[23,18] := {13} tii[23,19] := {2} tii[23,20] := {5} tii[23,21] := {14} tii[23,22] := {10} tii[23,23] := {1} tii[23,24] := {6} cell#6 , |C| = 30 special orbit = [5, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {18} tii[14,3] := {23} tii[14,4] := {2} tii[14,5] := {24} tii[14,6] := {27} tii[14,7] := {12} tii[14,8] := {20} tii[14,9] := {25} tii[14,10] := {28} tii[14,11] := {21} tii[14,12] := {26} tii[14,13] := {8} tii[14,14] := {0} tii[14,15] := {13} tii[14,16] := {3} tii[14,17] := {7} tii[14,18] := {10} tii[14,19] := {15} tii[14,20] := {11} tii[14,21] := {17} tii[14,22] := {6} tii[14,23] := {19} tii[14,24] := {14} tii[14,25] := {16} tii[14,26] := {9} tii[14,27] := {22} tii[14,28] := {1} tii[14,29] := {5} tii[14,30] := {4} cell#7 , |C| = 81 special orbit = [7, 2, 2, 1, 1] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[18,1] := {32, 79} tii[18,2] := {57, 61} tii[18,3] := {41, 78} tii[18,4] := {22, 75} tii[18,5] := {50, 51} tii[18,6] := {11, 67} tii[18,7] := {27, 74} tii[18,8] := {21, 54} tii[18,9] := {39} tii[18,10] := {36, 63} tii[18,11] := {34, 64} tii[18,12] := {20, 55} tii[18,13] := {38} tii[18,14] := {48, 49} tii[18,15] := {40} tii[18,16] := {31, 80} tii[18,17] := {17, 70} tii[18,18] := {16, 71} tii[18,19] := {30, 59} tii[18,20] := {29, 60} tii[18,21] := {45, 46} tii[18,22] := {7, 77} tii[18,23] := {3, 56} tii[18,24] := {9, 42} tii[18,25] := {15, 69} tii[18,26] := {44, 47} tii[18,27] := {24} tii[18,28] := {33, 58} tii[18,29] := {8, 76} tii[18,30] := {2, 28} tii[18,31] := {13} tii[18,32] := {23, 68} tii[18,33] := {4} tii[18,34] := {0, 73} tii[18,35] := {35, 37} tii[18,36] := {6, 66} tii[18,37] := {19, 52} tii[18,38] := {1, 72} tii[18,39] := {10, 43} tii[18,40] := {12, 65} tii[18,41] := {25} tii[18,42] := {14} tii[18,43] := {5, 62} tii[18,44] := {18, 53} tii[18,45] := {26} cell#8 , |C| = 45 special orbit = [5, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {40} tii[11,2] := {21} tii[11,3] := {39} tii[11,4] := {18} tii[11,5] := {43} tii[11,6] := {35} tii[11,7] := {12} tii[11,8] := {11} tii[11,9] := {36} tii[11,10] := {26} tii[11,11] := {5} tii[11,12] := {13} tii[11,13] := {22} tii[11,14] := {23} tii[11,15] := {14} tii[11,16] := {17} tii[11,17] := {41} tii[11,18] := {30} tii[11,19] := {8} tii[11,20] := {19} tii[11,21] := {3} tii[11,22] := {32} tii[11,23] := {33} tii[11,24] := {24} tii[11,25] := {10} tii[11,26] := {44} tii[11,27] := {29} tii[11,28] := {42} tii[11,29] := {9} tii[11,30] := {31} tii[11,31] := {20} tii[11,32] := {38} tii[11,33] := {16} tii[11,34] := {1} tii[11,35] := {28} tii[11,36] := {6} tii[11,37] := {2} tii[11,38] := {0} tii[11,39] := {34} tii[11,40] := {4} tii[11,41] := {25} tii[11,42] := {7} tii[11,43] := {37} tii[11,44] := {27} tii[11,45] := {15}