TII subcells for the SO(9,4) x Sp(12,R) block of SO13 # cell#0 , |C| = 20 special orbit = [9, 1, 1, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4],[1, 1]]+phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+5*X^2 TII subcells: tii[22,1] := {0} tii[22,2] := {8} tii[22,3] := {1} tii[22,4] := {10} tii[22,5] := {3, 15} tii[22,6] := {13} tii[22,7] := {6} tii[22,8] := {12} tii[22,9] := {7, 17} tii[22,10] := {2} tii[22,11] := {11} tii[22,12] := {4, 16} tii[22,13] := {14} tii[22,14] := {9, 18} tii[22,15] := {5, 19} cell#1 , |C| = 64 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {29} tii[19,2] := {22} tii[19,3] := {6, 44} tii[19,4] := {13, 56} tii[19,5] := {42} tii[19,6] := {37} tii[19,7] := {49} tii[19,8] := {43} tii[19,9] := {8, 53} tii[19,10] := {51, 52} tii[19,11] := {20, 59} tii[19,12] := {50} tii[19,13] := {35} tii[19,14] := {7, 58} tii[19,15] := {46, 47} tii[19,16] := {15, 61} tii[19,17] := {18, 60} tii[19,18] := {27, 57} tii[19,19] := {28, 62} tii[19,20] := {39, 63} tii[19,21] := {16} tii[19,22] := {5} tii[19,23] := {0, 11} tii[19,24] := {36} tii[19,25] := {30} tii[19,26] := {9} tii[19,27] := {40, 41} tii[19,28] := {4, 21} tii[19,29] := {17} tii[19,30] := {1, 31} tii[19,31] := {25, 26} tii[19,32] := {12, 38} tii[19,33] := {24} tii[19,34] := {10, 34} tii[19,35] := {23} tii[19,36] := {3, 48} tii[19,37] := {32, 33} tii[19,38] := {19, 45} tii[19,39] := {2, 55} tii[19,40] := {14, 54} cell#2 , |C| = 64 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {29} tii[19,2] := {22} tii[19,3] := {6, 44} tii[19,4] := {13, 56} tii[19,5] := {42} tii[19,6] := {37} tii[19,7] := {49} tii[19,8] := {43} tii[19,9] := {8, 53} tii[19,10] := {51, 52} tii[19,11] := {20, 59} tii[19,12] := {50} tii[19,13] := {35} tii[19,14] := {7, 58} tii[19,15] := {46, 47} tii[19,16] := {15, 61} tii[19,17] := {18, 60} tii[19,18] := {27, 57} tii[19,19] := {28, 62} tii[19,20] := {39, 63} tii[19,21] := {16} tii[19,22] := {5} tii[19,23] := {0, 11} tii[19,24] := {36} tii[19,25] := {30} tii[19,26] := {9} tii[19,27] := {40, 41} tii[19,28] := {4, 21} tii[19,29] := {17} tii[19,30] := {1, 31} tii[19,31] := {25, 26} tii[19,32] := {12, 38} tii[19,33] := {24} tii[19,34] := {10, 34} tii[19,35] := {23} tii[19,36] := {3, 48} tii[19,37] := {32, 33} tii[19,38] := {19, 45} tii[19,39] := {2, 55} tii[19,40] := {14, 54} cell#3 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {13} tii[15,2] := {29} tii[15,3] := {37} tii[15,4] := {20} tii[15,5] := {25} tii[15,6] := {34} tii[15,7] := {33} tii[15,8] := {40} tii[15,9] := {28} tii[15,10] := {21} tii[15,11] := {39} tii[15,12] := {32} tii[15,13] := {12} tii[15,14] := {42} tii[15,15] := {41} tii[15,16] := {38} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {5} tii[15,20] := {11} tii[15,21] := {7} tii[15,22] := {18} tii[15,23] := {3} tii[15,24] := {27} tii[15,25] := {16} tii[15,26] := {10} tii[15,27] := {22} tii[15,28] := {4} tii[15,29] := {19} tii[15,30] := {26} tii[15,31] := {14} tii[15,32] := {8} tii[15,33] := {24} tii[15,34] := {15} tii[15,35] := {17} tii[15,36] := {31} tii[15,37] := {23} tii[15,38] := {6} tii[15,39] := {2} tii[15,40] := {30} tii[15,41] := {36} tii[15,42] := {35} tii[15,43] := {0} tii[15,44] := {9} tii[15,45] := {1} cell#4 , |C| = 185 special orbit = [5, 3, 3, 1, 1] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 1],[2, 1]]+phi[[1, 1],[3, 1]]+phi[[2],[2, 2]]+phi[[1],[3, 2]] TII depth = 3 TII multiplicity polynomial = 25*X+30*X^2+25*X^4 TII subcells: tii[13,1] := {74} tii[13,2] := {98, 99} tii[13,3] := {125, 126} tii[13,4] := {107} tii[13,5] := {97} tii[13,6] := {128, 129} tii[13,7] := {111, 112, 164, 165} tii[13,8] := {146, 147, 177, 178} tii[13,9] := {138} tii[13,10] := {155, 156} tii[13,11] := {154} tii[13,12] := {109, 110, 174, 175} tii[13,13] := {139, 176} tii[13,14] := {144, 145, 183, 184} tii[13,15] := {172, 173} tii[13,16] := {179, 180, 181, 182} tii[13,17] := {1} tii[13,18] := {29} tii[13,19] := {8, 9} tii[13,20] := {26, 27} tii[13,21] := {6} tii[13,22] := {90, 91} tii[13,23] := {49} tii[13,24] := {15} tii[13,25] := {64} tii[13,26] := {78, 79, 140, 141} tii[13,27] := {62, 63} tii[13,28] := {20, 21} tii[13,29] := {30} tii[13,30] := {115, 116, 162, 163} tii[13,31] := {42, 43, 88, 89} tii[13,32] := {45, 46} tii[13,33] := {36, 37} tii[13,34] := {52, 53, 130, 131} tii[13,35] := {94} tii[13,36] := {31, 32, 100, 101} tii[13,37] := {68, 69} tii[13,38] := {75, 136} tii[13,39] := {86, 87, 152, 153} tii[13,40] := {121, 122, 123, 124} tii[13,41] := {14} tii[13,42] := {95, 96} tii[13,43] := {76} tii[13,44] := {28} tii[13,45] := {38, 39} tii[13,46] := {65, 66, 119, 120} tii[13,47] := {51} tii[13,48] := {70, 71} tii[13,49] := {127} tii[13,50] := {35} tii[13,51] := {60, 61} tii[13,52] := {80, 81, 157, 158} tii[13,53] := {82, 83, 142, 143} tii[13,54] := {108, 161} tii[13,55] := {102, 103} tii[13,56] := {67} tii[13,57] := {56, 57, 132, 133} tii[13,58] := {117, 118, 170, 171} tii[13,59] := {77, 137} tii[13,60] := {148, 149, 150, 151} tii[13,61] := {92, 93} tii[13,62] := {84, 85, 159, 160} tii[13,63] := {134, 135} tii[13,64] := {166, 167, 168, 169} tii[13,65] := {0} tii[13,66] := {2, 3} tii[13,67] := {7} tii[13,68] := {40, 41} tii[13,69] := {4, 5} tii[13,70] := {24, 25, 58, 59} tii[13,71] := {16} tii[13,72] := {12, 13, 47, 48} tii[13,73] := {19} tii[13,74] := {54, 55, 113, 114} tii[13,75] := {10, 11} tii[13,76] := {44} tii[13,77] := {17, 18, 72, 73} tii[13,78] := {50, 106} tii[13,79] := {22, 23} tii[13,80] := {33, 34, 104, 105} cell#5 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3],[1, 1, 1]]+phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {20} tii[17,2] := {12} tii[17,3] := {17} tii[17,4] := {13, 24} tii[17,5] := {4} tii[17,6] := {11} tii[17,7] := {5, 19} tii[17,8] := {18} tii[17,9] := {10, 23} tii[17,10] := {6, 27} tii[17,11] := {0} tii[17,12] := {9} tii[17,13] := {1, 16} tii[17,14] := {15} tii[17,15] := {8, 22} tii[17,16] := {2, 25} tii[17,17] := {21} tii[17,18] := {14, 26} tii[17,19] := {7, 28} tii[17,20] := {3, 29} cell#6 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3],[1, 1, 1]]+phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {10} tii[17,2] := {16} tii[17,3] := {11} tii[17,4] := {21, 22} tii[17,5] := {27} tii[17,6] := {15} tii[17,7] := {25, 26} tii[17,8] := {12} tii[17,9] := {23, 24} tii[17,10] := {28, 29} tii[17,11] := {17} tii[17,12] := {5} tii[17,13] := {13, 14} tii[17,14] := {4} tii[17,15] := {8, 9} tii[17,16] := {19, 20} tii[17,17] := {0} tii[17,18] := {2, 3} tii[17,19] := {6, 7} tii[17,20] := {1, 18} cell#7 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3],[1, 1, 1]]+phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {10} tii[17,2] := {16} tii[17,3] := {11} tii[17,4] := {21, 22} tii[17,5] := {27} tii[17,6] := {15} tii[17,7] := {25, 26} tii[17,8] := {12} tii[17,9] := {23, 24} tii[17,10] := {28, 29} tii[17,11] := {17} tii[17,12] := {5} tii[17,13] := {13, 14} tii[17,14] := {4} tii[17,15] := {8, 9} tii[17,16] := {19, 20} tii[17,17] := {0} tii[17,18] := {2, 3} tii[17,19] := {6, 7} tii[17,20] := {1, 18} cell#8 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {26} tii[12,2] := {33, 52} tii[12,3] := {48, 64} tii[12,4] := {37} tii[12,5] := {27} tii[12,6] := {39, 61} tii[12,7] := {14, 43} tii[12,8] := {57, 69} tii[12,9] := {34, 67} tii[12,10] := {21, 59} tii[12,11] := {49, 72} tii[12,12] := {58, 75} tii[12,13] := {50} tii[12,14] := {38} tii[12,15] := {29, 68} tii[12,16] := {24, 56} tii[12,17] := {45, 73} tii[12,18] := {28} tii[12,19] := {22, 71} tii[12,20] := {12, 66} tii[12,21] := {15, 44} tii[12,22] := {36, 76} tii[12,23] := {7, 54} tii[12,24] := {47, 77} tii[12,25] := {13, 74} tii[12,26] := {6, 70} tii[12,27] := {23, 78} tii[12,28] := {2, 65} tii[12,29] := {35, 79} tii[12,30] := {46, 80} tii[12,31] := {17} tii[12,32] := {10, 32} tii[12,33] := {19} tii[12,34] := {20, 42} tii[12,35] := {8, 31} tii[12,36] := {4, 41} tii[12,37] := {18} tii[12,38] := {25, 55} tii[12,39] := {9, 30} tii[12,40] := {11, 53} tii[12,41] := {3, 40} tii[12,42] := {1, 51} tii[12,43] := {16, 63} tii[12,44] := {5, 62} tii[12,45] := {0, 60} cell#9 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {36} tii[12,2] := {11, 51} tii[12,3] := {19, 64} tii[12,4] := {48} tii[12,5] := {35} tii[12,6] := {3, 61} tii[12,7] := {44, 45} tii[12,8] := {9, 69} tii[12,9] := {10, 67} tii[12,10] := {16, 59} tii[12,11] := {17, 72} tii[12,12] := {28, 75} tii[12,13] := {58} tii[12,14] := {47} tii[12,15] := {2, 68} tii[12,16] := {55, 56} tii[12,17] := {6, 73} tii[12,18] := {34} tii[12,19] := {7, 71} tii[12,20] := {13, 66} tii[12,21] := {42, 43} tii[12,22] := {14, 76} tii[12,23] := {52, 53} tii[12,24] := {24, 77} tii[12,25] := {15, 74} tii[12,26] := {25, 70} tii[12,27] := {26, 78} tii[12,28] := {37, 65} tii[12,29] := {38, 79} tii[12,30] := {49, 80} tii[12,31] := {22} tii[12,32] := {12, 33} tii[12,33] := {21} tii[12,34] := {4, 46} tii[12,35] := {31, 32} tii[12,36] := {18, 41} tii[12,37] := {20} tii[12,38] := {1, 57} tii[12,39] := {29, 30} tii[12,40] := {8, 54} tii[12,41] := {39, 40} tii[12,42] := {27, 50} tii[12,43] := {0, 63} tii[12,44] := {5, 62} tii[12,45] := {23, 60} cell#10 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {22} tii[9,2] := {12} tii[9,3] := {19, 20} tii[9,4] := {4} tii[9,5] := {10, 11} tii[9,6] := {17, 18} tii[9,7] := {3} tii[9,8] := {8, 9} tii[9,9] := {15, 16} tii[9,10] := {23, 24} tii[9,11] := {0} tii[9,12] := {1, 2} tii[9,13] := {6, 7} tii[9,14] := {13, 14} tii[9,15] := {5, 21} cell#11 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {36} tii[12,2] := {11, 51} tii[12,3] := {19, 64} tii[12,4] := {48} tii[12,5] := {35} tii[12,6] := {3, 61} tii[12,7] := {44, 45} tii[12,8] := {9, 69} tii[12,9] := {10, 67} tii[12,10] := {16, 59} tii[12,11] := {17, 72} tii[12,12] := {28, 75} tii[12,13] := {58} tii[12,14] := {47} tii[12,15] := {2, 68} tii[12,16] := {55, 56} tii[12,17] := {6, 73} tii[12,18] := {34} tii[12,19] := {7, 71} tii[12,20] := {13, 66} tii[12,21] := {42, 43} tii[12,22] := {14, 76} tii[12,23] := {52, 53} tii[12,24] := {24, 77} tii[12,25] := {15, 74} tii[12,26] := {25, 70} tii[12,27] := {26, 78} tii[12,28] := {37, 65} tii[12,29] := {38, 79} tii[12,30] := {49, 80} tii[12,31] := {22} tii[12,32] := {12, 33} tii[12,33] := {21} tii[12,34] := {4, 46} tii[12,35] := {31, 32} tii[12,36] := {18, 41} tii[12,37] := {20} tii[12,38] := {1, 57} tii[12,39] := {29, 30} tii[12,40] := {8, 54} tii[12,41] := {39, 40} tii[12,42] := {27, 50} tii[12,43] := {0, 63} tii[12,44] := {5, 62} tii[12,45] := {23, 60} cell#12 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {22} tii[9,2] := {12} tii[9,3] := {19, 20} tii[9,4] := {4} tii[9,5] := {10, 11} tii[9,6] := {17, 18} tii[9,7] := {3} tii[9,8] := {8, 9} tii[9,9] := {15, 16} tii[9,10] := {23, 24} tii[9,11] := {0} tii[9,12] := {1, 2} tii[9,13] := {6, 7} tii[9,14] := {13, 14} tii[9,15] := {5, 21} cell#13 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {16} tii[5,2] := {21} tii[5,3] := {13} tii[5,4] := {9} tii[5,5] := {17} tii[5,6] := {20} tii[5,7] := {10} tii[5,8] := {7} tii[5,9] := {15} tii[5,10] := {4} tii[5,11] := {19} tii[5,12] := {23} tii[5,13] := {8} tii[5,14] := {5} tii[5,15] := {11} tii[5,16] := {3} tii[5,17] := {14} tii[5,18] := {1} tii[5,19] := {18} tii[5,20] := {22} tii[5,21] := {12} tii[5,22] := {6} tii[5,23] := {2} tii[5,24] := {0} cell#14 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {11} tii[15,2] := {23} tii[15,3] := {30} tii[15,4] := {20} tii[15,5] := {16} tii[15,6] := {32} tii[15,7] := {25} tii[15,8] := {36} tii[15,9] := {27} tii[15,10] := {31} tii[15,11] := {37} tii[15,12] := {38} tii[15,13] := {28} tii[15,14] := {40} tii[15,15] := {41} tii[15,16] := {42} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {1} tii[15,20] := {4} tii[15,21] := {5} tii[15,22] := {8} tii[15,23] := {2} tii[15,24] := {18} tii[15,25] := {10} tii[15,26] := {15} tii[15,27] := {17} tii[15,28] := {12} tii[15,29] := {26} tii[15,30] := {29} tii[15,31] := {13} tii[15,32] := {7} tii[15,33] := {19} tii[15,34] := {22} tii[15,35] := {9} tii[15,36] := {24} tii[15,37] := {34} tii[15,38] := {21} tii[15,39] := {14} tii[15,40] := {35} tii[15,41] := {33} tii[15,42] := {39} tii[15,43] := {0} tii[15,44] := {3} tii[15,45] := {6} cell#15 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {22} tii[8,2] := {28} tii[8,3] := {29} tii[8,4] := {17} tii[8,5] := {4} tii[8,6] := {10} tii[8,7] := {19} tii[8,8] := {23} tii[8,9] := {15} tii[8,10] := {8} tii[8,11] := {14} tii[8,12] := {12} tii[8,13] := {24} tii[8,14] := {18} tii[8,15] := {27} tii[8,16] := {20} tii[8,17] := {26} tii[8,18] := {25} tii[8,19] := {2} tii[8,20] := {5} tii[8,21] := {1} tii[8,22] := {7} tii[8,23] := {9} tii[8,24] := {3} tii[8,25] := {13} tii[8,26] := {21} tii[8,27] := {11} tii[8,28] := {6} tii[8,29] := {16} tii[8,30] := {0} cell#16 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {11} tii[15,2] := {23} tii[15,3] := {30} tii[15,4] := {20} tii[15,5] := {16} tii[15,6] := {32} tii[15,7] := {25} tii[15,8] := {36} tii[15,9] := {27} tii[15,10] := {31} tii[15,11] := {37} tii[15,12] := {38} tii[15,13] := {28} tii[15,14] := {40} tii[15,15] := {41} tii[15,16] := {42} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {1} tii[15,20] := {4} tii[15,21] := {5} tii[15,22] := {8} tii[15,23] := {2} tii[15,24] := {18} tii[15,25] := {10} tii[15,26] := {15} tii[15,27] := {17} tii[15,28] := {12} tii[15,29] := {26} tii[15,30] := {29} tii[15,31] := {13} tii[15,32] := {7} tii[15,33] := {19} tii[15,34] := {22} tii[15,35] := {9} tii[15,36] := {24} tii[15,37] := {34} tii[15,38] := {21} tii[15,39] := {14} tii[15,40] := {35} tii[15,41] := {33} tii[15,42] := {39} tii[15,43] := {0} tii[15,44] := {3} tii[15,45] := {6} cell#17 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {22} tii[8,2] := {28} tii[8,3] := {29} tii[8,4] := {17} tii[8,5] := {4} tii[8,6] := {10} tii[8,7] := {19} tii[8,8] := {23} tii[8,9] := {15} tii[8,10] := {8} tii[8,11] := {14} tii[8,12] := {12} tii[8,13] := {24} tii[8,14] := {18} tii[8,15] := {27} tii[8,16] := {20} tii[8,17] := {26} tii[8,18] := {25} tii[8,19] := {2} tii[8,20] := {5} tii[8,21] := {1} tii[8,22] := {7} tii[8,23] := {9} tii[8,24] := {3} tii[8,25] := {13} tii[8,26] := {21} tii[8,27] := {11} tii[8,28] := {6} tii[8,29] := {16} tii[8,30] := {0} cell#18 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {27} tii[12,2] := {19, 49} tii[12,3] := {39, 60} tii[12,4] := {42} tii[12,5] := {45} tii[12,6] := {34, 62} tii[12,7] := {43, 69} tii[12,8] := {53, 73} tii[12,9] := {46, 74} tii[12,10] := {30, 78} tii[12,11] := {68, 79} tii[12,12] := {75, 80} tii[12,13] := {25} tii[12,14] := {31} tii[12,15] := {18, 47} tii[12,16] := {26, 52} tii[12,17] := {38, 58} tii[12,18] := {17} tii[12,19] := {32, 61} tii[12,20] := {15, 70} tii[12,21] := {12, 40} tii[12,22] := {51, 71} tii[12,23] := {5, 44} tii[12,24] := {63, 77} tii[12,25] := {16, 56} tii[12,26] := {7, 66} tii[12,27] := {37, 67} tii[12,28] := {3, 55} tii[12,29] := {48, 76} tii[12,30] := {64, 65} tii[12,31] := {13} tii[12,32] := {6, 23} tii[12,33] := {33} tii[12,34] := {10, 36} tii[12,35] := {28, 54} tii[12,36] := {14, 59} tii[12,37] := {8} tii[12,38] := {21, 50} tii[12,39] := {4, 22} tii[12,40] := {20, 72} tii[12,41] := {2, 29} tii[12,42] := {0, 24} tii[12,43] := {11, 35} tii[12,44] := {9, 57} tii[12,45] := {1, 41} cell#19 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {27} tii[12,2] := {19, 49} tii[12,3] := {39, 60} tii[12,4] := {42} tii[12,5] := {45} tii[12,6] := {34, 62} tii[12,7] := {43, 69} tii[12,8] := {53, 73} tii[12,9] := {46, 74} tii[12,10] := {30, 78} tii[12,11] := {68, 79} tii[12,12] := {75, 80} tii[12,13] := {25} tii[12,14] := {31} tii[12,15] := {18, 47} tii[12,16] := {26, 52} tii[12,17] := {38, 58} tii[12,18] := {17} tii[12,19] := {32, 61} tii[12,20] := {15, 70} tii[12,21] := {12, 40} tii[12,22] := {51, 71} tii[12,23] := {5, 44} tii[12,24] := {63, 77} tii[12,25] := {16, 56} tii[12,26] := {7, 66} tii[12,27] := {37, 67} tii[12,28] := {3, 55} tii[12,29] := {48, 76} tii[12,30] := {64, 65} tii[12,31] := {13} tii[12,32] := {6, 23} tii[12,33] := {33} tii[12,34] := {10, 36} tii[12,35] := {28, 54} tii[12,36] := {14, 59} tii[12,37] := {8} tii[12,38] := {21, 50} tii[12,39] := {4, 22} tii[12,40] := {20, 72} tii[12,41] := {2, 29} tii[12,42] := {0, 24} tii[12,43] := {11, 35} tii[12,44] := {9, 57} tii[12,45] := {1, 41} cell#20 , |C| = 56 special orbit = [5, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1],[1, 1, 1]]+phi[[],[3, 2, 1]] TII depth = 2 TII multiplicity polynomial = 24*X+16*X^2 TII subcells: tii[10,1] := {18} tii[10,2] := {14} tii[10,3] := {28} tii[10,4] := {25} tii[10,5] := {32} tii[10,6] := {29, 47} tii[10,7] := {34} tii[10,8] := {22, 46} tii[10,9] := {38} tii[10,10] := {15} tii[10,11] := {42} tii[10,12] := {39, 52} tii[10,13] := {48} tii[10,14] := {24} tii[10,15] := {12, 35} tii[10,16] := {41, 54} tii[10,17] := {40, 55} tii[10,18] := {33} tii[10,19] := {21, 45} tii[10,20] := {17, 49} tii[10,21] := {0} tii[10,22] := {10} tii[10,23] := {1} tii[10,24] := {4} tii[10,25] := {2} tii[10,26] := {23} tii[10,27] := {7} tii[10,28] := {19, 36} tii[10,29] := {11, 27} tii[10,30] := {43} tii[10,31] := {5} tii[10,32] := {31, 51} tii[10,33] := {16} tii[10,34] := {30, 53} tii[10,35] := {13, 37} tii[10,36] := {20, 50} tii[10,37] := {3} tii[10,38] := {8} tii[10,39] := {6, 26} tii[10,40] := {9, 44} cell#21 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {19} tii[6,2] := {28} tii[6,3] := {14, 40} tii[6,4] := {25, 48} tii[6,5] := {39} tii[6,6] := {44, 45} tii[6,7] := {41} tii[6,8] := {24, 53} tii[6,9] := {34, 62} tii[6,10] := {32, 64} tii[6,11] := {51} tii[6,12] := {22, 70} tii[6,13] := {57, 58} tii[6,14] := {46, 71} tii[6,15] := {54, 74} tii[6,16] := {63} tii[6,17] := {68, 69} tii[6,18] := {72, 73} tii[6,19] := {2} tii[6,20] := {6} tii[6,21] := {5} tii[6,22] := {7, 29} tii[6,23] := {11} tii[6,24] := {17, 38} tii[6,25] := {4, 20} tii[6,26] := {26, 27} tii[6,27] := {23, 52} tii[6,28] := {10} tii[6,29] := {9, 30} tii[6,30] := {13, 59} tii[6,31] := {21} tii[6,32] := {33, 60} tii[6,33] := {43, 67} tii[6,34] := {35, 36} tii[6,35] := {8, 47} tii[6,36] := {55, 56} tii[6,37] := {18} tii[6,38] := {16, 42} tii[6,39] := {31} tii[6,40] := {15, 61} tii[6,41] := {49, 50} tii[6,42] := {65, 66} tii[6,43] := {0} tii[6,44] := {1, 12} tii[6,45] := {3, 37} cell#22 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {19} tii[6,2] := {28} tii[6,3] := {14, 40} tii[6,4] := {25, 48} tii[6,5] := {39} tii[6,6] := {44, 45} tii[6,7] := {41} tii[6,8] := {24, 53} tii[6,9] := {34, 62} tii[6,10] := {32, 64} tii[6,11] := {51} tii[6,12] := {22, 70} tii[6,13] := {57, 58} tii[6,14] := {46, 71} tii[6,15] := {54, 74} tii[6,16] := {63} tii[6,17] := {68, 69} tii[6,18] := {72, 73} tii[6,19] := {2} tii[6,20] := {6} tii[6,21] := {5} tii[6,22] := {7, 29} tii[6,23] := {11} tii[6,24] := {17, 38} tii[6,25] := {4, 20} tii[6,26] := {26, 27} tii[6,27] := {23, 52} tii[6,28] := {10} tii[6,29] := {9, 30} tii[6,30] := {13, 59} tii[6,31] := {21} tii[6,32] := {33, 60} tii[6,33] := {43, 67} tii[6,34] := {35, 36} tii[6,35] := {8, 47} tii[6,36] := {55, 56} tii[6,37] := {18} tii[6,38] := {16, 42} tii[6,39] := {31} tii[6,40] := {15, 61} tii[6,41] := {49, 50} tii[6,42] := {65, 66} tii[6,43] := {0} tii[6,44] := {1, 12} tii[6,45] := {3, 37} cell#23 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {14} tii[12,2] := {9, 32} tii[12,3] := {24, 41} tii[12,4] := {25} tii[12,5] := {29} tii[12,6] := {21, 45} tii[12,7] := {26, 50} tii[12,8] := {35, 52} tii[12,9] := {31, 53} tii[12,10] := {18, 61} tii[12,11] := {49, 62} tii[12,12] := {56, 69} tii[12,13] := {37} tii[12,14] := {43} tii[12,15] := {8, 55} tii[12,16] := {38, 59} tii[12,17] := {23, 64} tii[12,18] := {54} tii[12,19] := {19, 65} tii[12,20] := {7, 70} tii[12,21] := {42, 67} tii[12,22] := {34, 71} tii[12,23] := {39, 73} tii[12,24] := {46, 75} tii[12,25] := {30, 72} tii[12,26] := {17, 76} tii[12,27] := {48, 77} tii[12,28] := {13, 78} tii[12,29] := {57, 79} tii[12,30] := {60, 80} tii[12,31] := {5} tii[12,32] := {0, 12} tii[12,33] := {20} tii[12,34] := {2, 22} tii[12,35] := {15, 36} tii[12,36] := {6, 40} tii[12,37] := {44} tii[12,38] := {11, 33} tii[12,39] := {28, 58} tii[12,40] := {10, 51} tii[12,41] := {27, 66} tii[12,42] := {16, 68} tii[12,43] := {3, 47} tii[12,44] := {1, 63} tii[12,45] := {4, 74} cell#24 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {25} tii[6,2] := {39} tii[6,3] := {46, 47} tii[6,4] := {56, 57} tii[6,5] := {53} tii[6,6] := {62, 63} tii[6,7] := {24} tii[6,8] := {29, 60} tii[6,9] := {40, 67} tii[6,10] := {19, 69} tii[6,11] := {38} tii[6,12] := {10, 73} tii[6,13] := {49, 50} tii[6,14] := {27, 72} tii[6,15] := {23, 74} tii[6,16] := {45} tii[6,17] := {54, 55} tii[6,18] := {41, 64} tii[6,19] := {3} tii[6,20] := {8} tii[6,21] := {7} tii[6,22] := {30, 31} tii[6,23] := {16} tii[6,24] := {42, 43} tii[6,25] := {21, 22} tii[6,26] := {36, 37} tii[6,27] := {9, 59} tii[6,28] := {14} tii[6,29] := {32, 33} tii[6,30] := {4, 66} tii[6,31] := {26} tii[6,32] := {17, 65} tii[6,33] := {13, 71} tii[6,34] := {51, 52} tii[6,35] := {2, 58} tii[6,36] := {18, 70} tii[6,37] := {6} tii[6,38] := {20, 48} tii[6,39] := {15} tii[6,40] := {5, 68} tii[6,41] := {34, 35} tii[6,42] := {28, 61} tii[6,43] := {1} tii[6,44] := {11, 12} tii[6,45] := {0, 44} cell#25 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {14} tii[12,2] := {9, 32} tii[12,3] := {24, 41} tii[12,4] := {25} tii[12,5] := {29} tii[12,6] := {21, 45} tii[12,7] := {26, 50} tii[12,8] := {35, 52} tii[12,9] := {31, 53} tii[12,10] := {18, 61} tii[12,11] := {49, 62} tii[12,12] := {56, 69} tii[12,13] := {37} tii[12,14] := {43} tii[12,15] := {8, 55} tii[12,16] := {38, 59} tii[12,17] := {23, 64} tii[12,18] := {54} tii[12,19] := {19, 65} tii[12,20] := {7, 70} tii[12,21] := {42, 67} tii[12,22] := {34, 71} tii[12,23] := {39, 73} tii[12,24] := {46, 75} tii[12,25] := {30, 72} tii[12,26] := {17, 76} tii[12,27] := {48, 77} tii[12,28] := {13, 78} tii[12,29] := {57, 79} tii[12,30] := {60, 80} tii[12,31] := {5} tii[12,32] := {0, 12} tii[12,33] := {20} tii[12,34] := {2, 22} tii[12,35] := {15, 36} tii[12,36] := {6, 40} tii[12,37] := {44} tii[12,38] := {11, 33} tii[12,39] := {28, 58} tii[12,40] := {10, 51} tii[12,41] := {27, 66} tii[12,42] := {16, 68} tii[12,43] := {3, 47} tii[12,44] := {1, 63} tii[12,45] := {4, 74} cell#26 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {25} tii[6,2] := {39} tii[6,3] := {46, 47} tii[6,4] := {56, 57} tii[6,5] := {53} tii[6,6] := {62, 63} tii[6,7] := {24} tii[6,8] := {29, 60} tii[6,9] := {40, 67} tii[6,10] := {19, 69} tii[6,11] := {38} tii[6,12] := {10, 73} tii[6,13] := {49, 50} tii[6,14] := {27, 72} tii[6,15] := {23, 74} tii[6,16] := {45} tii[6,17] := {54, 55} tii[6,18] := {41, 64} tii[6,19] := {3} tii[6,20] := {8} tii[6,21] := {7} tii[6,22] := {30, 31} tii[6,23] := {16} tii[6,24] := {42, 43} tii[6,25] := {21, 22} tii[6,26] := {36, 37} tii[6,27] := {9, 59} tii[6,28] := {14} tii[6,29] := {32, 33} tii[6,30] := {4, 66} tii[6,31] := {26} tii[6,32] := {17, 65} tii[6,33] := {13, 71} tii[6,34] := {51, 52} tii[6,35] := {2, 58} tii[6,36] := {18, 70} tii[6,37] := {6} tii[6,38] := {20, 48} tii[6,39] := {15} tii[6,40] := {5, 68} tii[6,41] := {34, 35} tii[6,42] := {28, 61} tii[6,43] := {1} tii[6,44] := {11, 12} tii[6,45] := {0, 44} cell#27 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {8} tii[9,2] := {12} tii[9,3] := {9, 19} tii[9,4] := {15} tii[9,5] := {11, 22} tii[9,6] := {10, 24} tii[9,7] := {13} tii[9,8] := {6, 18} tii[9,9] := {5, 21} tii[9,10] := {3, 23} tii[9,11] := {7} tii[9,12] := {4, 14} tii[9,13] := {2, 16} tii[9,14] := {1, 20} tii[9,15] := {0, 17} cell#28 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {8} tii[9,2] := {12} tii[9,3] := {9, 19} tii[9,4] := {15} tii[9,5] := {11, 22} tii[9,6] := {10, 24} tii[9,7] := {13} tii[9,8] := {6, 18} tii[9,9] := {5, 21} tii[9,10] := {3, 23} tii[9,11] := {7} tii[9,12] := {4, 14} tii[9,13] := {2, 16} tii[9,14] := {1, 20} tii[9,15] := {0, 17} cell#29 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {9} tii[5,2] := {13} tii[5,3] := {12} tii[5,4] := {8} tii[5,5] := {16} tii[5,6] := {18} tii[5,7] := {14} tii[5,8] := {10} tii[5,9] := {19} tii[5,10] := {6} tii[5,11] := {21} tii[5,12] := {22} tii[5,13] := {11} tii[5,14] := {7} tii[5,15] := {15} tii[5,16] := {2} tii[5,17] := {17} tii[5,18] := {1} tii[5,19] := {20} tii[5,20] := {23} tii[5,21] := {5} tii[5,22] := {4} tii[5,23] := {3} tii[5,24] := {0} cell#30 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {9} tii[5,2] := {13} tii[5,3] := {12} tii[5,4] := {8} tii[5,5] := {16} tii[5,6] := {18} tii[5,7] := {14} tii[5,8] := {10} tii[5,9] := {19} tii[5,10] := {6} tii[5,11] := {21} tii[5,12] := {22} tii[5,13] := {11} tii[5,14] := {7} tii[5,15] := {15} tii[5,16] := {2} tii[5,17] := {17} tii[5,18] := {1} tii[5,19] := {20} tii[5,20] := {23} tii[5,21] := {5} tii[5,22] := {4} tii[5,23] := {3} tii[5,24] := {0} cell#31 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {7} tii[5,5] := {8} tii[5,6] := {14} tii[5,7] := {9} tii[5,8] := {15} tii[5,9] := {16} tii[5,10] := {20} tii[5,11] := {21} tii[5,12] := {23} tii[5,13] := {6} tii[5,14] := {11} tii[5,15] := {12} tii[5,16] := {18} tii[5,17] := {19} tii[5,18] := {10} tii[5,19] := {22} tii[5,20] := {17} tii[5,21] := {0} tii[5,22] := {2} tii[5,23] := {13} tii[5,24] := {5} cell#32 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {7} tii[5,5] := {8} tii[5,6] := {14} tii[5,7] := {9} tii[5,8] := {15} tii[5,9] := {16} tii[5,10] := {20} tii[5,11] := {21} tii[5,12] := {23} tii[5,13] := {6} tii[5,14] := {11} tii[5,15] := {12} tii[5,16] := {18} tii[5,17] := {19} tii[5,18] := {10} tii[5,19] := {22} tii[5,20] := {17} tii[5,21] := {0} tii[5,22] := {2} tii[5,23] := {13} tii[5,24] := {5} cell#33 , |C| = 24 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[3,1] := {7} tii[3,2] := {11} tii[3,3] := {6, 15} tii[3,4] := {14} tii[3,5] := {10, 18} tii[3,6] := {5, 19} tii[3,7] := {16} tii[3,8] := {13, 20} tii[3,9] := {9, 22} tii[3,10] := {8, 23} tii[3,11] := {0} tii[3,12] := {3} tii[3,13] := {2, 12} tii[3,14] := {1, 17} tii[3,15] := {4, 21} cell#34 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 8} tii[2,5] := {1, 10} tii[2,6] := {0, 9} cell#35 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 8} tii[2,5] := {1, 10} tii[2,6] := {0, 9} cell#36 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {10} tii[5,2] := {17} tii[5,3] := {18} tii[5,4] := {21} tii[5,5] := {22} tii[5,6] := {23} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {15} tii[5,10] := {8} tii[5,11] := {20} tii[5,12] := {19} tii[5,13] := {4} tii[5,14] := {6} tii[5,15] := {7} tii[5,16] := {2} tii[5,17] := {12} tii[5,18] := {1} tii[5,19] := {11} tii[5,20] := {13} tii[5,21] := {5} tii[5,22] := {16} tii[5,23] := {3} tii[5,24] := {0} cell#37 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {10} tii[5,2] := {17} tii[5,3] := {18} tii[5,4] := {21} tii[5,5] := {22} tii[5,6] := {23} tii[5,7] := {9} tii[5,8] := {14} tii[5,9] := {15} tii[5,10] := {8} tii[5,11] := {20} tii[5,12] := {19} tii[5,13] := {4} tii[5,14] := {6} tii[5,15] := {7} tii[5,16] := {2} tii[5,17] := {12} tii[5,18] := {1} tii[5,19] := {11} tii[5,20] := {13} tii[5,21] := {5} tii[5,22] := {16} tii[5,23] := {3} tii[5,24] := {0} cell#38 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {6} tii[5,2] := {11} tii[5,3] := {10} tii[5,4] := {5} tii[5,5] := {14} tii[5,6] := {16} tii[5,7] := {13} tii[5,8] := {9} tii[5,9] := {17} tii[5,10] := {4} tii[5,11] := {18} tii[5,12] := {20} tii[5,13] := {15} tii[5,14] := {12} tii[5,15] := {19} tii[5,16] := {8} tii[5,17] := {21} tii[5,18] := {7} tii[5,19] := {22} tii[5,20] := {23} tii[5,21] := {2} tii[5,22] := {1} tii[5,23] := {0} tii[5,24] := {3} cell#39 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {6} tii[5,2] := {11} tii[5,3] := {10} tii[5,4] := {5} tii[5,5] := {14} tii[5,6] := {16} tii[5,7] := {13} tii[5,8] := {9} tii[5,9] := {17} tii[5,10] := {4} tii[5,11] := {18} tii[5,12] := {20} tii[5,13] := {15} tii[5,14] := {12} tii[5,15] := {19} tii[5,16] := {8} tii[5,17] := {21} tii[5,18] := {7} tii[5,19] := {22} tii[5,20] := {23} tii[5,21] := {2} tii[5,22] := {1} tii[5,23] := {0} tii[5,24] := {3} cell#40 , |C| = 24 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {13, 14} tii[3,6] := {18, 19} tii[3,7] := {10} tii[3,8] := {16, 17} tii[3,9] := {20, 21} tii[3,10] := {15, 23} tii[3,11] := {0} tii[3,12] := {1} tii[3,13] := {3, 4} tii[3,14] := {11, 12} tii[3,15] := {9, 22} cell#41 , |C| = 24 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {13, 14} tii[3,6] := {18, 19} tii[3,7] := {10} tii[3,8] := {16, 17} tii[3,9] := {20, 21} tii[3,10] := {15, 23} tii[3,11] := {0} tii[3,12] := {1} tii[3,13] := {3, 4} tii[3,14] := {11, 12} tii[3,15] := {9, 22} cell#42 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {2} tii[2,2] := {4, 5} tii[2,3] := {6, 7} tii[2,4] := {3, 9} tii[2,5] := {1, 8} tii[2,6] := {0, 10} cell#43 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {2} tii[2,2] := {4, 5} tii[2,3] := {6, 7} tii[2,4] := {3, 9} tii[2,5] := {1, 8} tii[2,6] := {0, 10} cell#44 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#45 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}