TII subcells for the Spin(10,3) x PSp(12,R) block of Spin13 # cell#0 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3, 1, 1, 1],[]]+phi[[3],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {0, 2} tii[17,2] := {12, 13} tii[17,3] := {1, 4} tii[17,4] := {14} tii[17,5] := {21, 22} tii[17,6] := {10, 11} tii[17,7] := {18} tii[17,8] := {3, 6} tii[17,9] := {15} tii[17,10] := {23} tii[17,11] := {27, 28} tii[17,12] := {19, 20} tii[17,13] := {26} tii[17,14] := {8, 9} tii[17,15] := {17} tii[17,16] := {25} tii[17,17] := {5, 7} tii[17,18] := {16} tii[17,19] := {24} tii[17,20] := {29} cell#1 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {8} tii[12,2] := {4, 28} tii[12,3] := {18, 36} tii[12,4] := {19} tii[12,5] := {25} tii[12,6] := {14, 42} tii[12,7] := {20, 45} tii[12,8] := {30, 48} tii[12,9] := {26, 49} tii[12,10] := {11, 57} tii[12,11] := {44, 58} tii[12,12] := {53, 67} tii[12,13] := {32} tii[12,14] := {39} tii[12,15] := {27, 52} tii[12,16] := {33, 56} tii[12,17] := {46, 60} tii[12,18] := {51} tii[12,19] := {41, 61} tii[12,20] := {24, 68} tii[12,21] := {37, 65} tii[12,22] := {55, 69} tii[12,23] := {34, 72} tii[12,24] := {62, 74} tii[12,25] := {50, 70} tii[12,26] := {38, 75} tii[12,27] := {64, 76} tii[12,28] := {22, 78} tii[12,29] := {71, 79} tii[12,30] := {77, 80} tii[12,31] := {2} tii[12,32] := {0, 7} tii[12,33] := {13} tii[12,34] := {1, 17} tii[12,35] := {9, 31} tii[12,36] := {3, 35} tii[12,37] := {40} tii[12,38] := {6, 29} tii[12,39] := {23, 54} tii[12,40] := {5, 47} tii[12,41] := {21, 63} tii[12,42] := {10, 66} tii[12,43] := {16, 43} tii[12,44] := {15, 59} tii[12,45] := {12, 73} cell#2 , |C| = 60 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1]] TII depth = 2 TII multiplicity polynomial = 30*X+15*X^2 TII subcells: tii[6,1] := {16, 17} tii[6,2] := {23, 24} tii[6,3] := {29} tii[6,4] := {37} tii[6,5] := {32, 33} tii[6,6] := {40} tii[6,7] := {34, 35} tii[6,8] := {39} tii[6,9] := {47} tii[6,10] := {48} tii[6,11] := {42, 43} tii[6,12] := {54} tii[6,13] := {50} tii[6,14] := {55} tii[6,15] := {58} tii[6,16] := {51, 52} tii[6,17] := {57} tii[6,18] := {59} tii[6,19] := {2, 3} tii[6,20] := {6, 7} tii[6,21] := {4, 5} tii[6,22] := {20} tii[6,23] := {11, 12} tii[6,24] := {28} tii[6,25] := {13} tii[6,26] := {22} tii[6,27] := {38} tii[6,28] := {9, 10} tii[6,29] := {21} tii[6,30] := {44} tii[6,31] := {18, 19} tii[6,32] := {45} tii[6,33] := {53} tii[6,34] := {31} tii[6,35] := {36} tii[6,36] := {49} tii[6,37] := {14, 15} tii[6,38] := {30} tii[6,39] := {25, 26} tii[6,40] := {46} tii[6,41] := {41} tii[6,42] := {56} tii[6,43] := {0, 1} tii[6,44] := {8} tii[6,45] := {27} cell#3 , |C| = 20 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+5*X^2 TII subcells: tii[9,1] := {18, 19} tii[9,2] := {11, 12} tii[9,3] := {16} tii[9,4] := {6, 7} tii[9,5] := {10} tii[9,6] := {15} tii[9,7] := {2, 3} tii[9,8] := {5} tii[9,9] := {9} tii[9,10] := {14} tii[9,11] := {0, 1} tii[9,12] := {4} tii[9,13] := {8} tii[9,14] := {13} tii[9,15] := {17} cell#4 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {3} tii[9,2] := {10} tii[9,3] := {4, 14} tii[9,4] := {13} tii[9,5] := {8, 17} tii[9,6] := {5, 19} tii[9,7] := {15} tii[9,8] := {11, 20} tii[9,9] := {7, 22} tii[9,10] := {6, 24} tii[9,11] := {12} tii[9,12] := {9, 16} tii[9,13] := {2, 18} tii[9,14] := {1, 21} tii[9,15] := {0, 23} cell#5 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {7} tii[5,2] := {11} tii[5,3] := {10} tii[5,4] := {6} tii[5,5] := {14} tii[5,6] := {16} tii[5,7] := {13} tii[5,8] := {9} tii[5,9] := {17} tii[5,10] := {5} tii[5,11] := {18} tii[5,12] := {20} tii[5,13] := {15} tii[5,14] := {12} tii[5,15] := {19} tii[5,16] := {8} tii[5,17] := {21} tii[5,18] := {4} tii[5,19] := {22} tii[5,20] := {23} tii[5,21] := {3} tii[5,22] := {2} tii[5,23] := {1} tii[5,24] := {0} cell#6 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {9} tii[5,7] := {7} tii[5,8] := {10} tii[5,9] := {11} tii[5,10] := {13} tii[5,11] := {14} tii[5,12] := {18} tii[5,13] := {12} tii[5,14] := {15} tii[5,15] := {16} tii[5,16] := {19} tii[5,17] := {20} tii[5,18] := {21} tii[5,19] := {22} tii[5,20] := {23} tii[5,21] := {0} tii[5,22] := {2} tii[5,23] := {8} tii[5,24] := {17} cell#7 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 8} tii[2,5] := {1, 9} tii[2,6] := {0, 10} cell#8 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {1} tii[5,2] := {4} tii[5,3] := {6} tii[5,4] := {10} tii[5,5] := {11} tii[5,6] := {16} tii[5,7] := {12} tii[5,8] := {17} tii[5,9] := {18} tii[5,10] := {21} tii[5,11] := {22} tii[5,12] := {23} tii[5,13] := {5} tii[5,14] := {8} tii[5,15] := {9} tii[5,16] := {13} tii[5,17] := {14} tii[5,18] := {7} tii[5,19] := {20} tii[5,20] := {19} tii[5,21] := {0} tii[5,22] := {3} tii[5,23] := {15} tii[5,24] := {2} cell#9 , |C| = 21 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 9*X+6*X^2 TII subcells: tii[3,1] := {4, 5} tii[3,2] := {7, 8} tii[3,3] := {9} tii[3,4] := {10, 11} tii[3,5] := {13} tii[3,6] := {16} tii[3,7] := {14, 15} tii[3,8] := {17} tii[3,9] := {19} tii[3,10] := {20} tii[3,11] := {0, 1} tii[3,12] := {2, 3} tii[3,13] := {6} tii[3,14] := {12} tii[3,15] := {18} cell#10 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {0} tii[2,2] := {2, 3} tii[2,3] := {5, 6} tii[2,4] := {7, 8} tii[2,5] := {4, 10} tii[2,6] := {1, 9} cell#11 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}