TII subcells for the Spin(11,2) x PSp(12,R) block of Spin13 # cell#0 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {0} tii[9,2] := {8} tii[9,3] := {1, 12} tii[9,4] := {11} tii[9,5] := {7, 15} tii[9,6] := {2, 17} tii[9,7] := {14} tii[9,8] := {10, 18} tii[9,9] := {6, 19} tii[9,10] := {3, 21} tii[9,11] := {16} tii[9,12] := {13, 20} tii[9,13] := {9, 22} tii[9,14] := {5, 23} tii[9,15] := {4, 24} cell#1 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {0} tii[9,2] := {8} tii[9,3] := {1, 12} tii[9,4] := {11} tii[9,5] := {7, 15} tii[9,6] := {2, 17} tii[9,7] := {14} tii[9,8] := {10, 18} tii[9,9] := {6, 19} tii[9,10] := {3, 21} tii[9,11] := {16} tii[9,12] := {13, 20} tii[9,13] := {9, 22} tii[9,14] := {5, 23} tii[9,15] := {4, 24} cell#2 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 8} tii[2,5] := {1, 9} tii[2,6] := {0, 10} cell#3 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 8} tii[2,5] := {1, 9} tii[2,6] := {0, 10} cell#4 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {1} tii[5,2] := {3} tii[5,3] := {4} tii[5,4] := {5} tii[5,5] := {6} tii[5,6] := {9} tii[5,7] := {7} tii[5,8] := {10} tii[5,9] := {11} tii[5,10] := {13} tii[5,11] := {14} tii[5,12] := {18} tii[5,13] := {12} tii[5,14] := {15} tii[5,15] := {16} tii[5,16] := {19} tii[5,17] := {20} tii[5,18] := {21} tii[5,19] := {22} tii[5,20] := {23} tii[5,21] := {0} tii[5,22] := {2} tii[5,23] := {8} tii[5,24] := {17} cell#5 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {3, 4} tii[2,4] := {6, 7} tii[2,5] := {8, 9} tii[2,6] := {5, 10} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}