TII subcells for the Spin(7,6) x PSp(3,3) block of Spin13 # cell#0 , |C| = 1 special orbit = [13] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#1 , |C| = 1 special orbit = [13] special rep = [[6], []] , dim = 1 cell rep = phi[[6],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[26,1] := {0} cell#2 , |C| = 7 special orbit = [11, 1, 1] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5],[1]]+phi[[],[6]] TII depth = 1 TII multiplicity polynomial = 5*X+X^2 TII subcells: tii[25,1] := {6} tii[25,2] := {5} tii[25,3] := {4} tii[25,4] := {3} tii[25,5] := {2} tii[25,6] := {0, 1} cell#3 , |C| = 24 special orbit = [9, 3, 1] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[24,1] := {1, 23} tii[24,2] := {6, 20} tii[24,3] := {0, 15} tii[24,4] := {9} tii[24,5] := {14} tii[24,6] := {3, 22} tii[24,7] := {7, 21} tii[24,8] := {11, 19} tii[24,9] := {17} tii[24,10] := {2, 18} tii[24,11] := {8, 16} tii[24,12] := {13} tii[24,13] := {4, 12} tii[24,14] := {10} tii[24,15] := {5} cell#4 , |C| = 24 special orbit = [9, 3, 1] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4, 2],[]]+phi[[4],[2]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[24,1] := {1, 23} tii[24,2] := {6, 20} tii[24,3] := {0, 15} tii[24,4] := {9} tii[24,5] := {14} tii[24,6] := {3, 22} tii[24,7] := {7, 21} tii[24,8] := {11, 19} tii[24,9] := {17} tii[24,10] := {2, 18} tii[24,11] := {8, 16} tii[24,12] := {13} tii[24,13] := {4, 12} tii[24,14] := {10} tii[24,15] := {5} cell#5 , |C| = 35 special orbit = [7, 5, 1] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3],[3]]+phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[21,1] := {15} tii[21,2] := {23, 24} tii[21,3] := {31, 32} tii[21,4] := {33, 34} tii[21,5] := {16} tii[21,6] := {19, 20} tii[21,7] := {27, 28} tii[21,8] := {7} tii[21,9] := {2} tii[21,10] := {9, 10} tii[21,11] := {0, 1} tii[21,12] := {21, 22} tii[21,13] := {17, 18} tii[21,14] := {25, 26} tii[21,15] := {11, 12} tii[21,16] := {29, 30} tii[21,17] := {8} tii[21,18] := {5, 6} tii[21,19] := {13, 14} tii[21,20] := {3, 4} cell#6 , |C| = 24 special orbit = [9, 2, 2] special rep = [[4, 1], [1]] , dim = 24 cell rep = phi[[4, 1],[1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[23,1] := {23} tii[23,2] := {19} tii[23,3] := {11} tii[23,4] := {6} tii[23,5] := {21} tii[23,6] := {22} tii[23,7] := {17} tii[23,8] := {20} tii[23,9] := {13} tii[23,10] := {18} tii[23,11] := {8} tii[23,12] := {14} tii[23,13] := {12} tii[23,14] := {7} tii[23,15] := {16} tii[23,16] := {4} tii[23,17] := {15} tii[23,18] := {9} tii[23,19] := {3} tii[23,20] := {1} tii[23,21] := {10} tii[23,22] := {5} tii[23,23] := {0} tii[23,24] := {2} cell#7 , |C| = 75 special orbit = [7, 3, 3] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 2],[1]]+phi[[3, 1],[2]] TII depth = 3 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[20,1] := {52, 74} tii[20,2] := {27, 70} tii[20,3] := {56} tii[20,4] := {9, 60} tii[20,5] := {23, 44} tii[20,6] := {36, 72} tii[20,7] := {22, 67} tii[20,8] := {42} tii[20,9] := {54} tii[20,10] := {3, 64} tii[20,11] := {45, 73} tii[20,12] := {10, 58} tii[20,13] := {14, 35} tii[20,14] := {40, 71} tii[20,15] := {16, 63} tii[20,16] := {13, 62} tii[20,17] := {32} tii[20,18] := {29, 68} tii[20,19] := {46} tii[20,20] := {6, 41} tii[20,21] := {21, 66} tii[20,22] := {1, 49} tii[20,23] := {25} tii[20,24] := {11, 59} tii[20,25] := {38} tii[20,26] := {33} tii[20,27] := {47} tii[20,28] := {17, 53} tii[20,29] := {24, 48} tii[20,30] := {37} tii[20,31] := {4, 50} tii[20,32] := {8, 57} tii[20,33] := {31, 69} tii[20,34] := {15, 39} tii[20,35] := {20, 65} tii[20,36] := {28} tii[20,37] := {2, 51} tii[20,38] := {34} tii[20,39] := {12, 61} tii[20,40] := {7, 30} tii[20,41] := {19} tii[20,42] := {0, 43} tii[20,43] := {26} tii[20,44] := {5, 55} tii[20,45] := {18} cell#8 , |C| = 30 special orbit = [5, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {18} tii[14,3] := {24} tii[14,4] := {2} tii[14,5] := {11} tii[14,6] := {26} tii[14,7] := {13} tii[14,8] := {22} tii[14,9] := {17} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {27} tii[14,13] := {20} tii[14,14] := {0} tii[14,15] := {14} tii[14,16] := {3} tii[14,17] := {7} tii[14,18] := {10} tii[14,19] := {16} tii[14,20] := {12} tii[14,21] := {21} tii[14,22] := {1} tii[14,23] := {8} tii[14,24] := {5} tii[14,25] := {19} tii[14,26] := {9} tii[14,27] := {25} tii[14,28] := {6} tii[14,29] := {15} tii[14,30] := {4} cell#9 , |C| = 30 special orbit = [5, 4, 4] special rep = [[2, 2], [2]] , dim = 30 cell rep = phi[[2, 2],[2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[14,1] := {29} tii[14,2] := {18} tii[14,3] := {24} tii[14,4] := {2} tii[14,5] := {11} tii[14,6] := {26} tii[14,7] := {13} tii[14,8] := {22} tii[14,9] := {17} tii[14,10] := {28} tii[14,11] := {23} tii[14,12] := {27} tii[14,13] := {20} tii[14,14] := {0} tii[14,15] := {14} tii[14,16] := {3} tii[14,17] := {7} tii[14,18] := {10} tii[14,19] := {16} tii[14,20] := {12} tii[14,21] := {21} tii[14,22] := {1} tii[14,23] := {8} tii[14,24] := {5} tii[14,25] := {19} tii[14,26] := {9} tii[14,27] := {25} tii[14,28] := {6} tii[14,29] := {15} tii[14,30] := {4} cell#10 , |C| = 54 special orbit = [7, 2, 2, 1, 1] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1],[1, 1]]+phi[[],[4, 2]] TII depth = 3 TII multiplicity polynomial = 36*X+9*X^2 TII subcells: tii[18,1] := {53} tii[18,2] := {45} tii[18,3] := {31} tii[18,4] := {51} tii[18,5] := {38} tii[18,6] := {48} tii[18,7] := {21} tii[18,8] := {43} tii[18,9] := {35, 36} tii[18,10] := {32} tii[18,11] := {13} tii[18,12] := {24} tii[18,13] := {16, 17} tii[18,14] := {7} tii[18,15] := {2, 3} tii[18,16] := {52} tii[18,17] := {50} tii[18,18] := {49} tii[18,19] := {47} tii[18,20] := {46} tii[18,21] := {42} tii[18,22] := {44} tii[18,23] := {41} tii[18,24] := {34} tii[18,25] := {39} tii[18,26] := {40} tii[18,27] := {26, 27} tii[18,28] := {33} tii[18,29] := {30} tii[18,30] := {25} tii[18,31] := {18, 19} tii[18,32] := {23} tii[18,33] := {10, 11} tii[18,34] := {37} tii[18,35] := {29} tii[18,36] := {28} tii[18,37] := {22} tii[18,38] := {20} tii[18,39] := {15} tii[18,40] := {14} tii[18,41] := {8, 9} tii[18,42] := {4, 5} tii[18,43] := {12} tii[18,44] := {6} tii[18,45] := {0, 1} cell#11 , |C| = 145 special orbit = [5, 3, 3, 1, 1] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 2, 2],[]]+phi[[2, 2, 1],[1]]+phi[[2, 1],[2, 1]]+phi[[2],[2, 2]] TII depth = 3 TII multiplicity polynomial = 25*X+50*X^2+5*X^4 TII subcells: tii[13,1] := {117, 144} tii[13,2] := {131} tii[13,3] := {28, 29, 127, 128} tii[13,4] := {95, 143} tii[13,5] := {49, 135} tii[13,6] := {116} tii[13,7] := {83, 84} tii[13,8] := {110, 111} tii[13,9] := {118, 140} tii[13,10] := {104} tii[13,11] := {96, 136} tii[13,12] := {32, 33} tii[13,13] := {122} tii[13,14] := {64, 65} tii[13,15] := {126} tii[13,16] := {112, 113} tii[13,17] := {44, 132} tii[13,18] := {76, 139} tii[13,19] := {97} tii[13,20] := {121} tii[13,21] := {22, 137} tii[13,22] := {10, 11, 106, 107} tii[13,23] := {99, 142} tii[13,24] := {45, 129} tii[13,25] := {25, 124} tii[13,26] := {56, 57} tii[13,27] := {30, 31, 85, 86} tii[13,28] := {72} tii[13,29] := {78, 138} tii[13,30] := {89, 90} tii[13,31] := {62, 63} tii[13,32] := {101} tii[13,33] := {93} tii[13,34] := {34, 35} tii[13,35] := {48, 105} tii[13,36] := {18, 19} tii[13,37] := {115} tii[13,38] := {81} tii[13,39] := {66, 67} tii[13,40] := {42, 43} tii[13,41] := {7, 133} tii[13,42] := {54, 55, 108, 109} tii[13,43] := {75, 141} tii[13,44] := {23, 119} tii[13,45] := {46} tii[13,46] := {87, 88} tii[13,47] := {51, 134} tii[13,48] := {79} tii[13,49] := {74, 125} tii[13,50] := {8, 98} tii[13,51] := {70} tii[13,52] := {14, 15} tii[13,53] := {60, 61} tii[13,54] := {103} tii[13,55] := {94} tii[13,56] := {27, 123} tii[13,57] := {3, 4} tii[13,58] := {40, 41} tii[13,59] := {82} tii[13,60] := {68, 69} tii[13,61] := {47} tii[13,62] := {16, 17} tii[13,63] := {80} tii[13,64] := {91, 92} tii[13,65] := {71, 120} tii[13,66] := {100} tii[13,67] := {24, 114} tii[13,68] := {12, 13, 58, 59} tii[13,69] := {77} tii[13,70] := {38, 39} tii[13,71] := {52, 130} tii[13,72] := {20, 21} tii[13,73] := {2, 73} tii[13,74] := {36, 37} tii[13,75] := {50} tii[13,76] := {9, 102} tii[13,77] := {5, 6} tii[13,78] := {53} tii[13,79] := {26} tii[13,80] := {0, 1} cell#12 , |C| = 45 special orbit = [5, 2, 2, 2, 2] special rep = [[2, 1, 1], [1, 1]] , dim = 45 cell rep = phi[[2, 1, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 45*X TII subcells: tii[11,1] := {25} tii[11,2] := {44} tii[11,3] := {32} tii[11,4] := {42} tii[11,5] := {28} tii[11,6] := {19} tii[11,7] := {39} tii[11,8] := {40} tii[11,9] := {16} tii[11,10] := {9} tii[11,11] := {34} tii[11,12] := {20} tii[11,13] := {30} tii[11,14] := {29} tii[11,15] := {21} tii[11,16] := {43} tii[11,17] := {8} tii[11,18] := {14} tii[11,19] := {37} tii[11,20] := {27} tii[11,21] := {41} tii[11,22] := {18} tii[11,23] := {17} tii[11,24] := {11} tii[11,25] := {35} tii[11,26] := {31} tii[11,27] := {22} tii[11,28] := {24} tii[11,29] := {36} tii[11,30] := {13} tii[11,31] := {26} tii[11,32] := {6} tii[11,33] := {3} tii[11,34] := {23} tii[11,35] := {15} tii[11,36] := {10} tii[11,37] := {4} tii[11,38] := {38} tii[11,39] := {1} tii[11,40] := {33} tii[11,41] := {7} tii[11,42] := {12} tii[11,43] := {0} tii[11,44] := {2} tii[11,45] := {5} cell#13 , |C| = 25 special orbit = [3, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1],[1, 1, 1]]+phi[[],[2, 2, 2]] TII depth = 2 TII multiplicity polynomial = 15*X+5*X^2 TII subcells: tii[4,1] := {23} tii[4,2] := {20} tii[4,3] := {14} tii[4,4] := {10, 11} tii[4,5] := {24} tii[4,6] := {17} tii[4,7] := {18} tii[4,8] := {12} tii[4,9] := {9} tii[4,10] := {22} tii[4,11] := {4, 5} tii[4,12] := {16} tii[4,13] := {2, 3} tii[4,14] := {19} tii[4,15] := {13} tii[4,16] := {6, 7} tii[4,17] := {21} tii[4,18] := {15} tii[4,19] := {8} tii[4,20] := {0, 1}