TII subcells for the Spin(8,5) x PSp(12,R) block of Spin13 # cell#0 , |C| = 11 special orbit = [11, 1, 1] special rep = [[5], [1]] , dim = 6 cell rep = phi[[5, 1],[]]+phi[[5],[1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[25,1] := {0, 2} tii[25,2] := {6, 7} tii[25,3] := {1, 4} tii[25,4] := {8, 9} tii[25,5] := {3, 5} tii[25,6] := {10} cell#1 , |C| = 21 special orbit = [9, 3, 1] special rep = [[4], [2]] , dim = 15 cell rep = phi[[4],[2]]+phi[[1],[5]] TII depth = 1 TII multiplicity polynomial = 9*X+6*X^2 TII subcells: tii[24,1] := {19} tii[24,2] := {17} tii[24,3] := {11} tii[24,4] := {6, 18} tii[24,5] := {15, 20} tii[24,6] := {16} tii[24,7] := {10} tii[24,8] := {4} tii[24,9] := {0, 8} tii[24,10] := {13} tii[24,11] := {7} tii[24,12] := {2, 12} tii[24,13] := {5} tii[24,14] := {1, 9} tii[24,15] := {3, 14} cell#2 , |C| = 25 special orbit = [7, 5, 1] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3, 3],[]]+phi[[3],[3]] TII depth = 2 TII multiplicity polynomial = 15*X+5*X^2 TII subcells: tii[21,1] := {12, 13} tii[21,2] := {20} tii[21,3] := {23} tii[21,4] := {24} tii[21,5] := {4, 5} tii[21,6] := {14} tii[21,7] := {17} tii[21,8] := {7, 8} tii[21,9] := {2, 3} tii[21,10] := {15} tii[21,11] := {9} tii[21,12] := {19} tii[21,13] := {18} tii[21,14] := {21} tii[21,15] := {16} tii[21,16] := {22} tii[21,17] := {0, 1} tii[21,18] := {6} tii[21,19] := {10} tii[21,20] := {11} cell#3 , |C| = 60 special orbit = [7, 3, 3] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 1],[2]]+phi[[1, 1],[4]] TII depth = 3 TII multiplicity polynomial = 30*X+15*X^2 TII subcells: tii[20,1] := {57} tii[20,2] := {51} tii[20,3] := {36, 59} tii[20,4] := {5} tii[20,5] := {20} tii[20,6] := {49} tii[20,7] := {35} tii[20,8] := {7, 39} tii[20,9] := {17, 48} tii[20,10] := {12} tii[20,11] := {54} tii[20,12] := {25} tii[20,13] := {29} tii[20,14] := {50} tii[20,15] := {34} tii[20,16] := {40} tii[20,17] := {10, 45} tii[20,18] := {44} tii[20,19] := {23, 53} tii[20,20] := {38} tii[20,21] := {46} tii[20,22] := {30} tii[20,23] := {8, 52} tii[20,24] := {42} tii[20,25] := {18, 56} tii[20,26] := {16, 55} tii[20,27] := {28, 58} tii[20,28] := {0} tii[20,29] := {9} tii[20,30] := {3, 19} tii[20,31] := {14} tii[20,32] := {26} tii[20,33] := {43} tii[20,34] := {11} tii[20,35] := {37} tii[20,36] := {6, 24} tii[20,37] := {15} tii[20,38] := {1, 31} tii[20,39] := {27} tii[20,40] := {21} tii[20,41] := {13, 33} tii[20,42] := {22} tii[20,43] := {4, 41} tii[20,44] := {32} tii[20,45] := {2, 47} cell#4 , |C| = 25 special orbit = [9, 1, 1, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4, 1, 1],[]]+phi[[4],[1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[22,1] := {20, 21} tii[22,2] := {6, 8} tii[22,3] := {16, 17} tii[22,4] := {7, 9} tii[22,5] := {18} tii[22,6] := {0, 2} tii[22,7] := {12, 13} tii[22,8] := {1, 4} tii[22,9] := {14} tii[22,10] := {22, 23} tii[22,11] := {10, 11} tii[22,12] := {19} tii[22,13] := {3, 5} tii[22,14] := {15} tii[22,15] := {24} cell#5 , |C| = 60 special orbit = [7, 3, 3] special rep = [[3, 1], [2]] , dim = 45 cell rep = phi[[3, 1],[2]]+phi[[1, 1],[4]] TII depth = 3 TII multiplicity polynomial = 30*X+15*X^2 TII subcells: tii[20,1] := {57} tii[20,2] := {51} tii[20,3] := {36, 59} tii[20,4] := {5} tii[20,5] := {20} tii[20,6] := {49} tii[20,7] := {35} tii[20,8] := {7, 39} tii[20,9] := {17, 48} tii[20,10] := {12} tii[20,11] := {54} tii[20,12] := {25} tii[20,13] := {29} tii[20,14] := {50} tii[20,15] := {34} tii[20,16] := {40} tii[20,17] := {10, 45} tii[20,18] := {44} tii[20,19] := {23, 53} tii[20,20] := {38} tii[20,21] := {46} tii[20,22] := {30} tii[20,23] := {8, 52} tii[20,24] := {42} tii[20,25] := {18, 56} tii[20,26] := {16, 55} tii[20,27] := {28, 58} tii[20,28] := {0} tii[20,29] := {9} tii[20,30] := {3, 19} tii[20,31] := {14} tii[20,32] := {26} tii[20,33] := {43} tii[20,34] := {11} tii[20,35] := {37} tii[20,36] := {6, 24} tii[20,37] := {15} tii[20,38] := {1, 31} tii[20,39] := {27} tii[20,40] := {21} tii[20,41] := {13, 33} tii[20,42] := {22} tii[20,43] := {4, 41} tii[20,44] := {32} tii[20,45] := {2, 47} cell#6 , |C| = 20 special orbit = [9, 1, 1, 1, 1] special rep = [[4], [1, 1]] , dim = 15 cell rep = phi[[4],[1, 1]]+phi[[],[5, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+5*X^2 TII subcells: tii[22,1] := {13} tii[22,2] := {16} tii[22,3] := {14} tii[22,4] := {17} tii[22,5] := {15, 19} tii[22,6] := {10} tii[22,7] := {7} tii[22,8] := {11} tii[22,9] := {8, 18} tii[22,10] := {3} tii[22,11] := {5} tii[22,12] := {4, 12} tii[22,13] := {2} tii[22,14] := {1, 6} tii[22,15] := {0, 9} cell#7 , |C| = 64 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {47} tii[19,2] := {18} tii[19,3] := {15, 41} tii[19,4] := {29, 52} tii[19,5] := {57} tii[19,6] := {13} tii[19,7] := {45} tii[19,8] := {53} tii[19,9] := {6, 36} tii[19,10] := {46, 62} tii[19,11] := {24, 44} tii[19,12] := {25} tii[19,13] := {34} tii[19,14] := {21, 48} tii[19,15] := {26, 50} tii[19,16] := {38, 56} tii[19,17] := {35, 58} tii[19,18] := {17, 60} tii[19,19] := {49, 61} tii[19,20] := {59, 63} tii[19,21] := {33} tii[19,22] := {22} tii[19,23] := {10, 30} tii[19,24] := {31} tii[19,25] := {40} tii[19,26] := {7} tii[19,27] := {32, 54} tii[19,28] := {1, 16} tii[19,29] := {27} tii[19,30] := {5, 28} tii[19,31] := {19, 42} tii[19,32] := {8, 51} tii[19,33] := {3} tii[19,34] := {0, 12} tii[19,35] := {20} tii[19,36] := {2, 23} tii[19,37] := {14, 39} tii[19,38] := {4, 43} tii[19,39] := {11, 37} tii[19,40] := {9, 55} cell#8 , |C| = 56 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3, 2, 1],[]]+phi[[3],[2, 1]] TII depth = 2 TII multiplicity polynomial = 24*X+16*X^2 TII subcells: tii[19,1] := {35, 36} tii[19,2] := {43, 44} tii[19,3] := {51} tii[19,4] := {55} tii[19,5] := {45, 46} tii[19,6] := {32, 33} tii[19,7] := {37, 38} tii[19,8] := {19, 20} tii[19,9] := {48} tii[19,10] := {34} tii[19,11] := {53} tii[19,12] := {15, 16} tii[19,13] := {4, 5} tii[19,14] := {40} tii[19,15] := {10} tii[19,16] := {50} tii[19,17] := {47} tii[19,18] := {39} tii[19,19] := {52} tii[19,20] := {54} tii[19,21] := {21, 22} tii[19,22] := {11, 12} tii[19,23] := {27} tii[19,24] := {23, 24} tii[19,25] := {7, 8} tii[19,26] := {30, 31} tii[19,27] := {18} tii[19,28] := {41} tii[19,29] := {2, 3} tii[19,30] := {49} tii[19,31] := {9} tii[19,32] := {25} tii[19,33] := {13, 14} tii[19,34] := {28} tii[19,35] := {0, 1} tii[19,36] := {42} tii[19,37] := {6} tii[19,38] := {17} tii[19,39] := {29} tii[19,40] := {26} cell#9 , |C| = 64 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {56} tii[19,2] := {54} tii[19,3] := {41, 61} tii[19,4] := {48, 63} tii[19,5] := {49} tii[19,6] := {44} tii[19,7] := {39} tii[19,8] := {28} tii[19,9] := {29, 57} tii[19,10] := {19, 37} tii[19,11] := {38, 62} tii[19,12] := {33} tii[19,13] := {22} tii[19,14] := {18, 51} tii[19,15] := {13, 32} tii[19,16] := {26, 59} tii[19,17] := {7, 45} tii[19,18] := {4, 36} tii[19,19] := {16, 55} tii[19,20] := {11, 60} tii[19,21] := {50} tii[19,22] := {40} tii[19,23] := {30, 47} tii[19,24] := {27} tii[19,25] := {17} tii[19,26] := {46} tii[19,27] := {8, 25} tii[19,28] := {35, 53} tii[19,29] := {6} tii[19,30] := {31, 58} tii[19,31] := {3, 15} tii[19,32] := {0, 10} tii[19,33] := {34} tii[19,34] := {23, 43} tii[19,35] := {12} tii[19,36] := {20, 52} tii[19,37] := {5, 21} tii[19,38] := {2, 14} tii[19,39] := {9, 42} tii[19,40] := {1, 24} cell#10 , |C| = 81 special orbit = [7, 2, 2, 1, 1] special rep = [[3, 1], [1, 1]] , dim = 45 cell rep = phi[[3, 1, 1],[1]]+phi[[3, 1],[1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[18,1] := {67, 69} tii[18,2] := {63, 64} tii[18,3] := {46, 48} tii[18,4] := {74, 76} tii[18,5] := {49, 50} tii[18,6] := {78, 79} tii[18,7] := {31, 32} tii[18,8] := {75, 77} tii[18,9] := {80} tii[18,10] := {61, 62} tii[18,11] := {20, 21} tii[18,12] := {55, 56} tii[18,13] := {65} tii[18,14] := {29, 30} tii[18,15] := {39} tii[18,16] := {0, 1} tii[18,17] := {57, 59} tii[18,18] := {6, 7} tii[18,19] := {45, 47} tii[18,20] := {16, 18} tii[18,21] := {33, 35} tii[18,22] := {12, 13} tii[18,23] := {71, 72} tii[18,24] := {68, 70} tii[18,25] := {24, 25} tii[18,26] := {51, 52} tii[18,27] := {73} tii[18,28] := {40, 41} tii[18,29] := {17, 19} tii[18,30] := {58, 60} tii[18,31] := {66} tii[18,32] := {34, 36} tii[18,33] := {54} tii[18,34] := {4, 5} tii[18,35] := {37, 38} tii[18,36] := {14, 15} tii[18,37] := {26, 27} tii[18,38] := {8, 9} tii[18,39] := {43, 44} tii[18,40] := {22, 23} tii[18,41] := {53} tii[18,42] := {42} tii[18,43] := {2, 3} tii[18,44] := {10, 11} tii[18,45] := {28} cell#11 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {17} tii[15,2] := {30} tii[15,3] := {37} tii[15,4] := {23} tii[15,5] := {12} tii[15,6] := {34} tii[15,7] := {22} tii[15,8] := {40} tii[15,9] := {29} tii[15,10] := {24} tii[15,11] := {39} tii[15,12] := {33} tii[15,13] := {16} tii[15,14] := {42} tii[15,15] := {41} tii[15,16] := {38} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {5} tii[15,20] := {15} tii[15,21] := {11} tii[15,22] := {4} tii[15,23] := {7} tii[15,24] := {14} tii[15,25] := {21} tii[15,26] := {10} tii[15,27] := {26} tii[15,28] := {3} tii[15,29] := {20} tii[15,30] := {25} tii[15,31] := {19} tii[15,32] := {13} tii[15,33] := {28} tii[15,34] := {18} tii[15,35] := {8} tii[15,36] := {32} tii[15,37] := {27} tii[15,38] := {9} tii[15,39] := {6} tii[15,40] := {31} tii[15,41] := {36} tii[15,42] := {35} tii[15,43] := {1} tii[15,44] := {2} tii[15,45] := {0} cell#12 , |C| = 190 special orbit = [5, 3, 3, 1, 1] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 1, 1],[2]]+phi[[1, 1, 1],[3]]+phi[[2, 1],[2, 1]]+phi[[1, 1],[3, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^4+50*X^2+10*X TII subcells: tii[13,1] := {118, 119} tii[13,2] := {51, 52, 168, 169} tii[13,3] := {149} tii[13,4] := {139, 140} tii[13,5] := {103, 104} tii[13,6] := {39, 40, 177, 178} tii[13,7] := {112, 172} tii[13,8] := {130, 181} tii[13,9] := {153, 154} tii[13,10] := {62, 63, 184, 185} tii[13,11] := {137, 138} tii[13,12] := {73, 174} tii[13,13] := {151} tii[13,14] := {92, 182} tii[13,15] := {85, 86, 187, 188} tii[13,16] := {107, 189} tii[13,17] := {45, 46} tii[13,18] := {76, 77} tii[13,19] := {14, 15, 99, 100} tii[13,20] := {37, 38, 128, 129} tii[13,21] := {69, 70} tii[13,22] := {132} tii[13,23] := {101, 102} tii[13,24] := {47, 48} tii[13,25] := {74, 75} tii[13,26] := {88, 161} tii[13,27] := {113} tii[13,28] := {6, 7, 122, 123} tii[13,29] := {80, 81} tii[13,30] := {110, 173} tii[13,31] := {91, 131} tii[13,32] := {18, 19, 145, 146} tii[13,33] := {16, 17, 141, 142} tii[13,34] := {64, 150} tii[13,35] := {97, 98} tii[13,36] := {43, 134} tii[13,37] := {35, 36, 157, 158} tii[13,38] := {115} tii[13,39] := {87, 165} tii[13,40] := {67, 176} tii[13,41] := {95, 96} tii[13,42] := {133} tii[13,43] := {124, 125} tii[13,44] := {71, 72} tii[13,45] := {4, 5, 143, 144} tii[13,46] := {114, 148} tii[13,47] := {108, 109} tii[13,48] := {12, 13, 159, 160} tii[13,49] := {120, 121} tii[13,50] := {49, 50} tii[13,51] := {10, 11, 155, 156} tii[13,52] := {53, 163} tii[13,53] := {90, 162} tii[13,54] := {135} tii[13,55] := {25, 26, 170, 171} tii[13,56] := {82, 83} tii[13,57] := {34, 152} tii[13,58] := {68, 175} tii[13,59] := {117} tii[13,60] := {61, 183} tii[13,61] := {23, 24, 166, 167} tii[13,62] := {54, 164} tii[13,63] := {41, 42, 179, 180} tii[13,64] := {84, 186} tii[13,65] := {28, 29} tii[13,66] := {21, 22, 59, 60} tii[13,67] := {32, 33} tii[13,68] := {89} tii[13,69] := {8, 9, 78, 79} tii[13,70] := {66, 111} tii[13,71] := {57, 58} tii[13,72] := {44, 94} tii[13,73] := {30, 31} tii[13,74] := {65, 147} tii[13,75] := {2, 3, 105, 106} tii[13,76] := {55, 56} tii[13,77] := {27, 116} tii[13,78] := {93} tii[13,79] := {0, 1, 126, 127} tii[13,80] := {20, 136} cell#13 , |C| = 35 special orbit = [7, 5, 1] special rep = [[3], [3]] , dim = 20 cell rep = phi[[3],[3]]+phi[[2],[4]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[21,1] := {22} tii[21,2] := {15, 31} tii[21,3] := {23, 33} tii[21,4] := {27, 34} tii[21,5] := {12} tii[21,6] := {2, 20} tii[21,7] := {6, 24} tii[21,8] := {18} tii[21,9] := {13} tii[21,10] := {4, 25} tii[21,11] := {8, 17} tii[21,12] := {9, 28} tii[21,13] := {10, 29} tii[21,14] := {14, 30} tii[21,15] := {5, 26} tii[21,16] := {19, 32} tii[21,17] := {7} tii[21,18] := {3, 11} tii[21,19] := {0, 16} tii[21,20] := {1, 21} cell#14 , |C| = 40 special orbit = [5, 5, 3] special rep = [[2, 1], [3]] , dim = 40 cell rep = phi[[2, 1],[3]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[16,1] := {38} tii[16,2] := {39} tii[16,3] := {8} tii[16,4] := {28} tii[16,5] := {18} tii[16,6] := {26} tii[16,7] := {14} tii[16,8] := {16} tii[16,9] := {32} tii[16,10] := {24} tii[16,11] := {23} tii[16,12] := {31} tii[16,13] := {20} tii[16,14] := {36} tii[16,15] := {27} tii[16,16] := {30} tii[16,17] := {33} tii[16,18] := {35} tii[16,19] := {34} tii[16,20] := {37} tii[16,21] := {2} tii[16,22] := {6} tii[16,23] := {3} tii[16,24] := {9} tii[16,25] := {1} tii[16,26] := {17} tii[16,27] := {7} tii[16,28] := {15} tii[16,29] := {12} tii[16,30] := {22} tii[16,31] := {10} tii[16,32] := {4} tii[16,33] := {13} tii[16,34] := {21} tii[16,35] := {11} tii[16,36] := {19} tii[16,37] := {29} tii[16,38] := {25} tii[16,39] := {0} tii[16,40] := {5} cell#15 , |C| = 64 special orbit = [7, 3, 1, 1, 1] special rep = [[3], [2, 1]] , dim = 40 cell rep = phi[[3],[2, 1]]+phi[[1],[4, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[19,1] := {40} tii[19,2] := {34} tii[19,3] := {18, 53} tii[19,4] := {27, 61} tii[19,5] := {50} tii[19,6] := {20} tii[19,7] := {55} tii[19,8] := {51} tii[19,9] := {7, 42} tii[19,10] := {57, 58} tii[19,11] := {15, 54} tii[19,12] := {33} tii[19,13] := {28} tii[19,14] := {1, 52} tii[19,15] := {36, 37} tii[19,16] := {5, 60} tii[19,17] := {6, 59} tii[19,18] := {12, 56} tii[19,19] := {13, 62} tii[19,20] := {22, 63} tii[19,21] := {29} tii[19,22] := {17} tii[19,23] := {8, 25} tii[19,24] := {45} tii[19,25] := {41} tii[19,26] := {21} tii[19,27] := {48, 49} tii[19,28] := {11, 32} tii[19,29] := {30} tii[19,30] := {9, 44} tii[19,31] := {38, 39} tii[19,32] := {26, 47} tii[19,33] := {10} tii[19,34] := {3, 19} tii[19,35] := {16} tii[19,36] := {2, 31} tii[19,37] := {23, 24} tii[19,38] := {14, 35} tii[19,39] := {0, 43} tii[19,40] := {4, 46} cell#16 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {32} tii[15,2] := {41} tii[15,3] := {44} tii[15,4] := {26} tii[15,5] := {15} tii[15,6] := {37} tii[15,7] := {24} tii[15,8] := {42} tii[15,9] := {19} tii[15,10] := {11} tii[15,11] := {33} tii[15,12] := {21} tii[15,13] := {7} tii[15,14] := {39} tii[15,15] := {36} tii[15,16] := {31} tii[15,17] := {40} tii[15,18] := {43} tii[15,19] := {23} tii[15,20] := {30} tii[15,21] := {27} tii[15,22] := {8} tii[15,23] := {22} tii[15,24] := {16} tii[15,25] := {35} tii[15,26] := {4} tii[15,27] := {38} tii[15,28] := {2} tii[15,29] := {9} tii[15,30] := {13} tii[15,31] := {20} tii[15,32] := {14} tii[15,33] := {29} tii[15,34] := {6} tii[15,35] := {10} tii[15,36] := {34} tii[15,37] := {12} tii[15,38] := {3} tii[15,39] := {1} tii[15,40] := {18} tii[15,41] := {28} tii[15,42] := {25} tii[15,43] := {17} tii[15,44] := {5} tii[15,45] := {0} cell#17 , |C| = 185 special orbit = [5, 3, 3, 1, 1] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 1],[2, 1]]+phi[[1, 1],[3, 1]]+phi[[2],[2, 2]]+phi[[1],[3, 2]] TII depth = 3 TII multiplicity polynomial = 25*X+30*X^2+25*X^4 TII subcells: tii[13,1] := {146} tii[13,2] := {159, 160} tii[13,3] := {17, 174} tii[13,4] := {125} tii[13,5] := {79} tii[13,6] := {137, 138} tii[13,7] := {41, 42, 164, 183} tii[13,8] := {71, 72, 180, 184} tii[13,9] := {135} tii[13,10] := {114, 161} tii[13,11] := {113} tii[13,12] := {40, 86, 127, 165} tii[13,13] := {92, 131} tii[13,14] := {70, 120, 151, 176} tii[13,15] := {139, 166} tii[13,16] := {117, 150, 156, 177} tii[13,17] := {31} tii[13,18] := {103} tii[13,19] := {64, 65} tii[13,20] := {97, 98} tii[13,21] := {53} tii[13,22] := {8, 157} tii[13,23] := {126} tii[13,24] := {78} tii[13,25] := {57} tii[13,26] := {23, 24, 147, 178} tii[13,27] := {5, 136} tii[13,28] := {89, 90} tii[13,29] := {104} tii[13,30] := {48, 49, 168, 182} tii[13,31] := {10, 11, 116, 153} tii[13,32] := {121, 122} tii[13,33] := {111, 112} tii[13,34] := {13, 39, 128, 175} tii[13,35] := {66} tii[13,36] := {6, 33, 107, 163} tii[13,37] := {143, 144} tii[13,38] := {47, 84} tii[13,39] := {29, 73, 152, 181} tii[13,40] := {52, 85, 170, 171} tii[13,41] := {32} tii[13,42] := {12, 158} tii[13,43] := {102} tii[13,44] := {55} tii[13,45] := {62, 63} tii[13,46] := {20, 21, 140, 169} tii[13,47] := {80} tii[13,48] := {95, 96} tii[13,49] := {91} tii[13,50] := {34} tii[13,51] := {87, 88} tii[13,52] := {25, 61, 105, 162} tii[13,53] := {26, 27, 148, 179} tii[13,54] := {69, 108} tii[13,55] := {118, 119} tii[13,56] := {58} tii[13,57] := {16, 54, 82, 141} tii[13,58] := {50, 99, 130, 173} tii[13,59] := {51, 101} tii[13,60] := {75, 109, 154, 155} tii[13,61] := {60, 110} tii[13,62] := {28, 77, 106, 149} tii[13,63] := {94, 142} tii[13,64] := {100, 132, 133, 172} tii[13,65] := {22} tii[13,66] := {36, 37} tii[13,67] := {56} tii[13,68] := {1, 115} tii[13,69] := {43, 44} tii[13,70] := {3, 4, 93, 134} tii[13,71] := {81} tii[13,72] := {0, 9, 74, 124} tii[13,73] := {18} tii[13,74] := {14, 15, 129, 167} tii[13,75] := {67, 68} tii[13,76] := {38} tii[13,77] := {2, 19, 83, 145} tii[13,78] := {30, 76} tii[13,79] := {45, 46} tii[13,80] := {7, 35, 59, 123} cell#18 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {37} tii[15,2] := {43} tii[15,3] := {44} tii[15,4] := {30} tii[15,5] := {14} tii[15,6] := {39} tii[15,7] := {20} tii[15,8] := {42} tii[15,9] := {26} tii[15,10] := {19} tii[15,11] := {38} tii[15,12] := {25} tii[15,13] := {12} tii[15,14] := {41} tii[15,15] := {32} tii[15,16] := {24} tii[15,17] := {36} tii[15,18] := {28} tii[15,19] := {22} tii[15,20] := {29} tii[15,21] := {31} tii[15,22] := {7} tii[15,23] := {23} tii[15,24] := {13} tii[15,25] := {35} tii[15,26] := {5} tii[15,27] := {40} tii[15,28] := {1} tii[15,29] := {10} tii[15,30] := {4} tii[15,31] := {21} tii[15,32] := {15} tii[15,33] := {27} tii[15,34] := {11} tii[15,35] := {8} tii[15,36] := {34} tii[15,37] := {18} tii[15,38] := {6} tii[15,39] := {2} tii[15,40] := {9} tii[15,41] := {33} tii[15,42] := {17} tii[15,43] := {16} tii[15,44] := {3} tii[15,45] := {0} cell#19 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {20} tii[8,2] := {27} tii[8,3] := {29} tii[8,4] := {15} tii[8,5] := {5} tii[8,6] := {10} tii[8,7] := {19} tii[8,8] := {24} tii[8,9] := {17} tii[8,10] := {8} tii[8,11] := {14} tii[8,12] := {11} tii[8,13] := {23} tii[8,14] := {16} tii[8,15] := {28} tii[8,16] := {22} tii[8,17] := {25} tii[8,18] := {26} tii[8,19] := {3} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {9} tii[8,23] := {7} tii[8,24] := {2} tii[8,25] := {12} tii[8,26] := {21} tii[8,27] := {13} tii[8,28] := {4} tii[8,29] := {18} tii[8,30] := {0} cell#20 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {20} tii[8,2] := {27} tii[8,3] := {29} tii[8,4] := {15} tii[8,5] := {5} tii[8,6] := {10} tii[8,7] := {19} tii[8,8] := {24} tii[8,9] := {17} tii[8,10] := {8} tii[8,11] := {14} tii[8,12] := {11} tii[8,13] := {23} tii[8,14] := {16} tii[8,15] := {28} tii[8,16] := {22} tii[8,17] := {25} tii[8,18] := {26} tii[8,19] := {3} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {9} tii[8,23] := {7} tii[8,24] := {2} tii[8,25] := {12} tii[8,26] := {21} tii[8,27] := {13} tii[8,28] := {4} tii[8,29] := {18} tii[8,30] := {0} cell#21 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3],[1, 1, 1]]+phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {20} tii[17,2] := {12} tii[17,3] := {19} tii[17,4] := {13, 26} tii[17,5] := {9} tii[17,6] := {15} tii[17,7] := {10, 24} tii[17,8] := {21} tii[17,9] := {14, 28} tii[17,10] := {11, 29} tii[17,11] := {3} tii[17,12] := {7} tii[17,13] := {4, 18} tii[17,14] := {16} tii[17,15] := {6, 23} tii[17,16] := {5, 27} tii[17,17] := {8} tii[17,18] := {2, 17} tii[17,19] := {1, 22} tii[17,20] := {0, 25} cell#22 , |C| = 54 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2, 2, 1, 1],[]]+phi[[2],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 36*X+9*X^2 TII subcells: tii[12,1] := {30, 31} tii[12,2] := {42} tii[12,3] := {47} tii[12,4] := {26, 27} tii[12,5] := {14, 15} tii[12,6] := {40} tii[12,7] := {24} tii[12,8] := {46} tii[12,9] := {44} tii[12,10] := {38} tii[12,11] := {50} tii[12,12] := {52} tii[12,13] := {16, 17} tii[12,14] := {8, 9} tii[12,15] := {33} tii[12,16] := {13} tii[12,17] := {41} tii[12,18] := {2, 3} tii[12,19] := {39} tii[12,20] := {32} tii[12,21] := {5} tii[12,22] := {45} tii[12,23] := {11} tii[12,24] := {48} tii[12,25] := {43} tii[12,26] := {37} tii[12,27] := {49} tii[12,28] := {29} tii[12,29] := {51} tii[12,30] := {53} tii[12,31] := {19, 20} tii[12,32] := {28} tii[12,33] := {6, 7} tii[12,34] := {36} tii[12,35] := {12} tii[12,36] := {22} tii[12,37] := {0, 1} tii[12,38] := {35} tii[12,39] := {4} tii[12,40] := {34} tii[12,41] := {10} tii[12,42] := {18} tii[12,43] := {25} tii[12,44] := {23} tii[12,45] := {21} cell#23 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {18} tii[15,2] := {28} tii[15,3] := {37} tii[15,4] := {27} tii[15,5] := {10} tii[15,6] := {34} tii[15,7] := {16} tii[15,8] := {40} tii[15,9] := {33} tii[15,10] := {26} tii[15,11] := {39} tii[15,12] := {31} tii[15,13] := {30} tii[15,14] := {42} tii[15,15] := {41} tii[15,16] := {38} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {3} tii[15,20] := {8} tii[15,21] := {11} tii[15,22] := {2} tii[15,23] := {5} tii[15,24] := {7} tii[15,25] := {17} tii[15,26] := {9} tii[15,27] := {22} tii[15,28] := {13} tii[15,29] := {14} tii[15,30] := {21} tii[15,31] := {20} tii[15,32] := {12} tii[15,33] := {25} tii[15,34] := {19} tii[15,35] := {4} tii[15,36] := {32} tii[15,37] := {24} tii[15,38] := {23} tii[15,39] := {15} tii[15,40] := {29} tii[15,41] := {36} tii[15,42] := {35} tii[15,43] := {1} tii[15,44] := {0} tii[15,45] := {6} cell#24 , |C| = 185 special orbit = [5, 3, 3, 1, 1] special rep = [[2, 1], [2, 1]] , dim = 80 cell rep = phi[[2, 1],[2, 1]]+phi[[1, 1],[3, 1]]+phi[[2],[2, 2]]+phi[[1],[3, 2]] TII depth = 3 TII multiplicity polynomial = 25*X+30*X^2+25*X^4 TII subcells: tii[13,1] := {115} tii[13,2] := {82, 128} tii[13,3] := {54, 160} tii[13,4] := {139} tii[13,5] := {127} tii[13,6] := {57, 149} tii[13,7] := {67, 102, 148, 179} tii[13,8] := {96, 132, 171, 184} tii[13,9] := {158} tii[13,10] := {81, 166} tii[13,11] := {165} tii[13,12] := {28, 101, 143, 178} tii[13,13] := {159, 180} tii[13,14] := {49, 133, 161, 183} tii[13,15] := {100, 177} tii[13,16] := {90, 135, 181, 182} tii[13,17] := {15} tii[13,18] := {69} tii[13,19] := {18, 38} tii[13,20] := {32, 64} tii[13,21] := {26} tii[13,22] := {34, 141} tii[13,23] := {91} tii[13,24] := {46} tii[13,25] := {104} tii[13,26] := {47, 79, 126, 168} tii[13,27] := {19, 117} tii[13,28] := {21, 56} tii[13,29] := {72} tii[13,30] := {73, 109, 154, 176} tii[13,31] := {13, 41, 94, 136} tii[13,32] := {42, 87} tii[13,33] := {37, 77} tii[13,34] := {30, 97, 103, 150} tii[13,35] := {125} tii[13,36] := {16, 74, 85, 130} tii[13,37] := {62, 107} tii[13,38] := {116, 155} tii[13,39] := {51, 123, 134, 164} tii[13,40] := {70, 112, 145, 146} tii[13,41] := {44} tii[13,42] := {35, 142} tii[13,43] := {118} tii[13,44] := {66} tii[13,45] := {10, 78} tii[13,46] := {25, 63, 120, 156} tii[13,47] := {95} tii[13,48] := {23, 108} tii[13,49] := {147} tii[13,50] := {76} tii[13,51] := {20, 99} tii[13,52] := {17, 80, 121, 167} tii[13,53] := {45, 84, 129, 170} tii[13,54] := {140, 172} tii[13,55] := {40, 131} tii[13,56] := {106} tii[13,57] := {4, 60, 98, 151} tii[13,58] := {31, 110, 144, 175} tii[13,59] := {119, 157} tii[13,60] := {48, 88, 162, 163} tii[13,61] := {36, 124} tii[13,62] := {14, 83, 122, 169} tii[13,63] := {61, 153} tii[13,64] := {68, 113, 173, 174} tii[13,65] := {6} tii[13,66] := {2, 12} tii[13,67] := {29} tii[13,68] := {9, 93} tii[13,69] := {8, 22} tii[13,70] := {5, 24, 71, 114} tii[13,71] := {50} tii[13,72] := {0, 33, 52, 89} tii[13,73] := {55} tii[13,74] := {27, 59, 105, 152} tii[13,75] := {11, 39} tii[13,76] := {86} tii[13,77] := {7, 53, 65, 111} tii[13,78] := {92, 138} tii[13,79] := {3, 58} tii[13,80] := {1, 43, 75, 137} cell#25 , |C| = 30 special orbit = [7, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1]] , dim = 20 cell rep = phi[[3],[1, 1, 1]]+phi[[],[4, 1, 1]] TII depth = 1 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[17,1] := {25} tii[17,2] := {27} tii[17,3] := {26} tii[17,4] := {28, 29} tii[17,5] := {21} tii[17,6] := {20} tii[17,7] := {23, 24} tii[17,8] := {13} tii[17,9] := {18, 19} tii[17,10] := {11, 22} tii[17,11] := {14} tii[17,12] := {12} tii[17,13] := {16, 17} tii[17,14] := {6} tii[17,15] := {9, 10} tii[17,16] := {5, 15} tii[17,17] := {2} tii[17,18] := {3, 4} tii[17,19] := {1, 8} tii[17,20] := {0, 7} cell#26 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {41} tii[12,2] := {48, 62} tii[12,3] := {58, 70} tii[12,4] := {52} tii[12,5] := {43} tii[12,6] := {36, 68} tii[12,7] := {28, 57} tii[12,8] := {50, 74} tii[12,9] := {25, 72} tii[12,10] := {14, 66} tii[12,11] := {39, 77} tii[12,12] := {49, 79} tii[12,13] := {42} tii[12,14] := {30} tii[12,15] := {24, 61} tii[12,16] := {18, 45} tii[12,17] := {38, 69} tii[12,18] := {20} tii[12,19] := {16, 67} tii[12,20] := {8, 60} tii[12,21] := {11, 34} tii[12,22] := {27, 73} tii[12,23] := {7, 44} tii[12,24] := {37, 76} tii[12,25] := {9, 71} tii[12,26] := {4, 65} tii[12,27] := {17, 75} tii[12,28] := {2, 59} tii[12,29] := {26, 78} tii[12,30] := {33, 80} tii[12,31] := {29} tii[12,32] := {22, 47} tii[12,33] := {31} tii[12,34] := {35, 56} tii[12,35] := {19, 46} tii[12,36] := {13, 54} tii[12,37] := {12} tii[12,38] := {23, 64} tii[12,39] := {6, 21} tii[12,40] := {10, 63} tii[12,41] := {3, 32} tii[12,42] := {1, 40} tii[12,43] := {15, 55} tii[12,44] := {5, 53} tii[12,45] := {0, 51} cell#27 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {50} tii[12,2] := {21, 63} tii[12,3] := {34, 71} tii[12,4] := {59} tii[12,5] := {48} tii[12,6] := {15, 69} tii[12,7] := {55, 56} tii[12,8] := {28, 75} tii[12,9] := {29, 73} tii[12,10] := {40, 67} tii[12,11] := {41, 78} tii[12,12] := {52, 80} tii[12,13] := {49} tii[12,14] := {35} tii[12,15] := {5, 62} tii[12,16] := {43, 44} tii[12,17] := {13, 70} tii[12,18] := {20} tii[12,19] := {14, 68} tii[12,20] := {25, 61} tii[12,21] := {31, 32} tii[12,22] := {26, 74} tii[12,23] := {19, 42} tii[12,24] := {39, 77} tii[12,25] := {4, 66} tii[12,26] := {10, 60} tii[12,27] := {11, 72} tii[12,28] := {3, 51} tii[12,29] := {23, 76} tii[12,30] := {16, 79} tii[12,31] := {37} tii[12,32] := {24, 47} tii[12,33] := {36} tii[12,34] := {9, 58} tii[12,35] := {45, 46} tii[12,36] := {33, 54} tii[12,37] := {8} tii[12,38] := {6, 65} tii[12,39] := {17, 18} tii[12,40] := {27, 64} tii[12,41] := {7, 30} tii[12,42] := {2, 22} tii[12,43] := {1, 57} tii[12,44] := {12, 53} tii[12,45] := {0, 38} cell#28 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {33} tii[12,2] := {27, 53} tii[12,3] := {42, 62} tii[12,4] := {46} tii[12,5] := {52} tii[12,6] := {16, 63} tii[12,7] := {47, 67} tii[12,8] := {28, 72} tii[12,9] := {26, 73} tii[12,10] := {20, 77} tii[12,11] := {43, 78} tii[12,12] := {51, 80} tii[12,13] := {37} tii[12,14] := {48} tii[12,15] := {7, 59} tii[12,16] := {38, 60} tii[12,17] := {18, 69} tii[12,18] := {35} tii[12,19] := {15, 70} tii[12,20] := {9, 75} tii[12,21] := {25, 50} tii[12,22] := {29, 76} tii[12,23] := {14, 57} tii[12,24] := {39, 79} tii[12,25] := {10, 58} tii[12,26] := {5, 65} tii[12,27] := {24, 66} tii[12,28] := {1, 56} tii[12,29] := {32, 74} tii[12,30] := {19, 64} tii[12,31] := {22} tii[12,32] := {12, 30} tii[12,33] := {40} tii[12,34] := {17, 41} tii[12,35] := {34, 55} tii[12,36] := {23, 61} tii[12,37] := {21} tii[12,38] := {8, 54} tii[12,39] := {13, 36} tii[12,40] := {11, 71} tii[12,41] := {6, 45} tii[12,42] := {2, 31} tii[12,43] := {3, 49} tii[12,44] := {4, 68} tii[12,45] := {0, 44} cell#29 , |C| = 64 special orbit = [5, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 16*X+24*X^2 TII subcells: tii[10,1] := {46, 47} tii[10,2] := {23, 24} tii[10,3] := {56, 57} tii[10,4] := {21, 22} tii[10,5] := {44, 45} tii[10,6] := {53} tii[10,7] := {31, 32} tii[10,8] := {40} tii[10,9] := {61, 62} tii[10,10] := {10, 11} tii[10,11] := {54, 55} tii[10,12] := {60} tii[10,13] := {51, 52} tii[10,14] := {19, 20} tii[10,15] := {25} tii[10,16] := {59} tii[10,17] := {63} tii[10,18] := {29, 30} tii[10,19] := {39} tii[10,20] := {48} tii[10,21] := {6, 7} tii[10,22] := {36, 37} tii[10,23] := {14, 15} tii[10,24] := {26, 27} tii[10,25] := {8, 9} tii[10,26] := {34, 35} tii[10,27] := {16, 17} tii[10,28] := {43} tii[10,29] := {33} tii[10,30] := {41, 42} tii[10,31] := {2, 3} tii[10,32] := {50} tii[10,33] := {12, 13} tii[10,34] := {58} tii[10,35] := {28} tii[10,36] := {49} tii[10,37] := {0, 1} tii[10,38] := {4, 5} tii[10,39] := {18} tii[10,40] := {38} cell#30 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {29} tii[6,2] := {40} tii[6,3] := {13, 48} tii[6,4] := {22, 61} tii[6,5] := {47} tii[6,6] := {36, 60} tii[6,7] := {50} tii[6,8] := {19, 59} tii[6,9] := {32, 68} tii[6,10] := {17, 64} tii[6,11] := {58} tii[6,12] := {10, 56} tii[6,13] := {46, 67} tii[6,14] := {26, 72} tii[6,15] := {35, 73} tii[6,16] := {63} tii[6,17] := {55, 71} tii[6,18] := {54, 74} tii[6,19] := {9} tii[6,20] := {16} tii[6,21] := {14} tii[6,22] := {8, 37} tii[6,23] := {23} tii[6,24] := {15, 52} tii[6,25] := {3, 31} tii[6,26] := {21, 43} tii[6,27] := {11, 57} tii[6,28] := {20} tii[6,29] := {7, 41} tii[6,30] := {6, 45} tii[6,31] := {33} tii[6,32] := {18, 66} tii[6,33] := {25, 69} tii[6,34] := {28, 53} tii[6,35] := {2, 38} tii[6,36] := {34, 65} tii[6,37] := {27} tii[6,38] := {12, 51} tii[6,39] := {42} tii[6,40] := {5, 49} tii[6,41] := {39, 62} tii[6,42] := {44, 70} tii[6,43] := {4} tii[6,44] := {1, 24} tii[6,45] := {0, 30} cell#31 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {21} tii[9,2] := {13} tii[9,3] := {19, 20} tii[9,4] := {11} tii[9,5] := {17, 18} tii[9,6] := {23, 24} tii[9,7] := {5} tii[9,8] := {9, 10} tii[9,9] := {15, 16} tii[9,10] := {8, 22} tii[9,11] := {1} tii[9,12] := {3, 4} tii[9,13] := {6, 7} tii[9,14] := {2, 14} tii[9,15] := {0, 12} cell#32 , |C| = 45 special orbit = [5, 5, 1, 1, 1] special rep = [[2], [3, 1]] , dim = 45 cell rep = phi[[2],[3, 1]] TII depth = 4 TII multiplicity polynomial = 45*X TII subcells: tii[15,1] := {11} tii[15,2] := {23} tii[15,3] := {30} tii[15,4] := {20} tii[15,5] := {16} tii[15,6] := {32} tii[15,7] := {25} tii[15,8] := {36} tii[15,9] := {27} tii[15,10] := {31} tii[15,11] := {37} tii[15,12] := {38} tii[15,13] := {28} tii[15,14] := {40} tii[15,15] := {41} tii[15,16] := {42} tii[15,17] := {43} tii[15,18] := {44} tii[15,19] := {1} tii[15,20] := {4} tii[15,21] := {5} tii[15,22] := {8} tii[15,23] := {2} tii[15,24] := {18} tii[15,25] := {10} tii[15,26] := {15} tii[15,27] := {17} tii[15,28] := {12} tii[15,29] := {26} tii[15,30] := {29} tii[15,31] := {13} tii[15,32] := {7} tii[15,33] := {19} tii[15,34] := {22} tii[15,35] := {9} tii[15,36] := {24} tii[15,37] := {34} tii[15,38] := {21} tii[15,39] := {14} tii[15,40] := {35} tii[15,41] := {33} tii[15,42] := {39} tii[15,43] := {0} tii[15,44] := {3} tii[15,45] := {6} cell#33 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {31} tii[12,2] := {8, 50} tii[12,3] := {17, 63} tii[12,4] := {44} tii[12,5] := {30} tii[12,6] := {7, 60} tii[12,7] := {40, 41} tii[12,8] := {13, 68} tii[12,9] := {15, 66} tii[12,10] := {24, 59} tii[12,11] := {25, 72} tii[12,12] := {35, 75} tii[12,13] := {55} tii[12,14] := {43} tii[12,15] := {1, 67} tii[12,16] := {52, 53} tii[12,17] := {5, 73} tii[12,18] := {38} tii[12,19] := {6, 71} tii[12,20] := {10, 65} tii[12,21] := {48, 49} tii[12,22] := {11, 76} tii[12,23] := {57, 58} tii[12,24] := {21, 77} tii[12,25] := {14, 74} tii[12,26] := {22, 70} tii[12,27] := {23, 78} tii[12,28] := {32, 69} tii[12,29] := {33, 79} tii[12,30] := {45, 80} tii[12,31] := {19} tii[12,32] := {9, 29} tii[12,33] := {18} tii[12,34] := {3, 42} tii[12,35] := {27, 28} tii[12,36] := {16, 39} tii[12,37] := {26} tii[12,38] := {2, 54} tii[12,39] := {36, 37} tii[12,40] := {12, 51} tii[12,41] := {46, 47} tii[12,42] := {34, 56} tii[12,43] := {0, 62} tii[12,44] := {4, 61} tii[12,45] := {20, 64} cell#34 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {16} tii[5,2] := {21} tii[5,3] := {13} tii[5,4] := {9} tii[5,5] := {19} tii[5,6] := {23} tii[5,7] := {10} tii[5,8] := {7} tii[5,9] := {15} tii[5,10] := {4} tii[5,11] := {18} tii[5,12] := {22} tii[5,13] := {8} tii[5,14] := {5} tii[5,15] := {11} tii[5,16] := {2} tii[5,17] := {14} tii[5,18] := {1} tii[5,19] := {17} tii[5,20] := {20} tii[5,21] := {12} tii[5,22] := {6} tii[5,23] := {3} tii[5,24] := {0} cell#35 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {20} tii[8,2] := {28} tii[8,3] := {29} tii[8,4] := {15} tii[8,5] := {4} tii[8,6] := {9} tii[8,7] := {21} tii[8,8] := {24} tii[8,9] := {16} tii[8,10] := {8} tii[8,11] := {13} tii[8,12] := {11} tii[8,13] := {25} tii[8,14] := {17} tii[8,15] := {27} tii[8,16] := {22} tii[8,17] := {23} tii[8,18] := {26} tii[8,19] := {2} tii[8,20] := {6} tii[8,21] := {1} tii[8,22] := {10} tii[8,23] := {7} tii[8,24] := {3} tii[8,25] := {12} tii[8,26] := {19} tii[8,27] := {14} tii[8,28] := {5} tii[8,29] := {18} tii[8,30] := {0} cell#36 , |C| = 40 special orbit = [3, 3, 3, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {39} tii[7,2] := {33} tii[7,3] := {9} tii[7,4] := {37} tii[7,5] := {15} tii[7,6] := {19} tii[7,7] := {31} tii[7,8] := {34} tii[7,9] := {21} tii[7,10] := {30} tii[7,11] := {10} tii[7,12] := {26} tii[7,13] := {36} tii[7,14] := {32} tii[7,15] := {28} tii[7,16] := {14} tii[7,17] := {38} tii[7,18] := {22} tii[7,19] := {20} tii[7,20] := {29} tii[7,21] := {1} tii[7,22] := {4} tii[7,23] := {2} tii[7,24] := {13} tii[7,25] := {6} tii[7,26] := {23} tii[7,27] := {12} tii[7,28] := {17} tii[7,29] := {27} tii[7,30] := {5} tii[7,31] := {18} tii[7,32] := {35} tii[7,33] := {11} tii[7,34] := {24} tii[7,35] := {3} tii[7,36] := {25} tii[7,37] := {7} tii[7,38] := {16} tii[7,39] := {0} tii[7,40] := {8} cell#37 , |C| = 40 special orbit = [3, 3, 3, 2, 2] special rep = [[1, 1, 1], [2, 1]] , dim = 40 cell rep = phi[[1, 1, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 40*X TII subcells: tii[7,1] := {39} tii[7,2] := {33} tii[7,3] := {9} tii[7,4] := {37} tii[7,5] := {15} tii[7,6] := {19} tii[7,7] := {31} tii[7,8] := {34} tii[7,9] := {21} tii[7,10] := {30} tii[7,11] := {10} tii[7,12] := {26} tii[7,13] := {36} tii[7,14] := {32} tii[7,15] := {28} tii[7,16] := {14} tii[7,17] := {38} tii[7,18] := {22} tii[7,19] := {20} tii[7,20] := {29} tii[7,21] := {1} tii[7,22] := {4} tii[7,23] := {2} tii[7,24] := {13} tii[7,25] := {6} tii[7,26] := {23} tii[7,27] := {12} tii[7,28] := {17} tii[7,29] := {27} tii[7,30] := {5} tii[7,31] := {18} tii[7,32] := {35} tii[7,33] := {11} tii[7,34] := {24} tii[7,35] := {3} tii[7,36] := {25} tii[7,37] := {7} tii[7,38] := {16} tii[7,39] := {0} tii[7,40] := {8} cell#38 , |C| = 81 special orbit = [5, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1]] , dim = 45 cell rep = phi[[2],[2, 1, 1]]+phi[[1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 9*X+36*X^2 TII subcells: tii[12,1] := {69} tii[12,2] := {59, 79} tii[12,3] := {76, 80} tii[12,4] := {55} tii[12,5] := {41} tii[12,6] := {45, 74} tii[12,7] := {29, 51} tii[12,8] := {63, 78} tii[12,9] := {33, 70} tii[12,10] := {23, 58} tii[12,11] := {50, 77} tii[12,12] := {65, 66} tii[12,13] := {40} tii[12,14] := {27} tii[12,15] := {32, 60} tii[12,16] := {18, 36} tii[12,17] := {49, 71} tii[12,18] := {17} tii[12,19] := {21, 57} tii[12,20] := {13, 43} tii[12,21] := {9, 25} tii[12,22] := {35, 68} tii[12,23] := {5, 20} tii[12,24] := {52, 53} tii[12,25] := {12, 61} tii[12,26] := {6, 48} tii[12,27] := {24, 72} tii[12,28] := {3, 37} tii[12,29] := {38, 67} tii[12,30] := {54, 73} tii[12,31] := {56} tii[12,32] := {42, 64} tii[12,33] := {28} tii[12,34] := {46, 75} tii[12,35] := {19, 39} tii[12,36] := {10, 31} tii[12,37] := {8} tii[12,38] := {34, 62} tii[12,39] := {4, 15} tii[12,40] := {14, 44} tii[12,41] := {2, 11} tii[12,42] := {0, 16} tii[12,43] := {22, 47} tii[12,44] := {7, 30} tii[12,45] := {1, 26} cell#39 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {61} tii[6,2] := {51} tii[6,3] := {19, 72} tii[6,4] := {32, 74} tii[6,5] := {57} tii[6,6] := {47, 65} tii[6,7] := {38} tii[6,8] := {13, 70} tii[6,9] := {21, 73} tii[6,10] := {7, 62} tii[6,11] := {46} tii[6,12] := {5, 53} tii[6,13] := {35, 56} tii[6,14] := {15, 69} tii[6,15] := {18, 64} tii[6,16] := {39} tii[6,17] := {30, 50} tii[6,18] := {23, 44} tii[6,19] := {28} tii[6,20] := {42} tii[6,21] := {37} tii[6,22] := {14, 66} tii[6,23] := {54} tii[6,24] := {22, 71} tii[6,25] := {11, 58} tii[6,26] := {27, 68} tii[6,27] := {4, 52} tii[6,28] := {29} tii[6,29] := {17, 67} tii[6,30] := {2, 40} tii[6,31] := {41} tii[6,32] := {8, 60} tii[6,33] := {12, 55} tii[6,34] := {36, 59} tii[6,35] := {1, 33} tii[6,36] := {9, 45} tii[6,37] := {20} tii[6,38] := {10, 63} tii[6,39] := {31} tii[6,40] := {3, 43} tii[6,41] := {26, 49} tii[6,42] := {16, 34} tii[6,43] := {25} tii[6,44] := {6, 48} tii[6,45] := {0, 24} cell#40 , |C| = 56 special orbit = [5, 2, 2, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1]] , dim = 40 cell rep = phi[[2, 1],[1, 1, 1]]+phi[[],[3, 2, 1]] TII depth = 2 TII multiplicity polynomial = 24*X+16*X^2 TII subcells: tii[10,1] := {31} tii[10,2] := {28} tii[10,3] := {40} tii[10,4] := {18} tii[10,5] := {48} tii[10,6] := {41, 53} tii[10,7] := {26} tii[10,8] := {21, 38} tii[10,9] := {46} tii[10,10] := {9} tii[10,11] := {51} tii[10,12] := {47, 55} tii[10,13] := {43} tii[10,14] := {16} tii[10,15] := {12, 29} tii[10,16] := {36, 52} tii[10,17] := {27, 54} tii[10,18] := {24} tii[10,19] := {15, 34} tii[10,20] := {8, 42} tii[10,21] := {1} tii[10,22] := {22} tii[10,23] := {5} tii[10,24] := {14} tii[10,25] := {7} tii[10,26] := {37} tii[10,27] := {19} tii[10,28] := {32, 49} tii[10,29] := {23, 39} tii[10,30] := {33} tii[10,31] := {2} tii[10,32] := {25, 44} tii[10,33] := {11} tii[10,34] := {17, 50} tii[10,35] := {13, 30} tii[10,36] := {10, 45} tii[10,37] := {0} tii[10,38] := {4} tii[10,39] := {6, 20} tii[10,40] := {3, 35} cell#41 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {31} tii[6,2] := {41} tii[6,3] := {25, 54} tii[6,4] := {34, 62} tii[6,5] := {52} tii[6,6] := {57, 58} tii[6,7] := {30} tii[6,8] := {16, 55} tii[6,9] := {26, 65} tii[6,10] := {9, 66} tii[6,11] := {40} tii[6,12] := {6, 71} tii[6,13] := {45, 46} tii[6,14] := {19, 72} tii[6,15] := {28, 74} tii[6,16] := {53} tii[6,17] := {59, 60} tii[6,18] := {47, 68} tii[6,19] := {8} tii[6,20] := {15} tii[6,21] := {14} tii[6,22] := {17, 42} tii[6,23] := {23} tii[6,24] := {27, 51} tii[6,25] := {11, 32} tii[6,26] := {37, 38} tii[6,27] := {5, 63} tii[6,28] := {21} tii[6,29] := {18, 43} tii[6,30] := {2, 69} tii[6,31] := {33} tii[6,32] := {12, 70} tii[6,33] := {20, 73} tii[6,34] := {48, 49} tii[6,35] := {1, 61} tii[6,36] := {29, 67} tii[6,37] := {13} tii[6,38] := {10, 44} tii[6,39] := {22} tii[6,40] := {3, 64} tii[6,41] := {35, 36} tii[6,42] := {39, 56} tii[6,43] := {4} tii[6,44] := {7, 24} tii[6,45] := {0, 50} cell#42 , |C| = 35 special orbit = [3, 2, 2, 2, 2, 1, 1] special rep = [[1, 1, 1], [1, 1, 1]] , dim = 20 cell rep = phi[[1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[4,1] := {21, 22} tii[4,2] := {28, 29} tii[4,3] := {32, 33} tii[4,4] := {34} tii[4,5] := {4, 5} tii[4,6] := {16, 17} tii[4,7] := {6, 7} tii[4,8] := {12, 13} tii[4,9] := {26, 27} tii[4,10] := {10, 11} tii[4,11] := {30} tii[4,12] := {18, 19} tii[4,13] := {25} tii[4,14] := {14, 15} tii[4,15] := {23, 24} tii[4,16] := {31} tii[4,17] := {0, 1} tii[4,18] := {2, 3} tii[4,19] := {8, 9} tii[4,20] := {20} cell#43 , |C| = 30 special orbit = [3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2]] , dim = 30 cell rep = phi[[1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 30*X TII subcells: tii[8,1] := {22} tii[8,2] := {28} tii[8,3] := {29} tii[8,4] := {17} tii[8,5] := {4} tii[8,6] := {10} tii[8,7] := {19} tii[8,8] := {23} tii[8,9] := {15} tii[8,10] := {8} tii[8,11] := {14} tii[8,12] := {12} tii[8,13] := {24} tii[8,14] := {18} tii[8,15] := {27} tii[8,16] := {20} tii[8,17] := {26} tii[8,18] := {25} tii[8,19] := {2} tii[8,20] := {5} tii[8,21] := {1} tii[8,22] := {7} tii[8,23] := {9} tii[8,24] := {3} tii[8,25] := {13} tii[8,26] := {21} tii[8,27] := {11} tii[8,28] := {6} tii[8,29] := {16} tii[8,30] := {0} cell#44 , |C| = 25 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[2],[1, 1, 1, 1]]+phi[[],[3, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+10*X^2 TII subcells: tii[9,1] := {18} tii[9,2] := {21} tii[9,3] := {19, 24} tii[9,4] := {15} tii[9,5] := {12, 22} tii[9,6] := {8, 23} tii[9,7] := {9} tii[9,8] := {7, 16} tii[9,9] := {5, 20} tii[9,10] := {3, 17} tii[9,11] := {6} tii[9,12] := {4, 10} tii[9,13] := {2, 13} tii[9,14] := {1, 11} tii[9,15] := {0, 14} cell#45 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {12} tii[5,2] := {17} tii[5,3] := {14} tii[5,4] := {10} tii[5,5] := {20} tii[5,6] := {21} tii[5,7] := {11} tii[5,8] := {6} tii[5,9] := {16} tii[5,10] := {5} tii[5,11] := {18} tii[5,12] := {22} tii[5,13] := {7} tii[5,14] := {4} tii[5,15] := {13} tii[5,16] := {2} tii[5,17] := {15} tii[5,18] := {1} tii[5,19] := {19} tii[5,20] := {23} tii[5,21] := {9} tii[5,22] := {8} tii[5,23] := {3} tii[5,24] := {0} cell#46 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {22} tii[5,2] := {23} tii[5,3] := {18} tii[5,4] := {14} tii[5,5] := {21} tii[5,6] := {20} tii[5,7] := {13} tii[5,8] := {7} tii[5,9] := {17} tii[5,10] := {5} tii[5,11] := {15} tii[5,12] := {16} tii[5,13] := {6} tii[5,14] := {4} tii[5,15] := {12} tii[5,16] := {2} tii[5,17] := {9} tii[5,18] := {1} tii[5,19] := {11} tii[5,20] := {10} tii[5,21] := {19} tii[5,22] := {8} tii[5,23] := {3} tii[5,24] := {0} cell#47 , |C| = 75 special orbit = [3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1]] , dim = 45 cell rep = phi[[1, 1],[2, 1, 1]]+phi[[1],[2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+30*X^2 TII subcells: tii[6,1] := {23} tii[6,2] := {35} tii[6,3] := {16, 51} tii[6,4] := {31, 60} tii[6,5] := {50} tii[6,6] := {57, 58} tii[6,7] := {52} tii[6,8] := {28, 55} tii[6,9] := {45, 64} tii[6,10] := {41, 42} tii[6,11] := {63} tii[6,12] := {26, 30} tii[6,13] := {69, 70} tii[6,14] := {53, 59} tii[6,15] := {48, 67} tii[6,16] := {66} tii[6,17] := {71, 72} tii[6,18] := {65, 74} tii[6,19] := {2} tii[6,20] := {7} tii[6,21] := {6} tii[6,22] := {8, 36} tii[6,23] := {13} tii[6,24] := {20, 49} tii[6,25] := {4, 24} tii[6,26] := {32, 33} tii[6,27] := {27, 29} tii[6,28] := {12} tii[6,29] := {10, 37} tii[6,30] := {15, 19} tii[6,31] := {25} tii[6,32] := {39, 44} tii[6,33] := {34, 56} tii[6,34] := {46, 47} tii[6,35] := {9, 11} tii[6,36] := {40, 68} tii[6,37] := {22} tii[6,38] := {18, 43} tii[6,39] := {38} tii[6,40] := {17, 21} tii[6,41] := {61, 62} tii[6,42] := {54, 73} tii[6,43] := {0} tii[6,44] := {1, 14} tii[6,45] := {3, 5} cell#48 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {7} tii[5,2] := {12} tii[5,3] := {11} tii[5,4] := {6} tii[5,5] := {15} tii[5,6] := {17} tii[5,7] := {14} tii[5,8] := {10} tii[5,9] := {19} tii[5,10] := {8} tii[5,11] := {21} tii[5,12] := {23} tii[5,13] := {13} tii[5,14] := {9} tii[5,15] := {16} tii[5,16] := {5} tii[5,17] := {20} tii[5,18] := {1} tii[5,19] := {22} tii[5,20] := {18} tii[5,21] := {3} tii[5,22] := {2} tii[5,23] := {4} tii[5,24] := {0} cell#49 , |C| = 24 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1]] , dim = 24 cell rep = phi[[1],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 24*X TII subcells: tii[5,1] := {4} tii[5,2] := {9} tii[5,3] := {10} tii[5,4] := {15} tii[5,5] := {17} tii[5,6] := {21} tii[5,7] := {6} tii[5,8] := {13} tii[5,9] := {14} tii[5,10] := {5} tii[5,11] := {20} tii[5,12] := {12} tii[5,13] := {11} tii[5,14] := {16} tii[5,15] := {18} tii[5,16] := {8} tii[5,17] := {22} tii[5,18] := {3} tii[5,19] := {19} tii[5,20] := {23} tii[5,21] := {1} tii[5,22] := {7} tii[5,23] := {2} tii[5,24] := {0} cell#50 , |C| = 24 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[3,1] := {7} tii[3,2] := {11} tii[3,3] := {6, 15} tii[3,4] := {14} tii[3,5] := {10, 18} tii[3,6] := {8, 20} tii[3,7] := {16} tii[3,8] := {13, 19} tii[3,9] := {9, 21} tii[3,10] := {5, 23} tii[3,11] := {0} tii[3,12] := {3} tii[3,13] := {2, 12} tii[3,14] := {4, 17} tii[3,15] := {1, 22} cell#51 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {5} tii[2,2] := {4, 6} tii[2,3] := {3, 7} tii[2,4] := {2, 9} tii[2,5] := {1, 8} tii[2,6] := {0, 10} cell#52 , |C| = 24 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1]] , dim = 15 cell rep = phi[[1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+9*X^2 TII subcells: tii[3,1] := {4} tii[3,2] := {9} tii[3,3] := {14, 15} tii[3,4] := {13} tii[3,5] := {19, 20} tii[3,6] := {12, 23} tii[3,7] := {10} tii[3,8] := {16, 17} tii[3,9] := {6, 22} tii[3,10] := {3, 18} tii[3,11] := {0} tii[3,12] := {2} tii[3,13] := {7, 8} tii[3,14] := {5, 21} tii[3,15] := {1, 11} cell#53 , |C| = 11 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1]] , dim = 6 cell rep = phi[[1],[1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X^2+X TII subcells: tii[2,1] := {4} tii[2,2] := {5, 6} tii[2,3] := {3, 10} tii[2,4] := {2, 7} tii[2,5] := {1, 9} tii[2,6] := {0, 8} cell#54 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}