TII subcells for the SO(11,4) x Sp(14,R) block of SO15 # cell#0 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {0} tii[31,2] := {15} tii[31,3] := {1} tii[31,4] := {19} tii[31,5] := {3, 31} tii[31,6] := {27} tii[31,7] := {13} tii[31,8] := {24} tii[31,9] := {14, 37} tii[31,10] := {2} tii[31,11] := {20} tii[31,12] := {5, 32} tii[31,13] := {29} tii[31,14] := {17, 40} tii[31,15] := {7, 44} tii[31,16] := {38} tii[31,17] := {25} tii[31,18] := {34} tii[31,19] := {26, 43} tii[31,20] := {10} tii[31,21] := {23} tii[31,22] := {11, 36} tii[31,23] := {35} tii[31,24] := {22, 42} tii[31,25] := {12, 47} tii[31,26] := {4} tii[31,27] := {21} tii[31,28] := {6, 33} tii[31,29] := {30} tii[31,30] := {18, 41} tii[31,31] := {8, 45} tii[31,32] := {39} tii[31,33] := {28, 46} tii[31,34] := {16, 48} tii[31,35] := {9, 49} cell#1 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {44} tii[25,2] := {32} tii[25,3] := {8, 76} tii[25,4] := {18, 118} tii[25,5] := {73} tii[25,6] := {59} tii[25,7] := {91} tii[25,8] := {74} tii[25,9] := {12, 105} tii[25,10] := {98, 99} tii[25,11] := {30, 144} tii[25,12] := {92} tii[25,13] := {56} tii[25,14] := {9, 134} tii[25,15] := {80, 81} tii[25,16] := {20, 155} tii[25,17] := {25, 151} tii[25,18] := {40, 132} tii[25,19] := {41, 161} tii[25,20] := {64, 165} tii[25,21] := {102} tii[25,22] := {93} tii[25,23] := {121} tii[25,24] := {103} tii[25,25] := {35, 135} tii[25,26] := {128, 129} tii[25,27] := {54, 156} tii[25,28] := {146} tii[25,29] := {123} tii[25,30] := {90} tii[25,31] := {119} tii[25,32] := {11, 152} tii[25,33] := {114, 115} tii[25,34] := {139, 140} tii[25,35] := {28, 162} tii[25,36] := {104} tii[25,37] := {33, 159} tii[25,38] := {49, 149} tii[25,39] := {130, 131} tii[25,40] := {50, 166} tii[25,41] := {147, 148} tii[25,42] := {78, 169} tii[25,43] := {145} tii[25,44] := {120} tii[25,45] := {10, 160} tii[25,46] := {141, 142} tii[25,47] := {22, 167} tii[25,48] := {88} tii[25,49] := {26, 164} tii[25,50] := {42, 158} tii[25,51] := {110, 111} tii[25,52] := {43, 170} tii[25,53] := {136, 137} tii[25,54] := {66, 171} tii[25,55] := {47, 168} tii[25,56] := {71, 163} tii[25,57] := {72, 172} tii[25,58] := {96, 157} tii[25,59] := {97, 173} tii[25,60] := {125, 174} tii[25,61] := {23} tii[25,62] := {7} tii[25,63] := {0, 16} tii[25,64] := {58} tii[25,65] := {13} tii[25,66] := {45} tii[25,67] := {6, 31} tii[25,68] := {67, 68} tii[25,69] := {24} tii[25,70] := {1, 48} tii[25,71] := {38, 39} tii[25,72] := {17, 62} tii[25,73] := {122} tii[25,74] := {36} tii[25,75] := {89} tii[25,76] := {112, 113} tii[25,77] := {15, 55} tii[25,78] := {75} tii[25,79] := {34} tii[25,80] := {5, 84} tii[25,81] := {100, 101} tii[25,82] := {51, 52} tii[25,83] := {126, 127} tii[25,84] := {29, 79} tii[25,85] := {46} tii[25,86] := {2, 116} tii[25,87] := {69, 70} tii[25,88] := {19, 106} tii[25,89] := {94, 95} tii[25,90] := {63, 124} tii[25,91] := {61} tii[25,92] := {37, 87} tii[25,93] := {60} tii[25,94] := {14, 117} tii[25,95] := {85, 86} tii[25,96] := {53, 109} tii[25,97] := {57} tii[25,98] := {4, 143} tii[25,99] := {82, 83} tii[25,100] := {27, 138} tii[25,101] := {107, 108} tii[25,102] := {77, 133} tii[25,103] := {3, 154} tii[25,104] := {21, 153} tii[25,105] := {65, 150} cell#2 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {44} tii[25,2] := {32} tii[25,3] := {8, 76} tii[25,4] := {18, 118} tii[25,5] := {73} tii[25,6] := {59} tii[25,7] := {91} tii[25,8] := {74} tii[25,9] := {12, 105} tii[25,10] := {98, 99} tii[25,11] := {30, 144} tii[25,12] := {92} tii[25,13] := {56} tii[25,14] := {9, 134} tii[25,15] := {80, 81} tii[25,16] := {20, 155} tii[25,17] := {25, 151} tii[25,18] := {40, 132} tii[25,19] := {41, 161} tii[25,20] := {64, 165} tii[25,21] := {102} tii[25,22] := {93} tii[25,23] := {121} tii[25,24] := {103} tii[25,25] := {35, 135} tii[25,26] := {128, 129} tii[25,27] := {54, 156} tii[25,28] := {146} tii[25,29] := {123} tii[25,30] := {90} tii[25,31] := {119} tii[25,32] := {11, 152} tii[25,33] := {114, 115} tii[25,34] := {139, 140} tii[25,35] := {28, 162} tii[25,36] := {104} tii[25,37] := {33, 159} tii[25,38] := {49, 149} tii[25,39] := {130, 131} tii[25,40] := {50, 166} tii[25,41] := {147, 148} tii[25,42] := {78, 169} tii[25,43] := {145} tii[25,44] := {120} tii[25,45] := {10, 160} tii[25,46] := {141, 142} tii[25,47] := {22, 167} tii[25,48] := {88} tii[25,49] := {26, 164} tii[25,50] := {42, 158} tii[25,51] := {110, 111} tii[25,52] := {43, 170} tii[25,53] := {136, 137} tii[25,54] := {66, 171} tii[25,55] := {47, 168} tii[25,56] := {71, 163} tii[25,57] := {72, 172} tii[25,58] := {96, 157} tii[25,59] := {97, 173} tii[25,60] := {125, 174} tii[25,61] := {23} tii[25,62] := {7} tii[25,63] := {0, 16} tii[25,64] := {58} tii[25,65] := {13} tii[25,66] := {45} tii[25,67] := {6, 31} tii[25,68] := {67, 68} tii[25,69] := {24} tii[25,70] := {1, 48} tii[25,71] := {38, 39} tii[25,72] := {17, 62} tii[25,73] := {122} tii[25,74] := {36} tii[25,75] := {89} tii[25,76] := {112, 113} tii[25,77] := {15, 55} tii[25,78] := {75} tii[25,79] := {34} tii[25,80] := {5, 84} tii[25,81] := {100, 101} tii[25,82] := {51, 52} tii[25,83] := {126, 127} tii[25,84] := {29, 79} tii[25,85] := {46} tii[25,86] := {2, 116} tii[25,87] := {69, 70} tii[25,88] := {19, 106} tii[25,89] := {94, 95} tii[25,90] := {63, 124} tii[25,91] := {61} tii[25,92] := {37, 87} tii[25,93] := {60} tii[25,94] := {14, 117} tii[25,95] := {85, 86} tii[25,96] := {53, 109} tii[25,97] := {57} tii[25,98] := {4, 143} tii[25,99] := {82, 83} tii[25,100] := {27, 138} tii[25,101] := {107, 108} tii[25,102] := {77, 133} tii[25,103] := {3, 154} tii[25,104] := {21, 153} tii[25,105] := {65, 150} cell#3 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {23} tii[19,2] := {59} tii[19,3] := {83} tii[19,4] := {37} tii[19,5] := {47} tii[19,6] := {74} tii[19,7] := {69} tii[19,8] := {98} tii[19,9] := {55} tii[19,10] := {39} tii[19,11] := {91} tii[19,12] := {62} tii[19,13] := {20} tii[19,14] := {106} tii[19,15] := {102} tii[19,16] := {89} tii[19,17] := {112} tii[19,18] := {116} tii[19,19] := {54} tii[19,20] := {66} tii[19,21] := {92} tii[19,22] := {86} tii[19,23] := {107} tii[19,24] := {71} tii[19,25] := {56} tii[19,26] := {73} tii[19,27] := {103} tii[19,28] := {80} tii[19,29] := {34} tii[19,30] := {97} tii[19,31] := {113} tii[19,32] := {67} tii[19,33] := {110} tii[19,34] := {46} tii[19,35] := {100} tii[19,36] := {87} tii[19,37] := {117} tii[19,38] := {99} tii[19,39] := {120} tii[19,40] := {88} tii[19,41] := {72} tii[19,42] := {111} tii[19,43] := {96} tii[19,44] := {52} tii[19,45] := {118} tii[19,46] := {57} tii[19,47] := {115} tii[19,48] := {109} tii[19,49] := {81} tii[19,50] := {35} tii[19,51] := {121} tii[19,52] := {94} tii[19,53] := {19} tii[19,54] := {122} tii[19,55] := {119} tii[19,56] := {114} tii[19,57] := {123} tii[19,58] := {108} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {8} tii[19,62] := {18} tii[19,63] := {11} tii[19,64] := {31} tii[19,65] := {5} tii[19,66] := {26} tii[19,67] := {50} tii[19,68] := {17} tii[19,69] := {42} tii[19,70] := {7} tii[19,71] := {33} tii[19,72] := {49} tii[19,73] := {24} tii[19,74] := {58} tii[19,75] := {82} tii[19,76] := {13} tii[19,77] := {44} tii[19,78] := {48} tii[19,79] := {25} tii[19,80] := {29} tii[19,81] := {30} tii[19,82] := {61} tii[19,83] := {70} tii[19,84] := {43} tii[19,85] := {10} tii[19,86] := {85} tii[19,87] := {4} tii[19,88] := {60} tii[19,89] := {32} tii[19,90] := {78} tii[19,91] := {16} tii[19,92] := {51} tii[19,93] := {6} tii[19,94] := {68} tii[19,95] := {75} tii[19,96] := {84} tii[19,97] := {38} tii[19,98] := {65} tii[19,99] := {27} tii[19,100] := {41} tii[19,101] := {45} tii[19,102] := {79} tii[19,103] := {64} tii[19,104] := {21} tii[19,105] := {12} tii[19,106] := {77} tii[19,107] := {40} tii[19,108] := {53} tii[19,109] := {95} tii[19,110] := {63} tii[19,111] := {22} tii[19,112] := {28} tii[19,113] := {93} tii[19,114] := {76} tii[19,115] := {9} tii[19,116] := {3} tii[19,117] := {90} tii[19,118] := {105} tii[19,119] := {104} tii[19,120] := {101} tii[19,121] := {0} tii[19,122] := {15} tii[19,123] := {1} tii[19,124] := {36} tii[19,125] := {14} tii[19,126] := {2} cell#4 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {90} tii[15,2] := {129, 130} tii[15,3] := {181, 182} tii[15,4] := {144} tii[15,5] := {128} tii[15,6] := {196, 197} tii[15,7] := {155, 156, 315, 316} tii[15,8] := {245, 246, 372, 373} tii[15,9] := {211} tii[15,10] := {276, 277} tii[15,11] := {271} tii[15,12] := {153, 154, 353, 354} tii[15,13] := {212, 364} tii[15,14] := {243, 244, 406, 407} tii[15,15] := {348, 349} tii[15,16] := {388, 389, 390, 391} tii[15,17] := {266, 267} tii[15,18] := {214} tii[15,19] := {279, 280} tii[15,20] := {194} tii[15,21] := {229, 230, 384, 385} tii[15,22] := {327, 328, 439, 440} tii[15,23] := {343, 344} tii[15,24] := {292} tii[15,25] := {278} tii[15,26] := {374, 375} tii[15,27] := {355, 356} tii[15,28] := {350} tii[15,29] := {227, 228, 423, 424} tii[15,30] := {313, 314, 443, 444} tii[15,31] := {345, 346, 465, 466} tii[15,32] := {293, 432} tii[15,33] := {325, 326, 469, 470} tii[15,34] := {400, 401, 492, 493} tii[15,35] := {352} tii[15,36] := {378, 379, 494, 495} tii[15,37] := {417, 418} tii[15,38] := {301, 302, 526, 527} tii[15,39] := {270, 431} tii[15,40] := {453, 454, 455, 456} tii[15,41] := {463, 464, 528, 529} tii[15,42] := {498, 499, 545, 546} tii[15,43] := {367} tii[15,44] := {425, 426} tii[15,45] := {421} tii[15,46] := {311, 312, 480, 481} tii[15,47] := {368, 485} tii[15,48] := {398, 399, 516, 517} tii[15,49] := {479} tii[15,50] := {376, 377, 520, 521} tii[15,51] := {475, 476} tii[15,52] := {299, 300, 540, 541} tii[15,53] := {506, 507, 508, 509} tii[15,54] := {416, 523} tii[15,55] := {461, 462, 542, 543} tii[15,56] := {369, 544} tii[15,57] := {496, 497, 551, 552} tii[15,58] := {518, 519} tii[15,59] := {536, 537, 538, 539} tii[15,60] := {547, 548, 549, 550} tii[15,61] := {1} tii[15,62] := {30} tii[15,63] := {8, 9} tii[15,64] := {26, 27} tii[15,65] := {6} tii[15,66] := {113, 114} tii[15,67] := {55} tii[15,68] := {15} tii[15,69] := {80} tii[15,70] := {20, 21} tii[15,71] := {95, 96, 235, 236} tii[15,72] := {76, 77} tii[15,73] := {31} tii[15,74] := {50, 51} tii[15,75] := {171, 172, 297, 298} tii[15,76] := {45, 46, 111, 112} tii[15,77] := {37, 38} tii[15,78] := {58, 59, 198, 199} tii[15,79] := {122} tii[15,80] := {84, 85} tii[15,81] := {32, 33, 133, 134} tii[15,82] := {91, 207} tii[15,83] := {109, 110, 259, 260} tii[15,84] := {177, 178, 179, 180} tii[15,85] := {261, 262} tii[15,86] := {14} tii[15,87] := {123, 124} tii[15,88] := {92} tii[15,89] := {195} tii[15,90] := {303, 304} tii[15,91] := {29} tii[15,92] := {225, 226, 380, 381} tii[15,93] := {39, 40} tii[15,94] := {81, 82, 175, 176} tii[15,95] := {263, 264, 396, 397} tii[15,96] := {57} tii[15,97] := {323, 324, 435, 436} tii[15,98] := {86, 87} tii[15,99] := {305, 306, 441, 442} tii[15,100] := {188} tii[15,101] := {36} tii[15,102] := {72, 73} tii[15,103] := {97, 98, 281, 282} tii[15,104] := {275} tii[15,105] := {223, 224} tii[15,106] := {103, 104, 241, 242} tii[15,107] := {145, 289} tii[15,108] := {217, 218, 486, 487} tii[15,109] := {137, 138} tii[15,110] := {185, 363} tii[15,111] := {392, 393, 488, 489} tii[15,112] := {83} tii[15,113] := {64, 65, 200, 201} tii[15,114] := {173, 174, 341, 342} tii[15,115] := {183, 184, 329, 330} tii[15,116] := {445, 446, 524, 525} tii[15,117] := {93, 210} tii[15,118] := {125, 126, 370, 371} tii[15,119] := {253, 254, 255, 256} tii[15,120] := {221, 222, 419, 420} tii[15,121] := {351} tii[15,122] := {117, 118} tii[15,123] := {105, 106, 283, 284} tii[15,124] := {149, 150, 457, 458} tii[15,125] := {202, 203} tii[15,126] := {321, 322, 459, 460} tii[15,127] := {265, 430} tii[15,128] := {213, 482} tii[15,129] := {382, 383, 504, 505} tii[15,130] := {331, 332, 333, 334} tii[15,131] := {99, 100, 404, 405} tii[15,132] := {449, 450, 451, 452} tii[15,133] := {28} tii[15,134] := {147} tii[15,135] := {189, 190} tii[15,136] := {54} tii[15,137] := {74, 75} tii[15,138] := {94} tii[15,139] := {131, 132, 251, 252} tii[15,140] := {139, 140} tii[15,141] := {120, 121} tii[15,142] := {309, 310} tii[15,143] := {70} tii[15,144] := {157, 158, 357, 358} tii[15,145] := {274} tii[15,146] := {163, 164, 319, 320} tii[15,147] := {205, 206} tii[15,148] := {268, 269, 402, 403} tii[15,149] := {215, 365} tii[15,150] := {135} tii[15,151] := {107, 108, 285, 286} tii[15,152] := {247, 248, 414, 415} tii[15,153] := {191, 192, 437, 438} tii[15,154] := {148, 291} tii[15,155] := {335, 336, 337, 338} tii[15,156] := {422} tii[15,157] := {119} tii[15,158] := {307, 308, 477, 478} tii[15,159] := {186, 187} tii[15,160] := {239, 240, 386, 387} tii[15,161] := {167, 168, 359, 360} tii[15,162] := {347, 484} tii[15,163] := {219, 220, 510, 511} tii[15,164] := {204} tii[15,165] := {287, 288} tii[15,166] := {394, 395, 512, 513} tii[15,167] := {294, 522} tii[15,168] := {231, 232, 490, 491} tii[15,169] := {193, 366} tii[15,170] := {408, 409, 410, 411} tii[15,171] := {447, 448, 534, 535} tii[15,172] := {161, 162, 467, 468} tii[15,173] := {216, 483} tii[15,174] := {500, 501, 502, 503} tii[15,175] := {272, 273} tii[15,176] := {237, 238, 428, 429} tii[15,177] := {361, 362} tii[15,178] := {233, 234, 514, 515} tii[15,179] := {471, 472, 473, 474} tii[15,180] := {530, 531, 532, 533} tii[15,181] := {0} tii[15,182] := {2, 3} tii[15,183] := {7} tii[15,184] := {41, 42} tii[15,185] := {4, 5} tii[15,186] := {16} tii[15,187] := {24, 25, 68, 69} tii[15,188] := {12, 13, 52, 53} tii[15,189] := {19} tii[15,190] := {151, 152} tii[15,191] := {10, 11} tii[15,192] := {62, 63, 169, 170} tii[15,193] := {49} tii[15,194] := {115, 116, 249, 250} tii[15,195] := {17, 18, 88, 89} tii[15,196] := {78, 79, 295, 296} tii[15,197] := {56, 143} tii[15,198] := {43, 44, 257, 258} tii[15,199] := {71} tii[15,200] := {165, 166, 317, 318} tii[15,201] := {22, 23} tii[15,202] := {136} tii[15,203] := {159, 160, 433, 434} tii[15,204] := {34, 35, 141, 142} tii[15,205] := {127, 290} tii[15,206] := {60, 61, 339, 340} tii[15,207] := {146, 427} tii[15,208] := {47, 48} tii[15,209] := {66, 67, 208, 209} tii[15,210] := {101, 102, 412, 413} cell#5 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {38} tii[22,2] := {28} tii[22,3] := {33} tii[22,4] := {29, 45} tii[22,5] := {16} tii[22,6] := {25} tii[22,7] := {17, 37} tii[22,8] := {35} tii[22,9] := {23, 44} tii[22,10] := {18, 49} tii[22,11] := {5} tii[22,12] := {15} tii[22,13] := {6, 27} tii[22,14] := {26} tii[22,15] := {14, 36} tii[22,16] := {7, 42} tii[22,17] := {34} tii[22,18] := {24, 43} tii[22,19] := {13, 48} tii[22,20] := {8, 52} tii[22,21] := {0} tii[22,22] := {12} tii[22,23] := {1, 22} tii[22,24] := {21} tii[22,25] := {11, 32} tii[22,26] := {2, 40} tii[22,27] := {31} tii[22,28] := {20, 41} tii[22,29] := {10, 46} tii[22,30] := {3, 50} tii[22,31] := {39} tii[22,32] := {30, 47} tii[22,33] := {19, 51} tii[22,34] := {9, 53} tii[22,35] := {4, 54} cell#6 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {10} tii[22,2] := {19} tii[22,3] := {11} tii[22,4] := {24, 25} tii[22,5] := {41} tii[22,6] := {17} tii[22,7] := {34, 35} tii[22,8] := {12} tii[22,9] := {26, 27} tii[22,10] := {44, 45} tii[22,11] := {52} tii[22,12] := {38} tii[22,13] := {50, 51} tii[22,14] := {16} tii[22,15] := {32, 33} tii[22,16] := {48, 49} tii[22,17] := {13} tii[22,18] := {28, 29} tii[22,19] := {46, 47} tii[22,20] := {53, 54} tii[22,21] := {40} tii[22,22] := {18} tii[22,23] := {36, 37} tii[22,24] := {4} tii[22,25] := {14, 15} tii[22,26] := {30, 31} tii[22,27] := {3} tii[22,28] := {8, 9} tii[22,29] := {22, 23} tii[22,30] := {42, 43} tii[22,31] := {0} tii[22,32] := {1, 2} tii[22,33] := {6, 7} tii[22,34] := {20, 21} tii[22,35] := {5, 39} cell#7 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {10} tii[22,2] := {19} tii[22,3] := {11} tii[22,4] := {24, 25} tii[22,5] := {41} tii[22,6] := {17} tii[22,7] := {34, 35} tii[22,8] := {12} tii[22,9] := {26, 27} tii[22,10] := {44, 45} tii[22,11] := {52} tii[22,12] := {38} tii[22,13] := {50, 51} tii[22,14] := {16} tii[22,15] := {32, 33} tii[22,16] := {48, 49} tii[22,17] := {13} tii[22,18] := {28, 29} tii[22,19] := {46, 47} tii[22,20] := {53, 54} tii[22,21] := {40} tii[22,22] := {18} tii[22,23] := {36, 37} tii[22,24] := {4} tii[22,25] := {14, 15} tii[22,26] := {30, 31} tii[22,27] := {3} tii[22,28] := {8, 9} tii[22,29] := {22, 23} tii[22,30] := {42, 43} tii[22,31] := {0} tii[22,32] := {1, 2} tii[22,33] := {6, 7} tii[22,34] := {20, 21} tii[22,35] := {5, 39} cell#8 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {45} tii[14,2] := {54, 85} tii[14,3] := {77, 112} tii[14,4] := {61} tii[14,5] := {46} tii[14,6] := {65, 105} tii[14,7] := {27, 71} tii[14,8] := {94, 122} tii[14,9] := {55, 118} tii[14,10] := {36, 102} tii[14,11] := {78, 129} tii[14,12] := {98, 135} tii[14,13] := {80} tii[14,14] := {62} tii[14,15] := {84, 119} tii[14,16] := {40, 91} tii[14,17] := {111, 130} tii[14,18] := {47} tii[14,19] := {64, 127} tii[14,20] := {42, 116} tii[14,21] := {28, 72} tii[14,22] := {93, 136} tii[14,23] := {14, 87} tii[14,24] := {108, 140} tii[14,25] := {56, 133} tii[14,26] := {37, 125} tii[14,27] := {79, 141} tii[14,28] := {22, 114} tii[14,29] := {99, 144} tii[14,30] := {113, 147} tii[14,31] := {101} tii[14,32] := {83} tii[14,33] := {66, 128} tii[14,34] := {59, 110} tii[14,35] := {95, 137} tii[14,36] := {63} tii[14,37] := {49, 134} tii[14,38] := {30, 126} tii[14,39] := {41, 92} tii[14,40] := {74, 142} tii[14,41] := {25, 107} tii[14,42] := {89, 145} tii[14,43] := {48} tii[14,44] := {38, 139} tii[14,45] := {29, 73} tii[14,46] := {23, 132} tii[14,47] := {58, 146} tii[14,48] := {12, 124} tii[14,49] := {15, 88} tii[14,50] := {76, 148} tii[14,51] := {7, 104} tii[14,52] := {97, 150} tii[14,53] := {24, 143} tii[14,54] := {13, 138} tii[14,55] := {39, 149} tii[14,56] := {6, 131} tii[14,57] := {57, 151} tii[14,58] := {2, 123} tii[14,59] := {75, 152} tii[14,60] := {96, 153} tii[14,61] := {31} tii[14,62] := {20, 53} tii[14,63] := {34} tii[14,64] := {35, 70} tii[14,65] := {17, 52} tii[14,66] := {10, 69} tii[14,67] := {33} tii[14,68] := {43, 90} tii[14,69] := {19, 51} tii[14,70] := {21, 86} tii[14,71] := {8, 68} tii[14,72] := {4, 82} tii[14,73] := {32} tii[14,74] := {60, 109} tii[14,75] := {18, 50} tii[14,76] := {9, 67} tii[14,77] := {26, 106} tii[14,78] := {11, 103} tii[14,79] := {3, 81} tii[14,80] := {1, 100} tii[14,81] := {44, 121} tii[14,82] := {16, 120} tii[14,83] := {5, 117} tii[14,84] := {0, 115} cell#9 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {59} tii[14,2] := {22, 86} tii[14,3] := {36, 112} tii[14,4] := {80} tii[14,5] := {58} tii[14,6] := {11, 105} tii[14,7] := {75, 76} tii[14,8] := {19, 122} tii[14,9] := {21, 118} tii[14,10] := {33, 101} tii[14,11] := {34, 129} tii[14,12] := {48, 135} tii[14,13] := {99} tii[14,14] := {79} tii[14,15] := {3, 119} tii[14,16] := {94, 95} tii[14,17] := {9, 130} tii[14,18] := {57} tii[14,19] := {10, 127} tii[14,20] := {16, 116} tii[14,21] := {73, 74} tii[14,22] := {17, 136} tii[14,23] := {89, 90} tii[14,24] := {30, 140} tii[14,25] := {20, 133} tii[14,26] := {31, 125} tii[14,27] := {32, 141} tii[14,28] := {45, 114} tii[14,29] := {46, 144} tii[14,30] := {65, 147} tii[14,31] := {113} tii[14,32] := {97} tii[14,33] := {2, 128} tii[14,34] := {109, 110} tii[14,35] := {6, 137} tii[14,36] := {78} tii[14,37] := {7, 134} tii[14,38] := {13, 126} tii[14,39] := {92, 93} tii[14,40] := {14, 142} tii[14,41] := {106, 107} tii[14,42] := {24, 145} tii[14,43] := {56} tii[14,44] := {15, 139} tii[14,45] := {71, 72} tii[14,46] := {26, 132} tii[14,47] := {27, 146} tii[14,48] := {41, 124} tii[14,49] := {87, 88} tii[14,50] := {42, 148} tii[14,51] := {102, 103} tii[14,52] := {61, 150} tii[14,53] := {28, 143} tii[14,54] := {43, 138} tii[14,55] := {44, 149} tii[14,56] := {62, 131} tii[14,57] := {63, 151} tii[14,58] := {81, 123} tii[14,59] := {82, 152} tii[14,60] := {98, 153} tii[14,61] := {40} tii[14,62] := {25, 55} tii[14,63] := {39} tii[14,64] := {12, 77} tii[14,65] := {53, 54} tii[14,66] := {35, 70} tii[14,67] := {38} tii[14,68] := {4, 96} tii[14,69] := {51, 52} tii[14,70] := {18, 91} tii[14,71] := {68, 69} tii[14,72] := {47, 85} tii[14,73] := {37} tii[14,74] := {1, 111} tii[14,75] := {49, 50} tii[14,76] := {66, 67} tii[14,77] := {8, 108} tii[14,78] := {29, 104} tii[14,79] := {83, 84} tii[14,80] := {64, 100} tii[14,81] := {0, 121} tii[14,82] := {5, 120} tii[14,83] := {23, 117} tii[14,84] := {60, 115} cell#10 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[11,1] := {35} tii[11,2] := {21} tii[11,3] := {30, 31} tii[11,4] := {11} tii[11,5] := {19, 20} tii[11,6] := {28, 29} tii[11,7] := {4} tii[11,8] := {9, 10} tii[11,9] := {17, 18} tii[11,10] := {26, 27} tii[11,11] := {3} tii[11,12] := {7, 8} tii[11,13] := {15, 16} tii[11,14] := {24, 25} tii[11,15] := {33, 34} tii[11,16] := {0} tii[11,17] := {1, 2} tii[11,18] := {5, 6} tii[11,19] := {13, 14} tii[11,20] := {22, 23} tii[11,21] := {12, 32} cell#11 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {59} tii[14,2] := {22, 86} tii[14,3] := {36, 112} tii[14,4] := {80} tii[14,5] := {58} tii[14,6] := {11, 105} tii[14,7] := {75, 76} tii[14,8] := {19, 122} tii[14,9] := {21, 118} tii[14,10] := {33, 101} tii[14,11] := {34, 129} tii[14,12] := {48, 135} tii[14,13] := {99} tii[14,14] := {79} tii[14,15] := {3, 119} tii[14,16] := {94, 95} tii[14,17] := {9, 130} tii[14,18] := {57} tii[14,19] := {10, 127} tii[14,20] := {16, 116} tii[14,21] := {73, 74} tii[14,22] := {17, 136} tii[14,23] := {89, 90} tii[14,24] := {30, 140} tii[14,25] := {20, 133} tii[14,26] := {31, 125} tii[14,27] := {32, 141} tii[14,28] := {45, 114} tii[14,29] := {46, 144} tii[14,30] := {65, 147} tii[14,31] := {113} tii[14,32] := {97} tii[14,33] := {2, 128} tii[14,34] := {109, 110} tii[14,35] := {6, 137} tii[14,36] := {78} tii[14,37] := {7, 134} tii[14,38] := {13, 126} tii[14,39] := {92, 93} tii[14,40] := {14, 142} tii[14,41] := {106, 107} tii[14,42] := {24, 145} tii[14,43] := {56} tii[14,44] := {15, 139} tii[14,45] := {71, 72} tii[14,46] := {26, 132} tii[14,47] := {27, 146} tii[14,48] := {41, 124} tii[14,49] := {87, 88} tii[14,50] := {42, 148} tii[14,51] := {102, 103} tii[14,52] := {61, 150} tii[14,53] := {28, 143} tii[14,54] := {43, 138} tii[14,55] := {44, 149} tii[14,56] := {62, 131} tii[14,57] := {63, 151} tii[14,58] := {81, 123} tii[14,59] := {82, 152} tii[14,60] := {98, 153} tii[14,61] := {40} tii[14,62] := {25, 55} tii[14,63] := {39} tii[14,64] := {12, 77} tii[14,65] := {53, 54} tii[14,66] := {35, 70} tii[14,67] := {38} tii[14,68] := {4, 96} tii[14,69] := {51, 52} tii[14,70] := {18, 91} tii[14,71] := {68, 69} tii[14,72] := {47, 85} tii[14,73] := {37} tii[14,74] := {1, 111} tii[14,75] := {49, 50} tii[14,76] := {66, 67} tii[14,77] := {8, 108} tii[14,78] := {29, 104} tii[14,79] := {83, 84} tii[14,80] := {64, 100} tii[14,81] := {0, 121} tii[14,82] := {5, 120} tii[14,83] := {23, 117} tii[14,84] := {60, 115} cell#12 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[11,1] := {35} tii[11,2] := {21} tii[11,3] := {30, 31} tii[11,4] := {11} tii[11,5] := {19, 20} tii[11,6] := {28, 29} tii[11,7] := {4} tii[11,8] := {9, 10} tii[11,9] := {17, 18} tii[11,10] := {26, 27} tii[11,11] := {3} tii[11,12] := {7, 8} tii[11,13] := {15, 16} tii[11,14] := {24, 25} tii[11,15] := {33, 34} tii[11,16] := {0} tii[11,17] := {1, 2} tii[11,18] := {5, 6} tii[11,19] := {13, 14} tii[11,20] := {22, 23} tii[11,21] := {12, 32} cell#13 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {25} tii[6,2] := {32} tii[6,3] := {21} tii[6,4] := {16} tii[6,5] := {27} tii[6,6] := {31} tii[6,7] := {17} tii[6,8] := {13} tii[6,9] := {22} tii[6,10] := {9} tii[6,11] := {26} tii[6,12] := {30} tii[6,13] := {14} tii[6,14] := {10} tii[6,15] := {19} tii[6,16] := {7} tii[6,17] := {24} tii[6,18] := {4} tii[6,19] := {29} tii[6,20] := {34} tii[6,21] := {11} tii[6,22] := {8} tii[6,23] := {15} tii[6,24] := {5} tii[6,25] := {18} tii[6,26] := {3} tii[6,27] := {23} tii[6,28] := {1} tii[6,29] := {28} tii[6,30] := {33} tii[6,31] := {20} tii[6,32] := {12} tii[6,33] := {6} tii[6,34] := {2} tii[6,35] := {0} cell#14 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {11} tii[19,2] := {34} tii[19,3] := {47} tii[19,4] := {24} tii[19,5] := {17} tii[19,6] := {54} tii[19,7] := {37} tii[19,8] := {64} tii[19,9] := {40} tii[19,10] := {50} tii[19,11] := {69} tii[19,12] := {73} tii[19,13] := {41} tii[19,14] := {80} tii[19,15] := {84} tii[19,16] := {93} tii[19,17] := {94} tii[19,18] := {105} tii[19,19] := {43} tii[19,20] := {32} tii[19,21] := {70} tii[19,22] := {58} tii[19,23] := {82} tii[19,24] := {60} tii[19,25] := {66} tii[19,26] := {53} tii[19,27] := {87} tii[19,28] := {92} tii[19,29] := {61} tii[19,30] := {74} tii[19,31] := {96} tii[19,32] := {68} tii[19,33] := {97} tii[19,34] := {49} tii[19,35] := {106} tii[19,36] := {91} tii[19,37] := {107} tii[19,38] := {100} tii[19,39] := {114} tii[19,40] := {76} tii[19,41] := {85} tii[19,42] := {99} tii[19,43] := {103} tii[19,44] := {77} tii[19,45] := {109} tii[19,46] := {98} tii[19,47] := {110} tii[19,48] := {115} tii[19,49] := {112} tii[19,50] := {83} tii[19,51] := {116} tii[19,52] := {118} tii[19,53] := {78} tii[19,54] := {120} tii[19,55] := {117} tii[19,56] := {121} tii[19,57] := {122} tii[19,58] := {123} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {1} tii[19,62] := {4} tii[19,63] := {5} tii[19,64] := {8} tii[19,65] := {2} tii[19,66] := {10} tii[19,67] := {22} tii[19,68] := {16} tii[19,69] := {21} tii[19,70] := {12} tii[19,71] := {38} tii[19,72] := {46} tii[19,73] := {13} tii[19,74] := {31} tii[19,75] := {57} tii[19,76] := {7} tii[19,77] := {23} tii[19,78] := {51} tii[19,79] := {30} tii[19,80] := {9} tii[19,81] := {29} tii[19,82] := {36} tii[19,83] := {72} tii[19,84] := {59} tii[19,85] := {25} tii[19,86] := {88} tii[19,87] := {14} tii[19,88] := {63} tii[19,89] := {67} tii[19,90] := {55} tii[19,91] := {48} tii[19,92] := {90} tii[19,93] := {42} tii[19,94] := {101} tii[19,95] := {79} tii[19,96] := {104} tii[19,97] := {27} tii[19,98] := {39} tii[19,99] := {15} tii[19,100] := {52} tii[19,101] := {19} tii[19,102] := {56} tii[19,103] := {75} tii[19,104] := {44} tii[19,105] := {28} tii[19,106] := {81} tii[19,107] := {86} tii[19,108] := {35} tii[19,109] := {71} tii[19,110] := {102} tii[19,111] := {65} tii[19,112] := {33} tii[19,113] := {95} tii[19,114] := {111} tii[19,115] := {62} tii[19,116] := {45} tii[19,117] := {113} tii[19,118] := {89} tii[19,119] := {108} tii[19,120] := {119} tii[19,121] := {0} tii[19,122] := {3} tii[19,123] := {6} tii[19,124] := {20} tii[19,125] := {18} tii[19,126] := {26} cell#15 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {37} tii[9,2] := {58} tii[9,3] := {69} tii[9,4] := {52} tii[9,5] := {68} tii[9,6] := {76} tii[9,7] := {77} tii[9,8] := {87} tii[9,9] := {86} tii[9,10] := {83} tii[9,11] := {93} tii[9,12] := {92} tii[9,13] := {90} tii[9,14] := {97} tii[9,15] := {99} tii[9,16] := {103} tii[9,17] := {102} tii[9,18] := {104} tii[9,19] := {25} tii[9,20] := {4} tii[9,21] := {11} tii[9,22] := {29} tii[9,23] := {40} tii[9,24] := {20} tii[9,25] := {57} tii[9,26] := {51} tii[9,27] := {9} tii[9,28] := {70} tii[9,29] := {18} tii[9,30] := {16} tii[9,31] := {44} tii[9,32] := {43} tii[9,33] := {67} tii[9,34] := {30} tii[9,35] := {26} tii[9,36] := {54} tii[9,37] := {80} tii[9,38] := {79} tii[9,39] := {31} tii[9,40] := {55} tii[9,41] := {49} tii[9,42] := {50} tii[9,43] := {75} tii[9,44] := {46} tii[9,45] := {85} tii[9,46] := {84} tii[9,47] := {94} tii[9,48] := {71} tii[9,49] := {15} tii[9,50] := {27} tii[9,51] := {24} tii[9,52] := {59} tii[9,53] := {60} tii[9,54] := {39} tii[9,55] := {73} tii[9,56] := {47} tii[9,57] := {72} tii[9,58] := {48} tii[9,59] := {66} tii[9,60] := {65} tii[9,61] := {89} tii[9,62] := {36} tii[9,63] := {61} tii[9,64] := {62} tii[9,65] := {96} tii[9,66] := {53} tii[9,67] := {95} tii[9,68] := {101} tii[9,69] := {82} tii[9,70] := {81} tii[9,71] := {88} tii[9,72] := {100} tii[9,73] := {78} tii[9,74] := {98} tii[9,75] := {2} tii[9,76] := {5} tii[9,77] := {1} tii[9,78] := {8} tii[9,79] := {10} tii[9,80] := {28} tii[9,81] := {3} tii[9,82] := {41} tii[9,83] := {19} tii[9,84] := {17} tii[9,85] := {34} tii[9,86] := {14} tii[9,87] := {35} tii[9,88] := {13} tii[9,89] := {42} tii[9,90] := {23} tii[9,91] := {45} tii[9,92] := {6} tii[9,93] := {38} tii[9,94] := {22} tii[9,95] := {21} tii[9,96] := {64} tii[9,97] := {63} tii[9,98] := {91} tii[9,99] := {56} tii[9,100] := {12} tii[9,101] := {32} tii[9,102] := {33} tii[9,103] := {74} tii[9,104] := {0} tii[9,105] := {7} cell#16 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {11} tii[19,2] := {34} tii[19,3] := {47} tii[19,4] := {24} tii[19,5] := {17} tii[19,6] := {54} tii[19,7] := {37} tii[19,8] := {64} tii[19,9] := {40} tii[19,10] := {50} tii[19,11] := {69} tii[19,12] := {73} tii[19,13] := {41} tii[19,14] := {80} tii[19,15] := {84} tii[19,16] := {93} tii[19,17] := {94} tii[19,18] := {105} tii[19,19] := {43} tii[19,20] := {32} tii[19,21] := {70} tii[19,22] := {58} tii[19,23] := {82} tii[19,24] := {60} tii[19,25] := {66} tii[19,26] := {53} tii[19,27] := {87} tii[19,28] := {92} tii[19,29] := {61} tii[19,30] := {74} tii[19,31] := {96} tii[19,32] := {68} tii[19,33] := {97} tii[19,34] := {49} tii[19,35] := {106} tii[19,36] := {91} tii[19,37] := {107} tii[19,38] := {100} tii[19,39] := {114} tii[19,40] := {76} tii[19,41] := {85} tii[19,42] := {99} tii[19,43] := {103} tii[19,44] := {77} tii[19,45] := {109} tii[19,46] := {98} tii[19,47] := {110} tii[19,48] := {115} tii[19,49] := {112} tii[19,50] := {83} tii[19,51] := {116} tii[19,52] := {118} tii[19,53] := {78} tii[19,54] := {120} tii[19,55] := {117} tii[19,56] := {121} tii[19,57] := {122} tii[19,58] := {123} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {1} tii[19,62] := {4} tii[19,63] := {5} tii[19,64] := {8} tii[19,65] := {2} tii[19,66] := {10} tii[19,67] := {22} tii[19,68] := {16} tii[19,69] := {21} tii[19,70] := {12} tii[19,71] := {38} tii[19,72] := {46} tii[19,73] := {13} tii[19,74] := {31} tii[19,75] := {57} tii[19,76] := {7} tii[19,77] := {23} tii[19,78] := {51} tii[19,79] := {30} tii[19,80] := {9} tii[19,81] := {29} tii[19,82] := {36} tii[19,83] := {72} tii[19,84] := {59} tii[19,85] := {25} tii[19,86] := {88} tii[19,87] := {14} tii[19,88] := {63} tii[19,89] := {67} tii[19,90] := {55} tii[19,91] := {48} tii[19,92] := {90} tii[19,93] := {42} tii[19,94] := {101} tii[19,95] := {79} tii[19,96] := {104} tii[19,97] := {27} tii[19,98] := {39} tii[19,99] := {15} tii[19,100] := {52} tii[19,101] := {19} tii[19,102] := {56} tii[19,103] := {75} tii[19,104] := {44} tii[19,105] := {28} tii[19,106] := {81} tii[19,107] := {86} tii[19,108] := {35} tii[19,109] := {71} tii[19,110] := {102} tii[19,111] := {65} tii[19,112] := {33} tii[19,113] := {95} tii[19,114] := {111} tii[19,115] := {62} tii[19,116] := {45} tii[19,117] := {113} tii[19,118] := {89} tii[19,119] := {108} tii[19,120] := {119} tii[19,121] := {0} tii[19,122] := {3} tii[19,123] := {6} tii[19,124] := {20} tii[19,125] := {18} tii[19,126] := {26} cell#17 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {37} tii[9,2] := {58} tii[9,3] := {69} tii[9,4] := {52} tii[9,5] := {68} tii[9,6] := {76} tii[9,7] := {77} tii[9,8] := {87} tii[9,9] := {86} tii[9,10] := {83} tii[9,11] := {93} tii[9,12] := {92} tii[9,13] := {90} tii[9,14] := {97} tii[9,15] := {99} tii[9,16] := {103} tii[9,17] := {102} tii[9,18] := {104} tii[9,19] := {25} tii[9,20] := {4} tii[9,21] := {11} tii[9,22] := {29} tii[9,23] := {40} tii[9,24] := {20} tii[9,25] := {57} tii[9,26] := {51} tii[9,27] := {9} tii[9,28] := {70} tii[9,29] := {18} tii[9,30] := {16} tii[9,31] := {44} tii[9,32] := {43} tii[9,33] := {67} tii[9,34] := {30} tii[9,35] := {26} tii[9,36] := {54} tii[9,37] := {80} tii[9,38] := {79} tii[9,39] := {31} tii[9,40] := {55} tii[9,41] := {49} tii[9,42] := {50} tii[9,43] := {75} tii[9,44] := {46} tii[9,45] := {85} tii[9,46] := {84} tii[9,47] := {94} tii[9,48] := {71} tii[9,49] := {15} tii[9,50] := {27} tii[9,51] := {24} tii[9,52] := {59} tii[9,53] := {60} tii[9,54] := {39} tii[9,55] := {73} tii[9,56] := {47} tii[9,57] := {72} tii[9,58] := {48} tii[9,59] := {66} tii[9,60] := {65} tii[9,61] := {89} tii[9,62] := {36} tii[9,63] := {61} tii[9,64] := {62} tii[9,65] := {96} tii[9,66] := {53} tii[9,67] := {95} tii[9,68] := {101} tii[9,69] := {82} tii[9,70] := {81} tii[9,71] := {88} tii[9,72] := {100} tii[9,73] := {78} tii[9,74] := {98} tii[9,75] := {2} tii[9,76] := {5} tii[9,77] := {1} tii[9,78] := {8} tii[9,79] := {10} tii[9,80] := {28} tii[9,81] := {3} tii[9,82] := {41} tii[9,83] := {19} tii[9,84] := {17} tii[9,85] := {34} tii[9,86] := {14} tii[9,87] := {35} tii[9,88] := {13} tii[9,89] := {42} tii[9,90] := {23} tii[9,91] := {45} tii[9,92] := {6} tii[9,93] := {38} tii[9,94] := {22} tii[9,95] := {21} tii[9,96] := {64} tii[9,97] := {63} tii[9,98] := {91} tii[9,99] := {56} tii[9,100] := {12} tii[9,101] := {32} tii[9,102] := {33} tii[9,103] := {74} tii[9,104] := {0} tii[9,105] := {7} cell#18 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {20} tii[14,2] := {13, 55} tii[14,3] := {36, 66} tii[14,4] := {40} tii[14,5] := {49} tii[14,6] := {32, 75} tii[14,7] := {41, 84} tii[14,8] := {60, 90} tii[14,9] := {53, 92} tii[14,10] := {27, 110} tii[14,11] := {82, 111} tii[14,12] := {98, 129} tii[14,13] := {62} tii[14,14] := {69} tii[14,15] := {54, 95} tii[14,16] := {63, 105} tii[14,17] := {85, 113} tii[14,18] := {94} tii[14,19] := {73, 115} tii[14,20] := {47, 132} tii[14,21] := {67, 125} tii[14,22] := {104, 133} tii[14,23] := {64, 141} tii[14,24] := {119, 145} tii[14,25] := {93, 134} tii[14,26] := {68, 146} tii[14,27] := {124, 147} tii[14,28] := {43, 151} tii[14,29] := {140, 152} tii[14,30] := {148, 153} tii[14,31] := {37} tii[14,32] := {48} tii[14,33] := {31, 74} tii[14,34] := {38, 83} tii[14,35] := {59, 88} tii[14,36] := {71} tii[14,37] := {52, 91} tii[14,38] := {26, 108} tii[14,39] := {44, 102} tii[14,40] := {81, 109} tii[14,41] := {39, 118} tii[14,42] := {97, 127} tii[14,43] := {51} tii[14,44] := {70, 114} tii[14,45] := {25, 80} tii[14,46] := {45, 130} tii[14,47] := {101, 131} tii[14,48] := {23, 142} tii[14,49] := {19, 99} tii[14,50] := {117, 143} tii[14,51] := {7, 107} tii[14,52] := {135, 150} tii[14,53] := {50, 106} tii[14,54] := {24, 122} tii[14,55] := {79, 123} tii[14,56] := {10, 138} tii[14,57] := {96, 139} tii[14,58] := {4, 121} tii[14,59] := {116, 149} tii[14,60] := {136, 137} tii[14,61] := {8} tii[14,62] := {3, 18} tii[14,63] := {30} tii[14,64] := {5, 35} tii[14,65] := {21, 61} tii[14,66] := {9, 65} tii[14,67] := {72} tii[14,68] := {17, 57} tii[14,69] := {46, 103} tii[14,70] := {14, 89} tii[14,71] := {42, 120} tii[14,72] := {22, 128} tii[14,73] := {29} tii[14,74] := {34, 78} tii[14,75] := {11, 58} tii[14,76] := {6, 76} tii[14,77] := {33, 112} tii[14,78] := {28, 144} tii[14,79] := {2, 86} tii[14,80] := {0, 77} tii[14,81] := {16, 56} tii[14,82] := {15, 87} tii[14,83] := {12, 126} tii[14,84] := {1, 100} cell#19 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {20} tii[14,2] := {13, 55} tii[14,3] := {36, 66} tii[14,4] := {40} tii[14,5] := {49} tii[14,6] := {32, 75} tii[14,7] := {41, 84} tii[14,8] := {60, 90} tii[14,9] := {53, 92} tii[14,10] := {27, 110} tii[14,11] := {82, 111} tii[14,12] := {98, 129} tii[14,13] := {62} tii[14,14] := {69} tii[14,15] := {54, 95} tii[14,16] := {63, 105} tii[14,17] := {85, 113} tii[14,18] := {94} tii[14,19] := {73, 115} tii[14,20] := {47, 132} tii[14,21] := {67, 125} tii[14,22] := {104, 133} tii[14,23] := {64, 141} tii[14,24] := {119, 145} tii[14,25] := {93, 134} tii[14,26] := {68, 146} tii[14,27] := {124, 147} tii[14,28] := {43, 151} tii[14,29] := {140, 152} tii[14,30] := {148, 153} tii[14,31] := {37} tii[14,32] := {48} tii[14,33] := {31, 74} tii[14,34] := {38, 83} tii[14,35] := {59, 88} tii[14,36] := {71} tii[14,37] := {52, 91} tii[14,38] := {26, 108} tii[14,39] := {44, 102} tii[14,40] := {81, 109} tii[14,41] := {39, 118} tii[14,42] := {97, 127} tii[14,43] := {51} tii[14,44] := {70, 114} tii[14,45] := {25, 80} tii[14,46] := {45, 130} tii[14,47] := {101, 131} tii[14,48] := {23, 142} tii[14,49] := {19, 99} tii[14,50] := {117, 143} tii[14,51] := {7, 107} tii[14,52] := {135, 150} tii[14,53] := {50, 106} tii[14,54] := {24, 122} tii[14,55] := {79, 123} tii[14,56] := {10, 138} tii[14,57] := {96, 139} tii[14,58] := {4, 121} tii[14,59] := {116, 149} tii[14,60] := {136, 137} tii[14,61] := {8} tii[14,62] := {3, 18} tii[14,63] := {30} tii[14,64] := {5, 35} tii[14,65] := {21, 61} tii[14,66] := {9, 65} tii[14,67] := {72} tii[14,68] := {17, 57} tii[14,69] := {46, 103} tii[14,70] := {14, 89} tii[14,71] := {42, 120} tii[14,72] := {22, 128} tii[14,73] := {29} tii[14,74] := {34, 78} tii[14,75] := {11, 58} tii[14,76] := {6, 76} tii[14,77] := {33, 112} tii[14,78] := {28, 144} tii[14,79] := {2, 86} tii[14,80] := {0, 77} tii[14,81] := {16, 56} tii[14,82] := {15, 87} tii[14,83] := {12, 126} tii[14,84] := {1, 100} cell#20 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {17} tii[12,2] := {13} tii[12,3] := {31} tii[12,4] := {27} tii[12,5] := {40} tii[12,6] := {32, 61} tii[12,7] := {42} tii[12,8] := {22, 60} tii[12,9] := {47} tii[12,10] := {43} tii[12,11] := {55} tii[12,12] := {48, 79} tii[12,13] := {73} tii[12,14] := {58} tii[12,15] := {39, 78} tii[12,16] := {52, 88} tii[12,17] := {49, 94} tii[12,18] := {72} tii[12,19] := {54, 87} tii[12,20] := {36, 93} tii[12,21] := {63} tii[12,22] := {26} tii[12,23] := {70} tii[12,24] := {64, 89} tii[12,25] := {41} tii[12,26] := {82} tii[12,27] := {23, 59} tii[12,28] := {68, 96} tii[12,29] := {65, 100} tii[12,30] := {91} tii[12,31] := {56} tii[12,32] := {80, 101} tii[12,33] := {38, 76} tii[12,34] := {20, 83} tii[12,35] := {67, 103} tii[12,36] := {66, 104} tii[12,37] := {71} tii[12,38] := {53, 86} tii[12,39] := {35, 92} tii[12,40] := {30, 97} tii[12,41] := {0} tii[12,42] := {7} tii[12,43] := {1} tii[12,44] := {3} tii[12,45] := {2} tii[12,46] := {24} tii[12,47] := {6} tii[12,48] := {18, 44} tii[12,49] := {8, 29} tii[12,50] := {5} tii[12,51] := {57} tii[12,52] := {15} tii[12,53] := {37, 77} tii[12,54] := {11, 46} tii[12,55] := {33, 84} tii[12,56] := {19, 75} tii[12,57] := {10} tii[12,58] := {81} tii[12,59] := {69, 95} tii[12,60] := {28} tii[12,61] := {51, 99} tii[12,62] := {25, 62} tii[12,63] := {50, 102} tii[12,64] := {21, 85} tii[12,65] := {34, 98} tii[12,66] := {4} tii[12,67] := {14} tii[12,68] := {12, 45} tii[12,69] := {9, 74} tii[12,70] := {16, 90} cell#21 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {21} tii[7,2] := {35} tii[7,3] := {16, 51} tii[7,4] := {31, 64} tii[7,5] := {50} tii[7,6] := {59, 60} tii[7,7] := {52} tii[7,8] := {28, 69} tii[7,9] := {45, 83} tii[7,10] := {42, 87} tii[7,11] := {67} tii[7,12] := {25, 98} tii[7,13] := {76, 77} tii[7,14] := {61, 99} tii[7,15] := {73, 113} tii[7,16] := {86} tii[7,17] := {96, 97} tii[7,18] := {109, 110} tii[7,19] := {70} tii[7,20] := {43, 89} tii[7,21] := {62, 104} tii[7,22] := {88} tii[7,23] := {57, 107} tii[7,24] := {41, 120} tii[7,25] := {100, 101} tii[7,26] := {81, 121} tii[7,27] := {91, 132} tii[7,28] := {72, 123} tii[7,29] := {105} tii[7,30] := {55, 135} tii[7,31] := {102, 136} tii[7,32] := {116, 117} tii[7,33] := {39, 142} tii[7,34] := {127, 128} tii[7,35] := {111, 143} tii[7,36] := {124, 146} tii[7,37] := {122} tii[7,38] := {133, 134} tii[7,39] := {140, 141} tii[7,40] := {144, 145} tii[7,41] := {2} tii[7,42] := {6} tii[7,43] := {5} tii[7,44] := {8, 36} tii[7,45] := {12} tii[7,46] := {19, 49} tii[7,47] := {4, 22} tii[7,48] := {32, 33} tii[7,49] := {11} tii[7,50] := {27, 68} tii[7,51] := {10, 37} tii[7,52] := {23} tii[7,53] := {14, 78} tii[7,54] := {44, 79} tii[7,55] := {46, 47} tii[7,56] := {58, 95} tii[7,57] := {9, 63} tii[7,58] := {74, 75} tii[7,59] := {20} tii[7,60] := {56, 106} tii[7,61] := {18, 53} tii[7,62] := {38} tii[7,63] := {40, 118} tii[7,64] := {80, 119} tii[7,65] := {17, 82} tii[7,66] := {24, 129} tii[7,67] := {90, 130} tii[7,68] := {65, 66} tii[7,69] := {108, 139} tii[7,70] := {92, 93} tii[7,71] := {15, 112} tii[7,72] := {125, 126} tii[7,73] := {34} tii[7,74] := {30, 71} tii[7,75] := {54} tii[7,76] := {29, 103} tii[7,77] := {84, 85} tii[7,78] := {26, 131} tii[7,79] := {114, 115} tii[7,80] := {137, 138} tii[7,81] := {0} tii[7,82] := {1, 13} tii[7,83] := {3, 48} tii[7,84] := {7, 94} cell#22 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {21} tii[7,2] := {35} tii[7,3] := {16, 51} tii[7,4] := {31, 64} tii[7,5] := {50} tii[7,6] := {59, 60} tii[7,7] := {52} tii[7,8] := {28, 69} tii[7,9] := {45, 83} tii[7,10] := {42, 87} tii[7,11] := {67} tii[7,12] := {25, 98} tii[7,13] := {76, 77} tii[7,14] := {61, 99} tii[7,15] := {73, 113} tii[7,16] := {86} tii[7,17] := {96, 97} tii[7,18] := {109, 110} tii[7,19] := {70} tii[7,20] := {43, 89} tii[7,21] := {62, 104} tii[7,22] := {88} tii[7,23] := {57, 107} tii[7,24] := {41, 120} tii[7,25] := {100, 101} tii[7,26] := {81, 121} tii[7,27] := {91, 132} tii[7,28] := {72, 123} tii[7,29] := {105} tii[7,30] := {55, 135} tii[7,31] := {102, 136} tii[7,32] := {116, 117} tii[7,33] := {39, 142} tii[7,34] := {127, 128} tii[7,35] := {111, 143} tii[7,36] := {124, 146} tii[7,37] := {122} tii[7,38] := {133, 134} tii[7,39] := {140, 141} tii[7,40] := {144, 145} tii[7,41] := {2} tii[7,42] := {6} tii[7,43] := {5} tii[7,44] := {8, 36} tii[7,45] := {12} tii[7,46] := {19, 49} tii[7,47] := {4, 22} tii[7,48] := {32, 33} tii[7,49] := {11} tii[7,50] := {27, 68} tii[7,51] := {10, 37} tii[7,52] := {23} tii[7,53] := {14, 78} tii[7,54] := {44, 79} tii[7,55] := {46, 47} tii[7,56] := {58, 95} tii[7,57] := {9, 63} tii[7,58] := {74, 75} tii[7,59] := {20} tii[7,60] := {56, 106} tii[7,61] := {18, 53} tii[7,62] := {38} tii[7,63] := {40, 118} tii[7,64] := {80, 119} tii[7,65] := {17, 82} tii[7,66] := {24, 129} tii[7,67] := {90, 130} tii[7,68] := {65, 66} tii[7,69] := {108, 139} tii[7,70] := {92, 93} tii[7,71] := {15, 112} tii[7,72] := {125, 126} tii[7,73] := {34} tii[7,74] := {30, 71} tii[7,75] := {54} tii[7,76] := {29, 103} tii[7,77] := {84, 85} tii[7,78] := {26, 131} tii[7,79] := {114, 115} tii[7,80] := {137, 138} tii[7,81] := {0} tii[7,82] := {1, 13} tii[7,83] := {3, 48} tii[7,84] := {7, 94} cell#23 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {12} tii[14,2] := {5, 40} tii[14,3] := {25, 50} tii[14,4] := {27} tii[14,5] := {36} tii[14,6] := {21, 59} tii[14,7] := {28, 63} tii[14,8] := {43, 70} tii[14,9] := {38, 74} tii[14,10] := {17, 87} tii[14,11] := {62, 88} tii[14,12] := {81, 104} tii[14,13] := {45} tii[14,14] := {55} tii[14,15] := {39, 79} tii[14,16] := {46, 86} tii[14,17] := {64, 90} tii[14,18] := {78} tii[14,19] := {58, 92} tii[14,20] := {35, 105} tii[14,21] := {52, 101} tii[14,22] := {85, 106} tii[14,23] := {47, 115} tii[14,24] := {97, 119} tii[14,25] := {77, 109} tii[14,26] := {54, 120} tii[14,27] := {100, 121} tii[14,28] := {32, 131} tii[14,29] := {114, 132} tii[14,30] := {125, 141} tii[14,31] := {65} tii[14,32] := {75} tii[14,33] := {20, 95} tii[14,34] := {66, 102} tii[14,35] := {42, 108} tii[14,36] := {94} tii[14,37] := {37, 110} tii[14,38] := {16, 122} tii[14,39] := {72, 117} tii[14,40] := {61, 123} tii[14,41] := {67, 128} tii[14,42] := {80, 134} tii[14,43] := {112} tii[14,44] := {56, 124} tii[14,45] := {91, 129} tii[14,46] := {33, 135} tii[14,47] := {83, 136} tii[14,48] := {15, 142} tii[14,49] := {71, 139} tii[14,50] := {96, 143} tii[14,51] := {68, 146} tii[14,52] := {111, 148} tii[14,53] := {76, 137} tii[14,54] := {53, 144} tii[14,55] := {99, 145} tii[14,56] := {31, 149} tii[14,57] := {113, 150} tii[14,58] := {26, 151} tii[14,59] := {126, 152} tii[14,60] := {130, 153} tii[14,61] := {2} tii[14,62] := {0, 10} tii[14,63] := {19} tii[14,64] := {1, 24} tii[14,65] := {13, 44} tii[14,66] := {3, 49} tii[14,67] := {57} tii[14,68] := {9, 41} tii[14,69] := {34, 84} tii[14,70] := {6, 69} tii[14,71] := {29, 98} tii[14,72] := {14, 103} tii[14,73] := {93} tii[14,74] := {23, 60} tii[14,75] := {73, 116} tii[14,76] := {51, 127} tii[14,77] := {22, 89} tii[14,78] := {18, 118} tii[14,79] := {48, 138} tii[14,80] := {30, 140} tii[14,81] := {8, 82} tii[14,82] := {7, 107} tii[14,83] := {4, 133} tii[14,84] := {11, 147} cell#24 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {14} tii[7,2] := {28} tii[7,3] := {39, 40} tii[7,4] := {58, 59} tii[7,5] := {49} tii[7,6] := {70, 71} tii[7,7] := {50} tii[7,8] := {64, 65} tii[7,9] := {85, 86} tii[7,10] := {89, 90} tii[7,11] := {75} tii[7,12] := {108, 111} tii[7,13] := {98, 99} tii[7,14] := {109, 110} tii[7,15] := {124, 125} tii[7,16] := {100} tii[7,17] := {120, 121} tii[7,18] := {133, 134} tii[7,19] := {27} tii[7,20] := {38, 91} tii[7,21] := {56, 112} tii[7,22] := {48} tii[7,23] := {61, 115} tii[7,24] := {78, 130} tii[7,25] := {68, 69} tii[7,26] := {79, 129} tii[7,27] := {101, 138} tii[7,28] := {37, 131} tii[7,29] := {74} tii[7,30] := {53, 141} tii[7,31] := {54, 140} tii[7,32] := {96, 97} tii[7,33] := {32, 145} tii[7,34] := {116, 117} tii[7,35] := {76, 144} tii[7,36] := {66, 146} tii[7,37] := {88} tii[7,38] := {106, 107} tii[7,39] := {122, 123} tii[7,40] := {102, 135} tii[7,41] := {1} tii[7,42] := {3} tii[7,43] := {2} tii[7,44] := {20, 21} tii[7,45] := {9} tii[7,46] := {34, 35} tii[7,47] := {11, 12} tii[7,48] := {25, 26} tii[7,49] := {8} tii[7,50] := {62, 63} tii[7,51] := {23, 24} tii[7,52] := {16} tii[7,53] := {80, 83} tii[7,54] := {81, 82} tii[7,55] := {46, 47} tii[7,56] := {103, 104} tii[7,57] := {57, 60} tii[7,58] := {94, 95} tii[7,59] := {13} tii[7,60] := {19, 114} tii[7,61] := {42, 43} tii[7,62] := {29} tii[7,63] := {30, 128} tii[7,64] := {31, 127} tii[7,65] := {84, 87} tii[7,66] := {17, 137} tii[7,67] := {51, 136} tii[7,68] := {72, 73} tii[7,69] := {41, 143} tii[7,70] := {118, 119} tii[7,71] := {10, 126} tii[7,72] := {52, 142} tii[7,73] := {7} tii[7,74] := {22, 67} tii[7,75] := {15} tii[7,76] := {55, 113} tii[7,77] := {44, 45} tii[7,78] := {18, 139} tii[7,79] := {92, 93} tii[7,80] := {77, 132} tii[7,81] := {0} tii[7,82] := {5, 6} tii[7,83] := {33, 36} tii[7,84] := {4, 105} cell#25 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {12} tii[14,2] := {5, 40} tii[14,3] := {25, 50} tii[14,4] := {27} tii[14,5] := {36} tii[14,6] := {21, 59} tii[14,7] := {28, 63} tii[14,8] := {43, 70} tii[14,9] := {38, 74} tii[14,10] := {17, 87} tii[14,11] := {62, 88} tii[14,12] := {81, 104} tii[14,13] := {45} tii[14,14] := {55} tii[14,15] := {39, 79} tii[14,16] := {46, 86} tii[14,17] := {64, 90} tii[14,18] := {78} tii[14,19] := {58, 92} tii[14,20] := {35, 105} tii[14,21] := {52, 101} tii[14,22] := {85, 106} tii[14,23] := {47, 115} tii[14,24] := {97, 119} tii[14,25] := {77, 109} tii[14,26] := {54, 120} tii[14,27] := {100, 121} tii[14,28] := {32, 131} tii[14,29] := {114, 132} tii[14,30] := {125, 141} tii[14,31] := {65} tii[14,32] := {75} tii[14,33] := {20, 95} tii[14,34] := {66, 102} tii[14,35] := {42, 108} tii[14,36] := {94} tii[14,37] := {37, 110} tii[14,38] := {16, 122} tii[14,39] := {72, 117} tii[14,40] := {61, 123} tii[14,41] := {67, 128} tii[14,42] := {80, 134} tii[14,43] := {112} tii[14,44] := {56, 124} tii[14,45] := {91, 129} tii[14,46] := {33, 135} tii[14,47] := {83, 136} tii[14,48] := {15, 142} tii[14,49] := {71, 139} tii[14,50] := {96, 143} tii[14,51] := {68, 146} tii[14,52] := {111, 148} tii[14,53] := {76, 137} tii[14,54] := {53, 144} tii[14,55] := {99, 145} tii[14,56] := {31, 149} tii[14,57] := {113, 150} tii[14,58] := {26, 151} tii[14,59] := {126, 152} tii[14,60] := {130, 153} tii[14,61] := {2} tii[14,62] := {0, 10} tii[14,63] := {19} tii[14,64] := {1, 24} tii[14,65] := {13, 44} tii[14,66] := {3, 49} tii[14,67] := {57} tii[14,68] := {9, 41} tii[14,69] := {34, 84} tii[14,70] := {6, 69} tii[14,71] := {29, 98} tii[14,72] := {14, 103} tii[14,73] := {93} tii[14,74] := {23, 60} tii[14,75] := {73, 116} tii[14,76] := {51, 127} tii[14,77] := {22, 89} tii[14,78] := {18, 118} tii[14,79] := {48, 138} tii[14,80] := {30, 140} tii[14,81] := {8, 82} tii[14,82] := {7, 107} tii[14,83] := {4, 133} tii[14,84] := {11, 147} cell#26 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X^2+21*X TII subcells: tii[7,1] := {14} tii[7,2] := {28} tii[7,3] := {39, 40} tii[7,4] := {58, 59} tii[7,5] := {49} tii[7,6] := {70, 71} tii[7,7] := {50} tii[7,8] := {64, 65} tii[7,9] := {85, 86} tii[7,10] := {89, 90} tii[7,11] := {75} tii[7,12] := {108, 111} tii[7,13] := {98, 99} tii[7,14] := {109, 110} tii[7,15] := {124, 125} tii[7,16] := {100} tii[7,17] := {120, 121} tii[7,18] := {133, 134} tii[7,19] := {27} tii[7,20] := {38, 91} tii[7,21] := {56, 112} tii[7,22] := {48} tii[7,23] := {61, 115} tii[7,24] := {78, 130} tii[7,25] := {68, 69} tii[7,26] := {79, 129} tii[7,27] := {101, 138} tii[7,28] := {37, 131} tii[7,29] := {74} tii[7,30] := {53, 141} tii[7,31] := {54, 140} tii[7,32] := {96, 97} tii[7,33] := {32, 145} tii[7,34] := {116, 117} tii[7,35] := {76, 144} tii[7,36] := {66, 146} tii[7,37] := {88} tii[7,38] := {106, 107} tii[7,39] := {122, 123} tii[7,40] := {102, 135} tii[7,41] := {1} tii[7,42] := {3} tii[7,43] := {2} tii[7,44] := {20, 21} tii[7,45] := {9} tii[7,46] := {34, 35} tii[7,47] := {11, 12} tii[7,48] := {25, 26} tii[7,49] := {8} tii[7,50] := {62, 63} tii[7,51] := {23, 24} tii[7,52] := {16} tii[7,53] := {80, 83} tii[7,54] := {81, 82} tii[7,55] := {46, 47} tii[7,56] := {103, 104} tii[7,57] := {57, 60} tii[7,58] := {94, 95} tii[7,59] := {13} tii[7,60] := {19, 114} tii[7,61] := {42, 43} tii[7,62] := {29} tii[7,63] := {30, 128} tii[7,64] := {31, 127} tii[7,65] := {84, 87} tii[7,66] := {17, 137} tii[7,67] := {51, 136} tii[7,68] := {72, 73} tii[7,69] := {41, 143} tii[7,70] := {118, 119} tii[7,71] := {10, 126} tii[7,72] := {52, 142} tii[7,73] := {7} tii[7,74] := {22, 67} tii[7,75] := {15} tii[7,76] := {55, 113} tii[7,77] := {44, 45} tii[7,78] := {18, 139} tii[7,79] := {92, 93} tii[7,80] := {77, 132} tii[7,81] := {0} tii[7,82] := {5, 6} tii[7,83] := {33, 36} tii[7,84] := {4, 105} cell#27 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[11,1] := {8} tii[11,2] := {15} tii[11,3] := {9, 21} tii[11,4] := {19} tii[11,5] := {13, 25} tii[11,6] := {10, 29} tii[11,7] := {22} tii[11,8] := {17, 30} tii[11,9] := {12, 33} tii[11,10] := {11, 35} tii[11,11] := {18} tii[11,12] := {14, 24} tii[11,13] := {6, 28} tii[11,14] := {5, 32} tii[11,15] := {3, 34} tii[11,16] := {16} tii[11,17] := {7, 20} tii[11,18] := {4, 23} tii[11,19] := {2, 26} tii[11,20] := {1, 31} tii[11,21] := {0, 27} cell#28 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X^2+6*X TII subcells: tii[11,1] := {8} tii[11,2] := {15} tii[11,3] := {9, 21} tii[11,4] := {19} tii[11,5] := {13, 25} tii[11,6] := {10, 29} tii[11,7] := {22} tii[11,8] := {17, 30} tii[11,9] := {12, 33} tii[11,10] := {11, 35} tii[11,11] := {18} tii[11,12] := {14, 24} tii[11,13] := {6, 28} tii[11,14] := {5, 32} tii[11,15] := {3, 34} tii[11,16] := {16} tii[11,17] := {7, 20} tii[11,18] := {4, 23} tii[11,19] := {2, 26} tii[11,20] := {1, 31} tii[11,21] := {0, 27} cell#29 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {11} tii[6,2] := {16} tii[6,3] := {15} tii[6,4] := {10} tii[6,5] := {20} tii[6,6] := {22} tii[6,7] := {19} tii[6,8] := {14} tii[6,9] := {24} tii[6,10] := {9} tii[6,11] := {26} tii[6,12] := {29} tii[6,13] := {21} tii[6,14] := {17} tii[6,15] := {27} tii[6,16] := {12} tii[6,17] := {30} tii[6,18] := {7} tii[6,19] := {32} tii[6,20] := {33} tii[6,21] := {18} tii[6,22] := {13} tii[6,23] := {23} tii[6,24] := {8} tii[6,25] := {25} tii[6,26] := {2} tii[6,27] := {28} tii[6,28] := {1} tii[6,29] := {31} tii[6,30] := {34} tii[6,31] := {6} tii[6,32] := {5} tii[6,33] := {4} tii[6,34] := {3} tii[6,35] := {0} cell#30 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {11} tii[6,2] := {16} tii[6,3] := {15} tii[6,4] := {10} tii[6,5] := {20} tii[6,6] := {22} tii[6,7] := {19} tii[6,8] := {14} tii[6,9] := {24} tii[6,10] := {9} tii[6,11] := {26} tii[6,12] := {29} tii[6,13] := {21} tii[6,14] := {17} tii[6,15] := {27} tii[6,16] := {12} tii[6,17] := {30} tii[6,18] := {7} tii[6,19] := {32} tii[6,20] := {33} tii[6,21] := {18} tii[6,22] := {13} tii[6,23] := {23} tii[6,24] := {8} tii[6,25] := {25} tii[6,26] := {2} tii[6,27] := {28} tii[6,28] := {1} tii[6,29] := {31} tii[6,30] := {34} tii[6,31] := {6} tii[6,32] := {5} tii[6,33] := {4} tii[6,34] := {3} tii[6,35] := {0} cell#31 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {10} tii[6,7] := {7} tii[6,8] := {11} tii[6,9] := {12} tii[6,10] := {17} tii[6,11] := {18} tii[6,12] := {25} tii[6,13] := {13} tii[6,14] := {19} tii[6,15] := {20} tii[6,16] := {26} tii[6,17] := {27} tii[6,18] := {31} tii[6,19] := {32} tii[6,20] := {34} tii[6,21] := {8} tii[6,22] := {15} tii[6,23] := {16} tii[6,24] := {22} tii[6,25] := {23} tii[6,26] := {29} tii[6,27] := {30} tii[6,28] := {21} tii[6,29] := {33} tii[6,30] := {28} tii[6,31] := {0} tii[6,32] := {2} tii[6,33] := {9} tii[6,34] := {24} tii[6,35] := {14} cell#32 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {10} tii[6,7] := {7} tii[6,8] := {11} tii[6,9] := {12} tii[6,10] := {17} tii[6,11] := {18} tii[6,12] := {25} tii[6,13] := {13} tii[6,14] := {19} tii[6,15] := {20} tii[6,16] := {26} tii[6,17] := {27} tii[6,18] := {31} tii[6,19] := {32} tii[6,20] := {34} tii[6,21] := {8} tii[6,22] := {15} tii[6,23] := {16} tii[6,24] := {22} tii[6,25] := {23} tii[6,26] := {29} tii[6,27] := {30} tii[6,28] := {21} tii[6,29] := {33} tii[6,30] := {28} tii[6,31] := {0} tii[6,32] := {2} tii[6,33] := {9} tii[6,34] := {24} tii[6,35] := {14} cell#33 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[3,1] := {9} tii[3,2] := {14} tii[3,3] := {8, 19} tii[3,4] := {18} tii[3,5] := {13, 23} tii[3,6] := {7, 25} tii[3,7] := {21} tii[3,8] := {17, 26} tii[3,9] := {12, 28} tii[3,10] := {6, 30} tii[3,11] := {24} tii[3,12] := {20, 29} tii[3,13] := {16, 31} tii[3,14] := {11, 33} tii[3,15] := {10, 34} tii[3,16] := {0} tii[3,17] := {4} tii[3,18] := {3, 15} tii[3,19] := {2, 22} tii[3,20] := {1, 27} tii[3,21] := {5, 32} cell#34 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 10} tii[2,6] := {1, 12} tii[2,7] := {0, 11} cell#35 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 10} tii[2,6] := {1, 12} tii[2,7] := {0, 11} cell#36 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {8} tii[6,2] := {14} tii[6,3] := {13} tii[6,4] := {7} tii[6,5] := {18} tii[6,6] := {21} tii[6,7] := {17} tii[6,8] := {12} tii[6,9] := {22} tii[6,10] := {6} tii[6,11] := {24} tii[6,12] := {26} tii[6,13] := {20} tii[6,14] := {16} tii[6,15] := {25} tii[6,16] := {11} tii[6,17] := {27} tii[6,18] := {5} tii[6,19] := {29} tii[6,20] := {31} tii[6,21] := {23} tii[6,22] := {19} tii[6,23] := {28} tii[6,24] := {15} tii[6,25] := {30} tii[6,26] := {10} tii[6,27] := {32} tii[6,28] := {9} tii[6,29] := {33} tii[6,30] := {34} tii[6,31] := {3} tii[6,32] := {2} tii[6,33] := {1} tii[6,34] := {0} tii[6,35] := {4} cell#37 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {8} tii[6,2] := {14} tii[6,3] := {13} tii[6,4] := {7} tii[6,5] := {18} tii[6,6] := {21} tii[6,7] := {17} tii[6,8] := {12} tii[6,9] := {22} tii[6,10] := {6} tii[6,11] := {24} tii[6,12] := {26} tii[6,13] := {20} tii[6,14] := {16} tii[6,15] := {25} tii[6,16] := {11} tii[6,17] := {27} tii[6,18] := {5} tii[6,19] := {29} tii[6,20] := {31} tii[6,21] := {23} tii[6,22] := {19} tii[6,23] := {28} tii[6,24] := {15} tii[6,25] := {30} tii[6,26] := {10} tii[6,27] := {32} tii[6,28] := {9} tii[6,29] := {33} tii[6,30] := {34} tii[6,31] := {3} tii[6,32] := {2} tii[6,33] := {1} tii[6,34] := {0} tii[6,35] := {4} cell#38 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {4} tii[6,2] := {10} tii[6,3] := {12} tii[6,4] := {18} tii[6,5] := {19} tii[6,6] := {27} tii[6,7] := {20} tii[6,8] := {28} tii[6,9] := {29} tii[6,10] := {32} tii[6,11] := {33} tii[6,12] := {34} tii[6,13] := {11} tii[6,14] := {16} tii[6,15] := {17} tii[6,16] := {24} tii[6,17] := {25} tii[6,18] := {15} tii[6,19] := {31} tii[6,20] := {30} tii[6,21] := {3} tii[6,22] := {7} tii[6,23] := {8} tii[6,24] := {13} tii[6,25] := {14} tii[6,26] := {5} tii[6,27] := {22} tii[6,28] := {2} tii[6,29] := {21} tii[6,30] := {23} tii[6,31] := {1} tii[6,32] := {9} tii[6,33] := {26} tii[6,34] := {6} tii[6,35] := {0} cell#39 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {11, 12} tii[3,6] := {15, 16} tii[3,7] := {13} tii[3,8] := {17, 18} tii[3,9] := {24, 25} tii[3,10] := {29, 30} tii[3,11] := {14} tii[3,12] := {20, 21} tii[3,13] := {27, 28} tii[3,14] := {31, 32} tii[3,15] := {26, 34} tii[3,16] := {0} tii[3,17] := {1} tii[3,18] := {3, 4} tii[3,19] := {9, 10} tii[3,20] := {22, 23} tii[3,21] := {19, 33} cell#40 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {4} tii[6,2] := {10} tii[6,3] := {12} tii[6,4] := {18} tii[6,5] := {19} tii[6,6] := {27} tii[6,7] := {20} tii[6,8] := {28} tii[6,9] := {29} tii[6,10] := {32} tii[6,11] := {33} tii[6,12] := {34} tii[6,13] := {11} tii[6,14] := {16} tii[6,15] := {17} tii[6,16] := {24} tii[6,17] := {25} tii[6,18] := {15} tii[6,19] := {31} tii[6,20] := {30} tii[6,21] := {3} tii[6,22] := {7} tii[6,23] := {8} tii[6,24] := {13} tii[6,25] := {14} tii[6,26] := {5} tii[6,27] := {22} tii[6,28] := {2} tii[6,29] := {21} tii[6,30] := {23} tii[6,31] := {1} tii[6,32] := {9} tii[6,33] := {26} tii[6,34] := {6} tii[6,35] := {0} cell#41 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X^2+7*X TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {11, 12} tii[3,6] := {15, 16} tii[3,7] := {13} tii[3,8] := {17, 18} tii[3,9] := {24, 25} tii[3,10] := {29, 30} tii[3,11] := {14} tii[3,12] := {20, 21} tii[3,13] := {27, 28} tii[3,14] := {31, 32} tii[3,15] := {26, 34} tii[3,16] := {0} tii[3,17] := {1} tii[3,18] := {3, 4} tii[3,19] := {9, 10} tii[3,20] := {22, 23} tii[3,21] := {19, 33} cell#42 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {1} tii[2,2] := {3, 4} tii[2,3] := {6, 7} tii[2,4] := {8, 9} tii[2,5] := {5, 11} tii[2,6] := {2, 10} tii[2,7] := {0, 12} cell#43 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X^2+X TII subcells: tii[2,1] := {1} tii[2,2] := {3, 4} tii[2,3] := {6, 7} tii[2,4] := {8, 9} tii[2,5] := {5, 11} tii[2,6] := {2, 10} tii[2,7] := {0, 12} cell#44 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#45 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}