TII subcells for the Spin(10,5) x PSp(14,R) block of Spin15 # cell#0 , |C| = 36 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5, 1, 1],[]]+phi[[5],[1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[36,1] := {0, 2} tii[36,2] := {16, 17} tii[36,3] := {1, 5} tii[36,4] := {20, 22} tii[36,5] := {4, 8} tii[36,6] := {24} tii[36,7] := {31, 32} tii[36,8] := {12, 14} tii[36,9] := {27, 28} tii[36,10] := {13, 15} tii[36,11] := {29} tii[36,12] := {3, 7} tii[36,13] := {21, 23} tii[36,14] := {6, 10} tii[36,15] := {25} tii[36,16] := {33, 34} tii[36,17] := {18, 19} tii[36,18] := {30} tii[36,19] := {9, 11} tii[36,20] := {26} tii[36,21] := {35} cell#1 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {66} tii[33,2] := {53} tii[33,3] := {25} tii[33,4] := {13, 60} tii[33,5] := {42, 73} tii[33,6] := {85} tii[33,7] := {79} tii[33,8] := {94} tii[33,9] := {33} tii[33,10] := {86} tii[33,11] := {97} tii[33,12] := {29, 70} tii[33,13] := {87, 103} tii[33,14] := {51, 89} tii[33,15] := {95} tii[33,16] := {26} tii[33,17] := {76} tii[33,18] := {90} tii[33,19] := {14, 61} tii[33,20] := {77, 102} tii[33,21] := {43, 75} tii[33,22] := {46} tii[33,23] := {58} tii[33,24] := {38, 81} tii[33,25] := {48, 84} tii[33,26] := {63, 93} tii[33,27] := {59, 96} tii[33,28] := {32, 100} tii[33,29] := {82, 101} tii[33,30] := {98, 104} tii[33,31] := {44} tii[33,32] := {24} tii[33,33] := {7} tii[33,34] := {0, 21} tii[33,35] := {78} tii[33,36] := {67} tii[33,37] := {35} tii[33,38] := {80} tii[33,39] := {17} tii[33,40] := {68, 99} tii[33,41] := {4, 31} tii[33,42] := {45} tii[33,43] := {57} tii[33,44] := {8} tii[33,45] := {47, 83} tii[33,46] := {1, 22} tii[33,47] := {36} tii[33,48] := {5, 40} tii[33,49] := {27, 64} tii[33,50] := {10, 72} tii[33,51] := {56} tii[33,52] := {39} tii[33,53] := {19, 52} tii[33,54] := {54} tii[33,55] := {15} tii[33,56] := {69} tii[33,57] := {55, 91} tii[33,58] := {3, 30} tii[33,59] := {49} tii[33,60] := {12, 50} tii[33,61] := {34, 71} tii[33,62] := {16, 88} tii[33,63] := {9} tii[33,64] := {2, 23} tii[33,65] := {37} tii[33,66] := {6, 41} tii[33,67] := {28, 65} tii[33,68] := {11, 74} tii[33,69] := {20, 62} tii[33,70] := {18, 92} cell#2 , |C| = 126 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3, 3, 1],[]]+phi[[3],[3, 1]] TII depth = 4 TII multiplicity polynomial = 84*X+21*X^2 TII subcells: tii[28,1] := {33, 34} tii[28,2] := {80} tii[28,3] := {104} tii[28,4] := {114} tii[28,5] := {55, 56} tii[28,6] := {64, 65} tii[28,7] := {93} tii[28,8] := {89} tii[28,9] := {110} tii[28,10] := {101} tii[28,11] := {118} tii[28,12] := {74, 75} tii[28,13] := {102} tii[28,14] := {57, 58} tii[28,15] := {31, 32} tii[28,16] := {84} tii[28,17] := {115} tii[28,18] := {51} tii[28,19] := {99} tii[28,20] := {121} tii[28,21] := {109} tii[28,22] := {103} tii[28,23] := {120} tii[28,24] := {113} tii[28,25] := {92} tii[28,26] := {123} tii[28,27] := {122} tii[28,28] := {119} tii[28,29] := {124} tii[28,30] := {125} tii[28,31] := {10, 11} tii[28,32] := {39} tii[28,33] := {63} tii[28,34] := {16, 17} tii[28,35] := {47, 48} tii[28,36] := {6, 7} tii[28,37] := {49} tii[28,38] := {77} tii[28,39] := {19} tii[28,40] := {73} tii[28,41] := {91} tii[28,42] := {26, 27} tii[28,43] := {67} tii[28,44] := {8, 9} tii[28,45] := {60} tii[28,46] := {20} tii[28,47] := {86} tii[28,48] := {52} tii[28,49] := {79} tii[28,50] := {76} tii[28,51] := {96} tii[28,52] := {59} tii[28,53] := {90} tii[28,54] := {100} tii[28,55] := {35, 36} tii[28,56] := {22, 23} tii[28,57] := {69} tii[28,58] := {42} tii[28,59] := {88} tii[28,60] := {37, 38} tii[28,61] := {14, 15} tii[28,62] := {45, 46} tii[28,63] := {83} tii[28,64] := {68} tii[28,65] := {29} tii[28,66] := {61} tii[28,67] := {98} tii[28,68] := {71} tii[28,69] := {87} tii[28,70] := {4, 5} tii[28,71] := {82} tii[28,72] := {78} tii[28,73] := {106} tii[28,74] := {66} tii[28,75] := {18} tii[28,76] := {97} tii[28,77] := {40} tii[28,78] := {105} tii[28,79] := {95} tii[28,80] := {108} tii[28,81] := {85} tii[28,82] := {94} tii[28,83] := {72} tii[28,84] := {112} tii[28,85] := {107} tii[28,86] := {81} tii[28,87] := {111} tii[28,88] := {70} tii[28,89] := {117} tii[28,90] := {116} tii[28,91] := {0, 1} tii[28,92] := {12} tii[28,93] := {21} tii[28,94] := {24, 25} tii[28,95] := {43} tii[28,96] := {2, 3} tii[28,97] := {30} tii[28,98] := {62} tii[28,99] := {13} tii[28,100] := {28} tii[28,101] := {44} tii[28,102] := {41} tii[28,103] := {53} tii[28,104] := {54} tii[28,105] := {50} cell#3 , |C| = 455 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1, 1],[2]]+phi[[3, 1],[2, 1]]+phi[[1, 1, 1],[4]]+phi[[1, 1],[4, 1]] TII depth = 3 TII multiplicity polynomial = 140*X^2+35*X^4+35*X TII subcells: tii[26,1] := {341, 343} tii[26,2] := {263, 264} tii[26,3] := {125, 128, 405, 406} tii[26,4] := {398} tii[26,5] := {383, 385} tii[26,6] := {393} tii[26,7] := {371, 372} tii[26,8] := {316, 317} tii[26,9] := {298, 300} tii[26,10] := {153, 154, 429, 430} tii[26,11] := {328, 435} tii[26,12] := {361, 446} tii[26,13] := {412, 414} tii[26,14] := {392} tii[26,15] := {368, 369} tii[26,16] := {425, 426} tii[26,17] := {276, 277} tii[26,18] := {127, 129, 441, 442} tii[26,19] := {413, 415} tii[26,20] := {305, 434} tii[26,21] := {431} tii[26,22] := {350, 445} tii[26,23] := {399, 400} tii[26,24] := {183, 185, 449, 450} tii[26,25] := {363, 364} tii[26,26] := {212, 438} tii[26,27] := {395} tii[26,28] := {258, 447} tii[26,29] := {236, 238, 452, 453} tii[26,30] := {285, 454} tii[26,31] := {14, 16} tii[26,32] := {54, 55} tii[26,33] := {233, 235} tii[26,34] := {124, 126} tii[26,35] := {18, 21, 151, 152} tii[26,36] := {46, 49, 229, 230} tii[26,37] := {34, 36} tii[26,38] := {365} tii[26,39] := {293, 295} tii[26,40] := {353} tii[26,41] := {77, 78} tii[26,42] := {321, 322} tii[26,43] := {95, 96} tii[26,44] := {320} tii[26,45] := {240, 242} tii[26,46] := {239, 241} tii[26,47] := {120, 122} tii[26,48] := {155, 156} tii[26,49] := {273, 416} tii[26,50] := {272} tii[26,51] := {28, 29, 206, 207} tii[26,52] := {186, 188} tii[26,53] := {313, 436} tii[26,54] := {217, 312} tii[26,55] := {66, 67, 290, 291} tii[26,56] := {143, 144} tii[26,57] := {304} tii[26,58] := {366, 367} tii[26,59] := {208, 209} tii[26,60] := {99, 100} tii[26,61] := {249} tii[26,62] := {181, 184} tii[26,63] := {342, 344} tii[26,64] := {211, 387} tii[26,65] := {19, 23, 268, 269} tii[26,66] := {192, 301} tii[26,67] := {165, 166} tii[26,68] := {377} tii[26,69] := {47, 51, 336, 337} tii[26,70] := {257, 420} tii[26,71] := {41, 44, 323, 324} tii[26,72] := {234, 237} tii[26,73] := {158, 355} tii[26,74] := {284} tii[26,75] := {108, 310} tii[26,76] := {86, 89, 379, 380} tii[26,77] := {198, 397} tii[26,78] := {174, 424} tii[26,79] := {73, 75} tii[26,80] := {370} tii[26,81] := {345, 347} tii[26,82] := {141, 142} tii[26,83] := {118, 119} tii[26,84] := {327} tii[26,85] := {215, 216} tii[26,86] := {297, 299} tii[26,87] := {176, 178} tii[26,88] := {56, 57, 270, 271} tii[26,89] := {280, 360} tii[26,90] := {243, 245} tii[26,91] := {114, 115, 338, 339} tii[26,92] := {401, 402} tii[26,93] := {139, 140} tii[26,94] := {200, 201} tii[26,95] := {354} tii[26,96] := {274, 275} tii[26,97] := {384, 386} tii[26,98] := {145, 146} tii[26,99] := {204, 205} tii[26,100] := {356} tii[26,101] := {331, 332} tii[26,102] := {213, 214} tii[26,103] := {307} tii[26,104] := {250, 417} tii[26,105] := {26, 27, 325, 326} tii[26,106] := {407} tii[26,107] := {288, 289} tii[26,108] := {223, 224} tii[26,109] := {308, 390} tii[26,110] := {254, 352} tii[26,111] := {64, 65, 381, 382} tii[26,112] := {302, 437} tii[26,113] := {346, 348} tii[26,114] := {177, 179} tii[26,115] := {60, 61, 373, 374} tii[26,116] := {190, 394} tii[26,117] := {265, 266} tii[26,118] := {281, 419} tii[26,119] := {378} tii[26,120] := {136, 358} tii[26,121] := {110, 111, 408, 409} tii[26,122] := {311} tii[26,123] := {247, 423} tii[26,124] := {244, 246} tii[26,125] := {340} tii[26,126] := {195, 440} tii[26,127] := {261, 262} tii[26,128] := {357} tii[26,129] := {329, 330} tii[26,130] := {202, 203} tii[26,131] := {22, 25, 375, 376} tii[26,132] := {309, 391} tii[26,133] := {286, 287} tii[26,134] := {50, 53, 410, 411} tii[26,135] := {318, 319} tii[26,136] := {147, 148} tii[26,137] := {43, 45, 403, 404} tii[26,138] := {159, 421} tii[26,139] := {252, 418} tii[26,140] := {359} tii[26,141] := {88, 90, 432, 433} tii[26,142] := {225, 226} tii[26,143] := {109, 396} tii[26,144] := {199, 439} tii[26,145] := {315} tii[26,146] := {175, 448} tii[26,147] := {82, 84, 427, 428} tii[26,148] := {162, 422} tii[26,149] := {133, 135, 443, 444} tii[26,150] := {232, 451} tii[26,151] := {0, 4} tii[26,152] := {20, 24} tii[26,153] := {3, 8, 48, 52} tii[26,154] := {38, 39} tii[26,155] := {267} tii[26,156] := {79, 81} tii[26,157] := {210} tii[26,158] := {180, 182} tii[26,159] := {30, 31} tii[26,160] := {130, 132} tii[26,161] := {160, 256} tii[26,162] := {15, 17, 68, 69} tii[26,163] := {40, 42} tii[26,164] := {157} tii[26,165] := {1, 5, 105, 106} tii[26,166] := {107, 197} tii[26,167] := {85, 87} tii[26,168] := {70, 173} tii[26,169] := {93, 94} tii[26,170] := {306} tii[26,171] := {58, 59} tii[26,172] := {149, 150} tii[26,173] := {278, 279} tii[26,174] := {253, 351} tii[26,175] := {35, 37, 116, 117} tii[26,176] := {227, 228} tii[26,177] := {62, 63} tii[26,178] := {121, 123} tii[26,179] := {191} tii[26,180] := {294, 296} tii[26,181] := {218, 388} tii[26,182] := {12, 13, 163, 164} tii[26,183] := {335} tii[26,184] := {137, 248} tii[26,185] := {187, 189} tii[26,186] := {112, 113} tii[26,187] := {292} tii[26,188] := {92, 196} tii[26,189] := {80, 83} tii[26,190] := {161, 349} tii[26,191] := {2, 7, 219, 220} tii[26,192] := {131, 134} tii[26,193] := {71, 255} tii[26,194] := {231} tii[26,195] := {97, 98} tii[26,196] := {74, 76, 171, 172} tii[26,197] := {103, 104} tii[26,198] := {251} tii[26,199] := {32, 33, 221, 222} tii[26,200] := {169, 170} tii[26,201] := {194, 303} tii[26,202] := {138, 260} tii[26,203] := {101, 102} tii[26,204] := {193, 389} tii[26,205] := {10, 11, 282, 283} tii[26,206] := {167, 168} tii[26,207] := {91, 314} tii[26,208] := {259} tii[26,209] := {6, 9, 333, 334} tii[26,210] := {72, 362} cell#4 , |C| = 55 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4, 1, 1, 1],[]]+phi[[4],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[31,1] := {50, 51} tii[31,2] := {31, 33} tii[31,3] := {42, 43} tii[31,4] := {32, 34} tii[31,5] := {48} tii[31,6] := {8, 10} tii[31,7] := {25, 26} tii[31,8] := {9, 12} tii[31,9] := {27} tii[31,10] := {44, 45} tii[31,11] := {23, 24} tii[31,12] := {41} tii[31,13] := {11, 13} tii[31,14] := {28} tii[31,15] := {46} tii[31,16] := {0, 2} tii[31,17] := {18, 19} tii[31,18] := {1, 4} tii[31,19] := {20} tii[31,20] := {37, 38} tii[31,21] := {16, 17} tii[31,22] := {30} tii[31,23] := {3, 6} tii[31,24] := {21} tii[31,25] := {39} tii[31,26] := {52, 53} tii[31,27] := {35, 36} tii[31,28] := {49} tii[31,29] := {14, 15} tii[31,30] := {29} tii[31,31] := {47} tii[31,32] := {5, 7} tii[31,33] := {22} tii[31,34] := {40} tii[31,35] := {54} cell#5 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {71} tii[28,2] := {34, 130} tii[28,3] := {75, 154} tii[28,4] := {106, 163} tii[28,5] := {96} tii[28,6] := {87} tii[28,7] := {59, 147} tii[28,8] := {50, 121} tii[28,9] := {99, 165} tii[28,10] := {70, 145} tii[28,11] := {126, 173} tii[28,12] := {117} tii[28,13] := {86, 160} tii[28,14] := {129} tii[28,15] := {118} tii[28,16] := {36, 153} tii[28,17] := {120, 176} tii[28,18] := {135, 136} tii[28,19] := {55, 168} tii[28,20] := {144, 180} tii[28,21] := {108, 170} tii[28,22] := {84, 174} tii[28,23] := {139, 181} tii[28,24] := {102, 182} tii[28,25] := {101, 171} tii[28,26] := {156, 184} tii[28,27] := {151, 185} tii[28,28] := {137, 186} tii[28,29] := {167, 187} tii[28,30] := {175, 188} tii[28,31] := {24} tii[28,32] := {2, 63} tii[28,33] := {9, 83} tii[28,34] := {47} tii[28,35] := {58} tii[28,36] := {26} tii[28,37] := {5, 88} tii[28,38] := {27, 98} tii[28,39] := {12, 44} tii[28,40] := {14, 107} tii[28,41] := {46, 125} tii[28,42] := {85} tii[28,43] := {15, 110} tii[28,44] := {72} tii[28,45] := {11, 119} tii[28,46] := {91, 92} tii[28,47] := {30, 127} tii[28,48] := {6, 90} tii[28,49] := {23, 143} tii[28,50] := {25, 138} tii[28,51] := {51, 142} tii[28,52] := {42, 131} tii[28,53] := {43, 158} tii[28,54] := {64, 162} tii[28,55] := {73} tii[28,56] := {49} tii[28,57] := {17, 112} tii[28,58] := {28, 68} tii[28,59] := {33, 128} tii[28,60] := {109} tii[28,61] := {97} tii[28,62] := {61} tii[28,63] := {38, 132} tii[28,64] := {16, 140} tii[28,65] := {115, 116} tii[28,66] := {39, 81} tii[28,67] := {57, 146} tii[28,68] := {20, 114} tii[28,69] := {32, 157} tii[28,70] := {74} tii[28,71] := {35, 152} tii[28,72] := {29, 105} tii[28,73] := {78, 155} tii[28,74] := {52, 148} tii[28,75] := {94, 95} tii[28,76] := {53, 169} tii[28,77] := {69, 113} tii[28,78] := {76, 172} tii[28,79] := {62, 149} tii[28,80] := {82, 159} tii[28,81] := {40, 134} tii[28,82] := {60, 164} tii[28,83] := {18, 141} tii[28,84] := {104, 166} tii[28,85] := {80, 178} tii[28,86] := {79, 161} tii[28,87] := {100, 179} tii[28,88] := {54, 150} tii[28,89] := {123, 177} tii[28,90] := {122, 183} tii[28,91] := {10} tii[28,92] := {3, 21} tii[28,93] := {0, 41} tii[28,94] := {37} tii[28,95] := {19, 56} tii[28,96] := {48} tii[28,97] := {1, 65} tii[28,98] := {13, 77} tii[28,99] := {66, 67} tii[28,100] := {45, 89} tii[28,101] := {4, 103} tii[28,102] := {22, 111} tii[28,103] := {8, 93} tii[28,104] := {7, 124} tii[28,105] := {31, 133} cell#6 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {187} tii[20,2] := {208} tii[20,3] := {128, 269} tii[20,4] := {224} tii[20,5] := {171} tii[20,6] := {244} tii[20,7] := {204, 301} tii[20,8] := {251, 310} tii[20,9] := {127, 284} tii[20,10] := {258} tii[20,11] := {243} tii[20,12] := {272} tii[20,13] := {150, 271} tii[20,14] := {203, 308} tii[20,15] := {195, 298} tii[20,16] := {250, 314} tii[20,17] := {282} tii[20,18] := {293} tii[20,19] := {292} tii[20,20] := {262, 307} tii[20,21] := {283, 309} tii[20,22] := {287, 313} tii[20,23] := {306} tii[20,24] := {311, 312} tii[20,25] := {11} tii[20,26] := {84} tii[20,27] := {41} tii[20,28] := {73} tii[20,29] := {93, 238} tii[20,30] := {26} tii[20,31] := {133} tii[20,32] := {31} tii[20,33] := {115} tii[20,34] := {167, 285} tii[20,35] := {53, 172} tii[20,36] := {68} tii[20,37] := {59} tii[20,38] := {216, 300} tii[20,39] := {88, 199} tii[20,40] := {108} tii[20,41] := {49} tii[20,42] := {63, 226} tii[20,43] := {151} tii[20,44] := {80} tii[20,45] := {38, 189} tii[20,46] := {170} tii[20,47] := {81, 202} tii[20,48] := {132, 274} tii[20,49] := {99} tii[20,50] := {119} tii[20,51] := {25, 156} tii[20,52] := {71, 219} tii[20,53] := {120, 252} tii[20,54] := {144} tii[20,55] := {182, 291} tii[20,56] := {130} tii[20,57] := {201} tii[20,58] := {160, 245} tii[20,59] := {188, 254} tii[20,60] := {125, 212} tii[20,61] := {180} tii[20,62] := {198, 268} tii[20,63] := {235, 236} tii[20,64] := {51} tii[20,65] := {79, 209} tii[20,66] := {153} tii[20,67] := {56} tii[20,68] := {100} tii[20,69] := {123, 237} tii[20,70] := {89} tii[20,71] := {145} tii[20,72] := {77} tii[20,73] := {94, 260} tii[20,74] := {95, 242} tii[20,75] := {190} tii[20,76] := {114, 241} tii[20,77] := {113} tii[20,78] := {207} tii[20,79] := {67} tii[20,80] := {65, 227} tii[20,81] := {168, 295} tii[20,82] := {131} tii[20,83] := {75, 210} tii[20,84] := {159, 278} tii[20,85] := {158} tii[20,86] := {142, 265} tii[20,87] := {107} tii[20,88] := {48, 193} tii[20,89] := {106, 255} tii[20,90] := {181} tii[20,91] := {217, 305} tii[20,92] := {83, 205} tii[20,93] := {98} tii[20,94] := {165} tii[20,95] := {196, 273} tii[20,96] := {240} tii[20,97] := {176, 286} tii[20,98] := {52, 178} tii[20,99] := {122, 253} tii[20,100] := {161, 247} tii[20,101] := {141} tii[20,102] := {214} tii[20,103] := {225, 279} tii[20,104] := {233, 290} tii[20,105] := {154, 221} tii[20,106] := {266, 267} tii[20,107] := {111} tii[20,108] := {96, 261} tii[20,109] := {228} tii[20,110] := {149} tii[20,111] := {166} tii[20,112] := {76, 230} tii[20,113] := {143, 280} tii[20,114] := {194} tii[20,115] := {215} tii[20,116] := {270} tii[20,117] := {164} tii[20,118] := {200} tii[20,119] := {231, 294} tii[20,120] := {112, 246} tii[20,121] := {175, 297} tii[20,122] := {259, 299} tii[20,123] := {249} tii[20,124] := {213} tii[20,125] := {197, 275} tii[20,126] := {264, 304} tii[20,127] := {229, 281} tii[20,128] := {288, 289} tii[20,129] := {239} tii[20,130] := {232, 296} tii[20,131] := {277} tii[20,132] := {302, 303} tii[20,133] := {2} tii[20,134] := {8} tii[20,135] := {5} tii[20,136] := {29, 134} tii[20,137] := {14} tii[20,138] := {1} tii[20,139] := {35} tii[20,140] := {58, 163} tii[20,141] := {10} tii[20,142] := {30} tii[20,143] := {13, 117} tii[20,144] := {23} tii[20,145] := {36, 148} tii[20,146] := {9, 85} tii[20,147] := {57} tii[20,148] := {46, 110} tii[20,149] := {64, 206} tii[20,150] := {16} tii[20,151] := {40} tii[20,152] := {47, 173} tii[20,153] := {105, 234} tii[20,154] := {6} tii[20,155] := {24} tii[20,156] := {72} tii[20,157] := {55, 169} tii[20,158] := {54} tii[20,159] := {21, 155} tii[20,160] := {66} tii[20,161] := {19} tii[20,162] := {136, 263} tii[20,163] := {37, 138} tii[20,164] := {43} tii[20,165] := {87, 218} tii[20,166] := {104} tii[20,167] := {12, 118} tii[20,168] := {44, 186} tii[20,169] := {86} tii[20,170] := {27, 139} tii[20,171] := {4, 90} tii[20,172] := {116, 184} tii[20,173] := {62, 147} tii[20,174] := {97} tii[20,175] := {102, 248} tii[20,176] := {69} tii[20,177] := {140} tii[20,178] := {50, 174} tii[20,179] := {91, 183} tii[20,180] := {152, 222} tii[20,181] := {32} tii[20,182] := {18} tii[20,183] := {45} tii[20,184] := {82} tii[20,185] := {39, 192} tii[20,186] := {61, 177} tii[20,187] := {34} tii[20,188] := {70} tii[20,189] := {121} tii[20,190] := {28, 157} tii[20,191] := {74, 223} tii[20,192] := {15, 124} tii[20,193] := {92, 185} tii[20,194] := {129} tii[20,195] := {78, 211} tii[20,196] := {42} tii[20,197] := {137, 276} tii[20,198] := {101} tii[20,199] := {179} tii[20,200] := {33, 146} tii[20,201] := {126, 220} tii[20,202] := {191, 257} tii[20,203] := {135} tii[20,204] := {162, 256} tii[20,205] := {0} tii[20,206] := {20, 103} tii[20,207] := {7} tii[20,208] := {3, 60} tii[20,209] := {22} tii[20,210] := {17, 109} cell#7 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {176} tii[17,2] := {193, 194} tii[17,3] := {216} tii[17,4] := {192, 233} tii[17,5] := {202, 236} tii[17,6] := {228, 241} tii[17,7] := {232, 243} tii[17,8] := {239, 244} tii[17,9] := {18} tii[17,10] := {147} tii[17,11] := {162, 163} tii[17,12] := {88} tii[17,13] := {43, 44} tii[17,14] := {78, 79} tii[17,15] := {158} tii[17,16] := {131, 195} tii[17,17] := {130} tii[17,18] := {42, 95} tii[17,19] := {149, 203} tii[17,20] := {104, 153} tii[17,21] := {77, 138} tii[17,22] := {181, 222} tii[17,23] := {165, 204} tii[17,24] := {188, 223} tii[17,25] := {134, 180} tii[17,26] := {33} tii[17,27] := {118} tii[17,28] := {70, 71} tii[17,29] := {110, 111} tii[17,30] := {57} tii[17,31] := {189} tii[17,32] := {148} tii[17,33] := {87} tii[17,34] := {177, 224} tii[17,35] := {161} tii[17,36] := {69, 125} tii[17,37] := {164, 217} tii[17,38] := {101, 102} tii[17,39] := {119} tii[17,40] := {207, 234} tii[17,41] := {133, 183} tii[17,42] := {109, 173} tii[17,43] := {140, 141} tii[17,44] := {128, 129} tii[17,45] := {150, 219} tii[17,46] := {196, 225} tii[17,47] := {122, 199} tii[17,48] := {171, 172} tii[17,49] := {214, 235} tii[17,50] := {167, 206} tii[17,51] := {182, 231} tii[17,52] := {211, 212} tii[17,53] := {191} tii[17,54] := {100, 159} tii[17,55] := {166, 208} tii[17,56] := {139, 201} tii[17,57] := {218, 237} tii[17,58] := {127, 190} tii[17,59] := {178, 226} tii[17,60] := {230, 242} tii[17,61] := {198, 227} tii[17,62] := {170, 221} tii[17,63] := {210, 240} tii[17,64] := {220, 238} tii[17,65] := {8} tii[17,66] := {62} tii[17,67] := {24, 25} tii[17,68] := {5} tii[17,69] := {52, 53} tii[17,70] := {10, 11} tii[17,71] := {13, 41} tii[17,72] := {72} tii[17,73] := {6, 35} tii[17,74] := {51, 93} tii[17,75] := {31, 81} tii[17,76] := {56, 94} tii[17,77] := {34} tii[17,78] := {12} tii[17,79] := {117} tii[17,80] := {59} tii[17,81] := {67, 68} tii[17,82] := {21, 22} tii[17,83] := {89} tii[17,84] := {107, 108} tii[17,85] := {103} tii[17,86] := {96, 97} tii[17,87] := {26, 66} tii[17,88] := {120, 197} tii[17,89] := {36} tii[17,90] := {27, 28} tii[17,91] := {76, 123} tii[17,92] := {135, 136} tii[17,93] := {152, 215} tii[17,94] := {91, 168} tii[17,95] := {16, 58} tii[17,96] := {54, 112} tii[17,97] := {63} tii[17,98] := {185, 186} tii[17,99] := {83, 124} tii[17,100] := {55, 114} tii[17,101] := {65, 126} tii[17,102] := {29, 85} tii[17,103] := {121, 179} tii[17,104] := {106, 169} tii[17,105] := {155, 213} tii[17,106] := {113, 154} tii[17,107] := {23} tii[17,108] := {38, 39} tii[17,109] := {60} tii[17,110] := {132} tii[17,111] := {45, 99} tii[17,112] := {46, 47} tii[17,113] := {90} tii[17,114] := {105, 156} tii[17,115] := {80, 142} tii[17,116] := {30, 86} tii[17,117] := {115, 157} tii[17,118] := {82, 145} tii[17,119] := {98, 160} tii[17,120] := {151, 205} tii[17,121] := {50, 116} tii[17,122] := {74, 75} tii[17,123] := {137, 200} tii[17,124] := {92, 175} tii[17,125] := {144, 184} tii[17,126] := {187, 229} tii[17,127] := {73, 146} tii[17,128] := {174, 209} tii[17,129] := {1} tii[17,130] := {3, 4} tii[17,131] := {0, 9} tii[17,132] := {19} tii[17,133] := {14, 15} tii[17,134] := {40} tii[17,135] := {2, 20} tii[17,136] := {32, 84} tii[17,137] := {48, 49} tii[17,138] := {7, 37} tii[17,139] := {64, 143} tii[17,140] := {17, 61} cell#8 , |C| = 70 special orbit = [3, 3, 3, 3, 3] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {40} tii[10,5] := {52} tii[10,6] := {33} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {48} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {50} tii[10,13] := {60} tii[10,14] := {56} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {5} tii[10,20] := {11} tii[10,21] := {25} tii[10,22] := {36} tii[10,23] := {21} tii[10,24] := {34} tii[10,25] := {9} tii[10,26] := {16} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {42} tii[10,30] := {12} tii[10,31] := {44} tii[10,32] := {51} tii[10,33] := {30} tii[10,34] := {20} tii[10,35] := {37} tii[10,36] := {49} tii[10,37] := {38} tii[10,38] := {59} tii[10,39] := {14} tii[10,40] := {23} tii[10,41] := {17} tii[10,42] := {41} tii[10,43] := {27} tii[10,44] := {53} tii[10,45] := {39} tii[10,46] := {46} tii[10,47] := {57} tii[10,48] := {24} tii[10,49] := {47} tii[10,50] := {65} tii[10,51] := {35} tii[10,52] := {54} tii[10,53] := {55} tii[10,54] := {3} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {10} tii[10,58] := {7} tii[10,59] := {2} tii[10,60] := {13} tii[10,61] := {29} tii[10,62] := {15} tii[10,63] := {18} tii[10,64] := {4} tii[10,65] := {28} tii[10,66] := {22} tii[10,67] := {45} tii[10,68] := {8} tii[10,69] := {31} tii[10,70] := {0} cell#9 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {19} tii[31,2] := {28} tii[31,3] := {20} tii[31,4] := {31} tii[31,5] := {22, 44} tii[31,6] := {40} tii[31,7] := {26} tii[31,8] := {37} tii[31,9] := {27, 46} tii[31,10] := {21} tii[31,11] := {32} tii[31,12] := {23, 45} tii[31,13] := {41} tii[31,14] := {30, 48} tii[31,15] := {24, 49} tii[31,16] := {29} tii[31,17] := {12} tii[31,18] := {25} tii[31,19] := {13, 39} tii[31,20] := {9} tii[31,21] := {15} tii[31,22] := {10, 36} tii[31,23] := {33} tii[31,24] := {14, 43} tii[31,25] := {11, 47} tii[31,26] := {3} tii[31,27] := {7} tii[31,28] := {4, 18} tii[31,29] := {16} tii[31,30] := {6, 35} tii[31,31] := {5, 42} tii[31,32] := {8} tii[31,33] := {2, 17} tii[31,34] := {1, 34} tii[31,35] := {0, 38} cell#10 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {111} tii[25,2] := {51} tii[25,3] := {41, 100} tii[25,4] := {72, 123} tii[25,5] := {139} tii[25,6] := {22} tii[25,7] := {109} tii[25,8] := {127} tii[25,9] := {16, 68} tii[25,10] := {110, 156} tii[25,11] := {43, 94} tii[25,12] := {46} tii[25,13] := {65} tii[25,14] := {40, 99} tii[25,15] := {47, 102} tii[25,16] := {71, 121} tii[25,17] := {66, 125} tii[25,18] := {38, 145} tii[25,19] := {101, 146} tii[25,20] := {129, 162} tii[25,21] := {157} tii[25,22] := {13} tii[25,23] := {137} tii[25,24] := {147} tii[25,25] := {6, 57} tii[25,26] := {138, 169} tii[25,27] := {34, 76} tii[25,28] := {106} tii[25,29] := {35} tii[25,30] := {53} tii[25,31] := {126} tii[25,32] := {27, 88} tii[25,33] := {36, 91} tii[25,34] := {107, 155} tii[25,35] := {59, 105} tii[25,36] := {148} tii[25,37] := {54, 112} tii[25,38] := {21, 130} tii[25,39] := {124, 168} tii[25,40] := {90, 131} tii[25,41] := {108, 173} tii[25,42] := {116, 151} tii[25,43] := {61} tii[25,44] := {85} tii[25,45] := {55, 115} tii[25,46] := {62, 119} tii[25,47] := {92, 136} tii[25,48] := {114} tii[25,49] := {87, 140} tii[25,50] := {50, 152} tii[25,51] := {82, 144} tii[25,52] := {118, 153} tii[25,53] := {63, 160} tii[25,54] := {141, 165} tii[25,55] := {113, 158} tii[25,56] := {83, 166} tii[25,57] := {143, 167} tii[25,58] := {45, 171} tii[25,59] := {159, 172} tii[25,60] := {170, 174} tii[25,61] := {84} tii[25,62] := {56} tii[25,63] := {31, 74} tii[25,64] := {80} tii[25,65] := {28} tii[25,66] := {97} tii[25,67] := {10, 44} tii[25,68] := {81, 134} tii[25,69] := {67} tii[25,70] := {18, 70} tii[25,71] := {52, 103} tii[25,72] := {29, 122} tii[25,73] := {77} tii[25,74] := {7} tii[25,75] := {96} tii[25,76] := {78, 133} tii[25,77] := {1, 20} tii[25,78] := {128} tii[25,79] := {39} tii[25,80] := {5, 42} tii[25,81] := {95, 154} tii[25,82] := {23, 73} tii[25,83] := {79, 163} tii[25,84] := {8, 93} tii[25,85] := {98} tii[25,86] := {19, 69} tii[25,87] := {64, 132} tii[25,88] := {17, 120} tii[25,89] := {48, 149} tii[25,90] := {24, 161} tii[25,91] := {3} tii[25,92] := {0, 12} tii[25,93] := {26} tii[25,94] := {2, 33} tii[25,95] := {14, 60} tii[25,96] := {4, 75} tii[25,97] := {86} tii[25,98] := {11, 58} tii[25,99] := {49, 117} tii[25,100] := {9, 104} tii[25,101] := {37, 142} tii[25,102] := {15, 150} tii[25,103] := {32, 89} tii[25,104] := {30, 135} tii[25,105] := {25, 164} cell#11 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {109} tii[25,2] := {95} tii[25,3] := {50, 138} tii[25,4] := {75, 158} tii[25,5] := {133} tii[25,6] := {125} tii[25,7] := {145} tii[25,8] := {134} tii[25,9] := {60, 153} tii[25,10] := {148, 149} tii[25,11] := {88, 165} tii[25,12] := {146} tii[25,13] := {121} tii[25,14] := {51, 162} tii[25,15] := {141, 142} tii[25,16] := {77, 170} tii[25,17] := {81, 167} tii[25,18] := {105, 160} tii[25,19] := {106, 173} tii[25,20] := {128, 174} tii[25,21] := {107} tii[25,22] := {94} tii[25,23] := {122} tii[25,24] := {108} tii[25,25] := {32, 137} tii[25,26] := {129, 130} tii[25,27] := {56, 157} tii[25,28] := {93} tii[25,29] := {123} tii[25,30] := {91} tii[25,31] := {78} tii[25,32] := {22, 152} tii[25,33] := {113, 114} tii[25,34] := {101, 102} tii[25,35] := {45, 164} tii[25,36] := {47} tii[25,37] := {48, 161} tii[25,38] := {71, 150} tii[25,39] := {69, 70} tii[25,40] := {72, 169} tii[25,41] := {43, 99} tii[25,42] := {100, 172} tii[25,43] := {92} tii[25,44] := {57} tii[25,45] := {8, 136} tii[25,46] := {83, 84} tii[25,47] := {19, 156} tii[25,48] := {31} tii[25,49] := {21, 151} tii[25,50] := {41, 135} tii[25,51] := {53, 54} tii[25,52] := {42, 163} tii[25,53] := {30, 82} tii[25,54] := {65, 168} tii[25,55] := {7, 147} tii[25,56] := {15, 126} tii[25,57] := {16, 159} tii[25,58] := {5, 98} tii[25,59] := {35, 166} tii[25,60] := {24, 171} tii[25,61] := {79} tii[25,62] := {49} tii[25,63] := {25, 73} tii[25,64] := {124} tii[25,65] := {61} tii[25,66] := {110} tii[25,67] := {37, 89} tii[25,68] := {131, 132} tii[25,69] := {80} tii[25,70] := {26, 117} tii[25,71] := {103, 104} tii[25,72] := {74, 127} tii[25,73] := {58} tii[25,74] := {97} tii[25,75] := {46} tii[25,76] := {67, 68} tii[25,77] := {66, 120} tii[25,78] := {20} tii[25,79] := {96} tii[25,80] := {36, 144} tii[25,81] := {39, 40} tii[25,82] := {118, 119} tii[25,83] := {17, 64} tii[25,84] := {87, 140} tii[25,85] := {6} tii[25,86] := {27, 155} tii[25,87] := {13, 14} tii[25,88] := {76, 154} tii[25,89] := {4, 34} tii[25,90] := {0, 23} tii[25,91] := {62} tii[25,92] := {38, 90} tii[25,93] := {59} tii[25,94] := {12, 116} tii[25,95] := {85, 86} tii[25,96] := {55, 112} tii[25,97] := {11} tii[25,98] := {9, 143} tii[25,99] := {28, 29} tii[25,100] := {44, 139} tii[25,101] := {10, 52} tii[25,102] := {3, 33} tii[25,103] := {2, 115} tii[25,104] := {18, 111} tii[25,105] := {1, 63} cell#12 , |C| = 140 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3, 2, 1, 1],[]]+phi[[3],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[25,1] := {78, 79} tii[25,2] := {94, 96} tii[25,3] := {122} tii[25,4] := {132} tii[25,5] := {101, 102} tii[25,6] := {105, 106} tii[25,7] := {81, 82} tii[25,8] := {43, 44} tii[25,9] := {126} tii[25,10] := {71} tii[25,11] := {134} tii[25,12] := {95, 97} tii[25,13] := {65, 67} tii[25,14] := {123} tii[25,15] := {92} tii[25,16] := {133} tii[25,17] := {128} tii[25,18] := {119} tii[25,19] := {137} tii[25,20] := {139} tii[25,21] := {117, 118} tii[25,22] := {85, 86} tii[25,23] := {103, 104} tii[25,24] := {74, 75} tii[25,25] := {115} tii[25,26] := {98} tii[25,27] := {127} tii[25,28] := {83, 84} tii[25,29] := {68, 69} tii[25,30] := {34, 35} tii[25,31] := {45, 46} tii[25,32] := {110} tii[25,33] := {62} tii[25,34] := {72} tii[25,35] := {125} tii[25,36] := {19, 20} tii[25,37] := {121} tii[25,38] := {108} tii[25,39] := {40} tii[25,40] := {131} tii[25,41] := {70} tii[25,42] := {136} tii[25,43] := {36, 37} tii[25,44] := {15, 16} tii[25,45] := {88} tii[25,46] := {29} tii[25,47] := {114} tii[25,48] := {4, 5} tii[25,49] := {109} tii[25,50] := {87} tii[25,51] := {10} tii[25,52] := {124} tii[25,53] := {26} tii[25,54] := {129} tii[25,55] := {120} tii[25,56] := {107} tii[25,57] := {130} tii[25,58] := {80} tii[25,59] := {135} tii[25,60] := {138} tii[25,61] := {49, 50} tii[25,62] := {30, 31} tii[25,63] := {60} tii[25,64] := {53, 54} tii[25,65] := {64, 66} tii[25,66] := {21, 22} tii[25,67] := {91} tii[25,68] := {41} tii[25,69] := {11, 12} tii[25,70] := {112} tii[25,71] := {27} tii[25,72] := {57} tii[25,73] := {51, 52} tii[25,74] := {76, 77} tii[25,75] := {23, 24} tii[25,76] := {42} tii[25,77] := {99} tii[25,78] := {7, 8} tii[25,79] := {32, 33} tii[25,80] := {116} tii[25,81] := {18} tii[25,82] := {61} tii[25,83] := {39} tii[25,84] := {89} tii[25,85] := {2, 3} tii[25,86] := {113} tii[25,87] := {9} tii[25,88] := {111} tii[25,89] := {25} tii[25,90] := {55} tii[25,91] := {47, 48} tii[25,92] := {73} tii[25,93] := {13, 14} tii[25,94] := {100} tii[25,95] := {28} tii[25,96] := {58} tii[25,97] := {0, 1} tii[25,98] := {93} tii[25,99] := {6} tii[25,100] := {90} tii[25,101] := {17} tii[25,102] := {38} tii[25,103] := {63} tii[25,104] := {59} tii[25,105] := {56} cell#13 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {36} tii[19,2] := {69} tii[19,3] := {89} tii[19,4] := {51} tii[19,5] := {25} tii[19,6] := {81} tii[19,7] := {47} tii[19,8] := {99} tii[19,9] := {65} tii[19,10] := {52} tii[19,11] := {93} tii[19,12] := {74} tii[19,13] := {34} tii[19,14] := {106} tii[19,15] := {102} tii[19,16] := {91} tii[19,17] := {112} tii[19,18] := {116} tii[19,19] := {66} tii[19,20] := {42} tii[19,21] := {94} tii[19,22] := {63} tii[19,23] := {107} tii[19,24] := {78} tii[19,25] := {67} tii[19,26] := {26} tii[19,27] := {103} tii[19,28] := {87} tii[19,29] := {49} tii[19,30] := {48} tii[19,31] := {113} tii[19,32] := {40} tii[19,33] := {110} tii[19,34] := {21} tii[19,35] := {100} tii[19,36] := {61} tii[19,37] := {117} tii[19,38] := {72} tii[19,39] := {120} tii[19,40] := {90} tii[19,41] := {80} tii[19,42] := {111} tii[19,43] := {98} tii[19,44] := {64} tii[19,45] := {118} tii[19,46] := {68} tii[19,47] := {115} tii[19,48] := {109} tii[19,49] := {88} tii[19,50] := {50} tii[19,51] := {121} tii[19,52] := {96} tii[19,53] := {33} tii[19,54] := {122} tii[19,55] := {119} tii[19,56] := {114} tii[19,57] := {123} tii[19,58] := {108} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {12} tii[19,62] := {32} tii[19,63] := {24} tii[19,64] := {11} tii[19,65] := {15} tii[19,66] := {46} tii[19,67] := {31} tii[19,68] := {23} tii[19,69] := {58} tii[19,70] := {8} tii[19,71] := {45} tii[19,72] := {57} tii[19,73] := {41} tii[19,74] := {10} tii[19,75] := {30} tii[19,76] := {28} tii[19,77] := {62} tii[19,78] := {22} tii[19,79] := {39} tii[19,80] := {16} tii[19,81] := {7} tii[19,82] := {73} tii[19,83] := {44} tii[19,84] := {60} tii[19,85] := {20} tii[19,86] := {56} tii[19,87] := {13} tii[19,88] := {71} tii[19,89] := {38} tii[19,90] := {85} tii[19,91] := {19} tii[19,92] := {59} tii[19,93] := {6} tii[19,94] := {70} tii[19,95] := {82} tii[19,96] := {79} tii[19,97] := {55} tii[19,98] := {77} tii[19,99] := {43} tii[19,100] := {54} tii[19,101] := {29} tii[19,102] := {86} tii[19,103] := {76} tii[19,104] := {37} tii[19,105] := {27} tii[19,106] := {84} tii[19,107] := {53} tii[19,108] := {17} tii[19,109] := {97} tii[19,110] := {75} tii[19,111] := {35} tii[19,112] := {14} tii[19,113] := {95} tii[19,114] := {83} tii[19,115] := {18} tii[19,116] := {9} tii[19,117] := {92} tii[19,118] := {105} tii[19,119] := {104} tii[19,120] := {101} tii[19,121] := {3} tii[19,122] := {5} tii[19,123] := {1} tii[19,124] := {4} tii[19,125] := {2} tii[19,126] := {0} cell#14 , |C| = 175 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1, 1, 1],[1]]+phi[[3, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[23,1] := {112, 114} tii[23,2] := {99, 100} tii[23,3] := {64, 67} tii[23,4] := {135, 137} tii[23,5] := {128, 129} tii[23,6] := {145, 146} tii[23,7] := {72, 73} tii[23,8] := {136, 139} tii[23,9] := {153} tii[23,10] := {149, 150} tii[23,11] := {66, 68} tii[23,12] := {122, 123} tii[23,13] := {142} tii[23,14] := {90, 92} tii[23,15] := {109} tii[23,16] := {155, 157} tii[23,17] := {101, 102} tii[23,18] := {164, 165} tii[23,19] := {49, 50} tii[23,20] := {156, 159} tii[23,21] := {169} tii[23,22] := {172, 173} tii[23,23] := {126, 127} tii[23,24] := {39, 40} tii[23,25] := {95, 96} tii[23,26] := {162, 163} tii[23,27] := {118} tii[23,28] := {171} tii[23,29] := {158, 160} tii[23,30] := {61, 62} tii[23,31] := {80} tii[23,32] := {170} tii[23,33] := {174} tii[23,34] := {147, 148} tii[23,35] := {22, 23} tii[23,36] := {120, 121} tii[23,37] := {141} tii[23,38] := {110, 111} tii[23,39] := {37, 38} tii[23,40] := {51} tii[23,41] := {132} tii[23,42] := {151} tii[23,43] := {59, 60} tii[23,44] := {79} tii[23,45] := {103} tii[23,46] := {0, 1} tii[23,47] := {87, 89} tii[23,48] := {4, 5} tii[23,49] := {63, 65} tii[23,50] := {16, 18} tii[23,51] := {41, 43} tii[23,52] := {10, 11} tii[23,53] := {124, 125} tii[23,54] := {30, 31} tii[23,55] := {74, 75} tii[23,56] := {113, 116} tii[23,57] := {54, 55} tii[23,58] := {133} tii[23,59] := {17, 20} tii[23,60] := {88, 91} tii[23,61] := {42, 45} tii[23,62] := {108} tii[23,63] := {83} tii[23,64] := {166, 167} tii[23,65] := {26, 27} tii[23,66] := {104, 105} tii[23,67] := {143, 144} tii[23,68] := {47, 48} tii[23,69] := {161} tii[23,70] := {81, 82} tii[23,71] := {138, 140} tii[23,72] := {28, 29} tii[23,73] := {97, 98} tii[23,74] := {154} tii[23,75] := {52, 53} tii[23,76] := {119} tii[23,77] := {168} tii[23,78] := {94} tii[23,79] := {115, 117} tii[23,80] := {19, 21} tii[23,81] := {134} tii[23,82] := {44, 46} tii[23,83] := {152} tii[23,84] := {84} tii[23,85] := {131} tii[23,86] := {12, 13} tii[23,87] := {76, 77} tii[23,88] := {32, 33} tii[23,89] := {56, 57} tii[23,90] := {14, 15} tii[23,91] := {70, 71} tii[23,92] := {34, 35} tii[23,93] := {93} tii[23,94] := {69} tii[23,95] := {85, 86} tii[23,96] := {6, 7} tii[23,97] := {107} tii[23,98] := {24, 25} tii[23,99] := {58} tii[23,100] := {130} tii[23,101] := {106} tii[23,102] := {2, 3} tii[23,103] := {8, 9} tii[23,104] := {36} tii[23,105] := {78} cell#15 , |C| = 455 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1, 1, 1],[2]]+phi[[1, 1, 1, 1],[3]]+phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]] TII depth = 3 TII multiplicity polynomial = 140*X^2+35*X^4+35*X TII subcells: tii[15,1] := {218, 219} tii[15,2] := {90, 91, 350, 351} tii[15,3] := {293} tii[15,4] := {267, 268} tii[15,5] := {177, 178} tii[15,6] := {57, 58, 378, 379} tii[15,7] := {201, 356} tii[15,8] := {246, 389} tii[15,9] := {309, 310} tii[15,10] := {88, 89, 400, 401} tii[15,11] := {263, 264} tii[15,12] := {108, 366} tii[15,13] := {300} tii[15,14] := {146, 395} tii[15,15] := {119, 120, 418, 419} tii[15,16] := {156, 429} tii[15,17] := {332} tii[15,18] := {311, 312} tii[15,19] := {43, 44, 402, 403} tii[15,20] := {228, 229} tii[15,21] := {251, 386} tii[15,22] := {290, 410} tii[15,23] := {364} tii[15,24] := {344, 345} tii[15,25] := {179, 180} tii[15,26] := {330} tii[15,27] := {68, 69, 420, 421} tii[15,28] := {307, 308} tii[15,29] := {87, 392} tii[15,30] := {200, 408} tii[15,31] := {359, 360} tii[15,32] := {338} tii[15,33] := {114, 415} tii[15,34] := {244, 426} tii[15,35] := {222, 223} tii[15,36] := {249, 424} tii[15,37] := {102, 103, 433, 434} tii[15,38] := {285, 406} tii[15,39] := {260} tii[15,40] := {135, 441} tii[15,41] := {286, 438} tii[15,42] := {322, 446} tii[15,43] := {374, 375} tii[15,44] := {104, 105, 435, 436} tii[15,45] := {342, 343} tii[15,46] := {126, 413} tii[15,47] := {370} tii[15,48] := {160, 431} tii[15,49] := {305, 306} tii[15,50] := {166, 427} tii[15,51] := {143, 144, 444, 445} tii[15,52] := {207, 411} tii[15,53] := {184, 449} tii[15,54] := {337} tii[15,55] := {208, 442} tii[15,56] := {368} tii[15,57] := {253, 447} tii[15,58] := {189, 190, 450, 451} tii[15,59] := {231, 453} tii[15,60] := {277, 454} tii[15,61] := {79, 80} tii[15,62] := {131, 132} tii[15,63] := {28, 29, 173, 174} tii[15,64] := {65, 66, 236, 237} tii[15,65] := {117, 118} tii[15,66] := {248} tii[15,67] := {175, 176} tii[15,68] := {81, 82} tii[15,69] := {129, 130} tii[15,70] := {14, 15, 224, 225} tii[15,71] := {151, 321} tii[15,72] := {202} tii[15,73] := {136, 137} tii[15,74] := {37, 38, 280, 281} tii[15,75] := {196, 363} tii[15,76] := {155, 247} tii[15,77] := {32, 33, 271, 272} tii[15,78] := {109, 295} tii[15,79] := {169, 170} tii[15,80] := {63, 64, 317, 318} tii[15,81] := {74, 258} tii[15,82] := {210} tii[15,83] := {148, 341} tii[15,84] := {116, 373} tii[15,85] := {331} tii[15,86] := {164, 165} tii[15,87] := {252} tii[15,88] := {226, 227} tii[15,89] := {127, 128} tii[15,90] := {292} tii[15,91] := {122, 123} tii[15,92] := {150, 385} tii[15,93] := {6, 7, 273, 274} tii[15,94] := {206, 291} tii[15,95] := {324, 325} tii[15,96] := {185, 186} tii[15,97] := {194, 409} tii[15,98] := {18, 19, 319, 320} tii[15,99] := {198, 407} tii[15,100] := {220, 221} tii[15,101] := {83, 84} tii[15,102] := {16, 17, 313, 314} tii[15,103] := {72, 333} tii[15,104] := {167, 168} tii[15,105] := {250} tii[15,106] := {154, 326} tii[15,107] := {259} tii[15,108] := {239, 384} tii[15,109] := {35, 36, 352, 353} tii[15,110] := {209} tii[15,111] := {240, 425} tii[15,112] := {138, 139} tii[15,113] := {47, 302} tii[15,114] := {107, 372} tii[15,115] := {287, 288} tii[15,116] := {282, 437} tii[15,117] := {212} tii[15,118] := {245, 323} tii[15,119] := {76, 397} tii[15,120] := {149, 391} tii[15,121] := {214, 215} tii[15,122] := {30, 31, 346, 347} tii[15,123] := {73, 339} tii[15,124] := {191, 365} tii[15,125] := {61, 62, 380, 381} tii[15,126] := {192, 414} tii[15,127] := {257} tii[15,128] := {297} tii[15,129] := {238, 428} tii[15,130] := {115, 416} tii[15,131] := {145, 334} tii[15,132] := {203, 440} tii[15,133] := {216, 217} tii[15,134] := {275, 276} tii[15,135] := {296} tii[15,136] := {171, 172} tii[15,137] := {4, 5, 315, 316} tii[15,138] := {234, 235} tii[15,139] := {256, 329} tii[15,140] := {12, 13, 354, 355} tii[15,141] := {10, 11, 348, 349} tii[15,142] := {294} tii[15,143] := {124, 125} tii[15,144] := {59, 367} tii[15,145] := {269, 270} tii[15,146] := {205, 362} tii[15,147] := {25, 26, 382, 383} tii[15,148] := {327, 328} tii[15,149] := {303} tii[15,150] := {187, 188} tii[15,151] := {34, 340} tii[15,152] := {78, 396} tii[15,153] := {289, 358} tii[15,154] := {262} tii[15,155] := {67, 417} tii[15,156] := {265, 266} tii[15,157] := {85, 86} tii[15,158] := {121, 412} tii[15,159] := {23, 24, 376, 377} tii[15,160] := {153, 388} tii[15,161] := {60, 371} tii[15,162] := {301} tii[15,163] := {157, 390} tii[15,164] := {140, 141} tii[15,165] := {45, 46, 404, 405} tii[15,166] := {158, 430} tii[15,167] := {335} tii[15,168] := {243, 387} tii[15,169] := {213} tii[15,170] := {101, 432} tii[15,171] := {204, 439} tii[15,172] := {113, 369} tii[15,173] := {299} tii[15,174] := {181, 448} tii[15,175] := {41, 42, 398, 399} tii[15,176] := {92, 394} tii[15,177] := {70, 71, 422, 423} tii[15,178] := {159, 393} tii[15,179] := {142, 443} tii[15,180] := {230, 452} tii[15,181] := {49, 50} tii[15,182] := {39, 40, 99, 100} tii[15,183] := {55, 56} tii[15,184] := {152} tii[15,185] := {21, 22, 133, 134} tii[15,186] := {97, 98} tii[15,187] := {112, 197} tii[15,188] := {75, 163} tii[15,189] := {53, 54} tii[15,190] := {199} tii[15,191] := {8, 9, 182, 183} tii[15,192] := {111, 284} tii[15,193] := {95, 96} tii[15,194] := {241, 242} tii[15,195] := {48, 211} tii[15,196] := {195, 283} tii[15,197] := {162} tii[15,198] := {147, 255} tii[15,199] := {51, 52} tii[15,200] := {110, 361} tii[15,201] := {2, 3, 232, 233} tii[15,202] := {93, 94} tii[15,203] := {193, 357} tii[15,204] := {27, 261} tii[15,205] := {161} tii[15,206] := {106, 298} tii[15,207] := {254} tii[15,208] := {0, 1, 278, 279} tii[15,209] := {20, 304} tii[15,210] := {77, 336} cell#16 , |C| = 70 special orbit = [3, 3, 3, 3, 3] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {40} tii[10,5] := {52} tii[10,6] := {33} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {48} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {50} tii[10,13] := {60} tii[10,14] := {56} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {5} tii[10,20] := {11} tii[10,21] := {25} tii[10,22] := {36} tii[10,23] := {21} tii[10,24] := {34} tii[10,25] := {9} tii[10,26] := {16} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {42} tii[10,30] := {12} tii[10,31] := {44} tii[10,32] := {51} tii[10,33] := {30} tii[10,34] := {20} tii[10,35] := {37} tii[10,36] := {49} tii[10,37] := {38} tii[10,38] := {59} tii[10,39] := {14} tii[10,40] := {23} tii[10,41] := {17} tii[10,42] := {41} tii[10,43] := {27} tii[10,44] := {53} tii[10,45] := {39} tii[10,46] := {46} tii[10,47] := {57} tii[10,48] := {24} tii[10,49] := {47} tii[10,50] := {65} tii[10,51] := {35} tii[10,52] := {54} tii[10,53] := {55} tii[10,54] := {3} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {10} tii[10,58] := {7} tii[10,59] := {2} tii[10,60] := {13} tii[10,61] := {29} tii[10,62] := {15} tii[10,63] := {18} tii[10,64] := {4} tii[10,65] := {28} tii[10,66] := {22} tii[10,67] := {45} tii[10,68] := {8} tii[10,69] := {31} tii[10,70] := {0} cell#17 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {38} tii[22,2] := {27} tii[22,3] := {35} tii[22,4] := {28, 45} tii[22,5] := {15} tii[22,6] := {26} tii[22,7] := {16, 37} tii[22,8] := {36} tii[22,9] := {25, 44} tii[22,10] := {17, 51} tii[22,11] := {11} tii[22,12] := {21} tii[22,13] := {12, 34} tii[22,14] := {31} tii[22,15] := {19, 43} tii[22,16] := {13, 48} tii[22,17] := {39} tii[22,18] := {29, 49} tii[22,19] := {18, 53} tii[22,20] := {14, 54} tii[22,21] := {3} tii[22,22] := {10} tii[22,23] := {4, 24} tii[22,24] := {23} tii[22,25] := {8, 33} tii[22,26] := {5, 41} tii[22,27] := {30} tii[22,28] := {20, 42} tii[22,29] := {7, 47} tii[22,30] := {6, 52} tii[22,31] := {22} tii[22,32] := {9, 32} tii[22,33] := {2, 40} tii[22,34] := {1, 46} tii[22,35] := {0, 50} cell#18 , |C| = 98 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2, 2, 1, 1, 1],[]]+phi[[2],[2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[14,1] := {61, 62} tii[14,2] := {78} tii[14,3] := {86} tii[14,4] := {49, 50} tii[14,5] := {32, 33} tii[14,6] := {69} tii[14,7] := {44} tii[14,8] := {79} tii[14,9] := {77} tii[14,10] := {68} tii[14,11] := {85} tii[14,12] := {91} tii[14,13] := {41, 42} tii[14,14] := {26, 27} tii[14,15] := {66} tii[14,16] := {39} tii[14,17] := {76} tii[14,18] := {14, 15} tii[14,19] := {74} tii[14,20] := {64} tii[14,21] := {24} tii[14,22] := {84} tii[14,23] := {37} tii[14,24] := {88} tii[14,25] := {81} tii[14,26] := {72} tii[14,27] := {90} tii[14,28] := {60} tii[14,29] := {94} tii[14,30] := {96} tii[14,31] := {29, 30} tii[14,32] := {16, 17} tii[14,33] := {53} tii[14,34] := {25} tii[14,35] := {67} tii[14,36] := {8, 9} tii[14,37] := {65} tii[14,38] := {51} tii[14,39] := {13} tii[14,40] := {75} tii[14,41] := {23} tii[14,42] := {82} tii[14,43] := {2, 3} tii[14,44] := {73} tii[14,45] := {5} tii[14,46] := {63} tii[14,47] := {83} tii[14,48] := {48} tii[14,49] := {11} tii[14,50] := {87} tii[14,51] := {21} tii[14,52] := {92} tii[14,53] := {80} tii[14,54] := {71} tii[14,55] := {89} tii[14,56] := {59} tii[14,57] := {93} tii[14,58] := {45} tii[14,59] := {95} tii[14,60] := {97} tii[14,61] := {46, 47} tii[14,62] := {57} tii[14,63] := {19, 20} tii[14,64] := {70} tii[14,65] := {31} tii[14,66] := {43} tii[14,67] := {6, 7} tii[14,68] := {58} tii[14,69] := {12} tii[14,70] := {56} tii[14,71] := {22} tii[14,72] := {35} tii[14,73] := {0, 1} tii[14,74] := {55} tii[14,75] := {4} tii[14,76] := {10} tii[14,77] := {54} tii[14,78] := {52} tii[14,79] := {18} tii[14,80] := {28} tii[14,81] := {40} tii[14,82] := {38} tii[14,83] := {36} tii[14,84] := {34} cell#19 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {68} tii[25,2] := {54} tii[25,3] := {22, 100} tii[25,4] := {39, 135} tii[25,5] := {96} tii[25,6] := {83} tii[25,7] := {110} tii[25,8] := {97} tii[25,9] := {27, 127} tii[25,10] := {118, 119} tii[25,11] := {49, 155} tii[25,12] := {112} tii[25,13] := {80} tii[25,14] := {23, 151} tii[25,15] := {105, 106} tii[25,16] := {41, 165} tii[25,17] := {45, 162} tii[25,18] := {65, 148} tii[25,19] := {66, 169} tii[25,20] := {89, 171} tii[25,21] := {122} tii[25,22] := {53} tii[25,23] := {137} tii[25,24] := {123} tii[25,25] := {11, 99} tii[25,26] := {143, 144} tii[25,27] := {25, 134} tii[25,28] := {157} tii[25,29] := {81} tii[25,30] := {52} tii[25,31] := {136} tii[25,32] := {7, 126} tii[25,33] := {72, 73} tii[25,34] := {152, 153} tii[25,35] := {18, 154} tii[25,36] := {124} tii[25,37] := {20, 149} tii[25,38] := {35, 125} tii[25,39] := {145, 146} tii[25,40] := {36, 163} tii[25,41] := {158, 159} tii[25,42] := {60, 167} tii[25,43] := {111} tii[25,44] := {79} tii[25,45] := {1, 150} tii[25,46] := {103, 104} tii[25,47] := {5, 164} tii[25,48] := {67} tii[25,49] := {6, 161} tii[25,50] := {15, 147} tii[25,51] := {90, 91} tii[25,52] := {16, 168} tii[25,53] := {114, 115} tii[25,54] := {31, 170} tii[25,55] := {19, 166} tii[25,56] := {33, 160} tii[25,57] := {34, 172} tii[25,58] := {57, 156} tii[25,59] := {58, 173} tii[25,60] := {84, 174} tii[25,61] := {43} tii[25,62] := {21} tii[25,63] := {8, 37} tii[25,64] := {82} tii[25,65] := {28} tii[25,66] := {69} tii[25,67] := {13, 50} tii[25,68] := {92, 93} tii[25,69] := {44} tii[25,70] := {9, 75} tii[25,71] := {63, 64} tii[25,72] := {38, 87} tii[25,73] := {138} tii[25,74] := {56} tii[25,75] := {109} tii[25,76] := {130, 131} tii[25,77] := {32, 78} tii[25,78] := {98} tii[25,79] := {55} tii[25,80] := {12, 108} tii[25,81] := {120, 121} tii[25,82] := {76, 77} tii[25,83] := {141, 142} tii[25,84] := {48, 102} tii[25,85] := {70} tii[25,86] := {10, 133} tii[25,87] := {94, 95} tii[25,88] := {40, 129} tii[25,89] := {116, 117} tii[25,90] := {88, 140} tii[25,91] := {29} tii[25,92] := {14, 51} tii[25,93] := {26} tii[25,94] := {3, 74} tii[25,95] := {46, 47} tii[25,96] := {24, 71} tii[25,97] := {42} tii[25,98] := {2, 107} tii[25,99] := {61, 62} tii[25,100] := {17, 101} tii[25,101] := {85, 86} tii[25,102] := {59, 113} tii[25,103] := {0, 132} tii[25,104] := {4, 128} tii[25,105] := {30, 139} cell#20 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {55} tii[19,2] := {92} tii[19,3] := {108} tii[19,4] := {72} tii[19,5] := {83} tii[19,6] := {103} tii[19,7] := {98} tii[19,8] := {115} tii[19,9] := {88} tii[19,10] := {74} tii[19,11] := {112} tii[19,12] := {97} tii[19,13] := {53} tii[19,14] := {120} tii[19,15] := {117} tii[19,16] := {110} tii[19,17] := {123} tii[19,18] := {125} tii[19,19] := {54} tii[19,20] := {66} tii[19,21] := {91} tii[19,22] := {85} tii[19,23] := {107} tii[19,24] := {73} tii[19,25] := {58} tii[19,26] := {46} tii[19,27] := {102} tii[19,28] := {80} tii[19,29] := {34} tii[19,30] := {69} tii[19,31] := {114} tii[19,32] := {31} tii[19,33] := {111} tii[19,34] := {14} tii[19,35] := {100} tii[19,36] := {50} tii[19,37] := {119} tii[19,38] := {68} tii[19,39] := {122} tii[19,40] := {56} tii[19,41] := {38} tii[19,42] := {90} tii[19,43] := {61} tii[19,44] := {20} tii[19,45] := {106} tii[19,46] := {22} tii[19,47] := {101} tii[19,48] := {89} tii[19,49] := {42} tii[19,50] := {11} tii[19,51] := {113} tii[19,52] := {60} tii[19,53] := {7} tii[19,54] := {118} tii[19,55] := {109} tii[19,56] := {99} tii[19,57] := {116} tii[19,58] := {87} tii[19,59] := {121} tii[19,60] := {124} tii[19,61] := {29} tii[19,62] := {51} tii[19,63] := {36} tii[19,64] := {67} tii[19,65] := {25} tii[19,66] := {63} tii[19,67] := {86} tii[19,68] := {47} tii[19,69] := {79} tii[19,70] := {27} tii[19,71] := {70} tii[19,72] := {84} tii[19,73] := {57} tii[19,74] := {30} tii[19,75] := {49} tii[19,76] := {43} tii[19,77] := {82} tii[19,78] := {16} tii[19,79] := {59} tii[19,80] := {65} tii[19,81] := {8} tii[19,82] := {96} tii[19,83] := {33} tii[19,84] := {81} tii[19,85] := {35} tii[19,86] := {48} tii[19,87] := {24} tii[19,88] := {94} tii[19,89] := {9} tii[19,90] := {105} tii[19,91] := {4} tii[19,92] := {17} tii[19,93] := {2} tii[19,94] := {32} tii[19,95] := {104} tii[19,96] := {41} tii[19,97] := {37} tii[19,98] := {64} tii[19,99] := {26} tii[19,100] := {39} tii[19,101] := {44} tii[19,102] := {78} tii[19,103] := {62} tii[19,104] := {21} tii[19,105] := {13} tii[19,106] := {76} tii[19,107] := {12} tii[19,108] := {28} tii[19,109] := {95} tii[19,110] := {23} tii[19,111] := {6} tii[19,112] := {10} tii[19,113] := {93} tii[19,114] := {40} tii[19,115] := {3} tii[19,116] := {1} tii[19,117] := {52} tii[19,118] := {77} tii[19,119] := {75} tii[19,120] := {71} tii[19,121] := {18} tii[19,122] := {45} tii[19,123] := {19} tii[19,124] := {15} tii[19,125] := {5} tii[19,126] := {0} cell#21 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {31} tii[19,2] := {55} tii[19,3] := {85} tii[19,4] := {52} tii[19,5] := {17} tii[19,6] := {74} tii[19,7] := {28} tii[19,8] := {98} tii[19,9] := {71} tii[19,10] := {50} tii[19,11] := {90} tii[19,12] := {62} tii[19,13] := {61} tii[19,14] := {106} tii[19,15] := {102} tii[19,16] := {88} tii[19,17] := {112} tii[19,18] := {116} tii[19,19] := {72} tii[19,20] := {34} tii[19,21] := {91} tii[19,22] := {48} tii[19,23] := {107} tii[19,24] := {87} tii[19,25] := {70} tii[19,26] := {16} tii[19,27] := {103} tii[19,28] := {82} tii[19,29] := {81} tii[19,30] := {26} tii[19,31] := {113} tii[19,32] := {32} tii[19,33] := {110} tii[19,34] := {43} tii[19,35] := {100} tii[19,36] := {44} tii[19,37] := {117} tii[19,38] := {59} tii[19,39] := {120} tii[19,40] := {99} tii[19,41] := {86} tii[19,42] := {111} tii[19,43] := {96} tii[19,44] := {95} tii[19,45] := {118} tii[19,46] := {69} tii[19,47] := {115} tii[19,48] := {109} tii[19,49] := {80} tii[19,50] := {79} tii[19,51] := {121} tii[19,52] := {93} tii[19,53] := {92} tii[19,54] := {122} tii[19,55] := {119} tii[19,56] := {114} tii[19,57] := {123} tii[19,58] := {108} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {5} tii[19,62] := {13} tii[19,63] := {18} tii[19,64] := {4} tii[19,65] := {8} tii[19,66] := {29} tii[19,67] := {12} tii[19,68] := {15} tii[19,69] := {42} tii[19,70] := {23} tii[19,71] := {24} tii[19,72] := {39} tii[19,73] := {35} tii[19,74] := {3} tii[19,75] := {10} tii[19,76] := {20} tii[19,77] := {49} tii[19,78] := {14} tii[19,79] := {33} tii[19,80] := {7} tii[19,81] := {21} tii[19,82] := {65} tii[19,83] := {22} tii[19,84] := {46} tii[19,85] := {45} tii[19,86] := {38} tii[19,87] := {27} tii[19,88] := {60} tii[19,89] := {30} tii[19,90] := {83} tii[19,91] := {40} tii[19,92] := {41} tii[19,93] := {56} tii[19,94] := {57} tii[19,95] := {75} tii[19,96] := {73} tii[19,97] := {54} tii[19,98] := {68} tii[19,99] := {36} tii[19,100] := {53} tii[19,101] := {19} tii[19,102] := {84} tii[19,103] := {67} tii[19,104] := {66} tii[19,105] := {47} tii[19,106] := {78} tii[19,107] := {51} tii[19,108] := {6} tii[19,109] := {97} tii[19,110] := {64} tii[19,111] := {63} tii[19,112] := {25} tii[19,113] := {94} tii[19,114] := {77} tii[19,115] := {76} tii[19,116] := {58} tii[19,117] := {89} tii[19,118] := {105} tii[19,119] := {104} tii[19,120] := {101} tii[19,121] := {2} tii[19,122] := {1} tii[19,123] := {11} tii[19,124] := {0} tii[19,125] := {9} tii[19,126] := {37} cell#22 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {46} tii[19,2] := {77} tii[19,3] := {93} tii[19,4] := {68} tii[19,5] := {57} tii[19,6] := {96} tii[19,7] := {80} tii[19,8] := {109} tii[19,9] := {85} tii[19,10] := {94} tii[19,11] := {111} tii[19,12] := {115} tii[19,13] := {86} tii[19,14] := {119} tii[19,15] := {120} tii[19,16] := {123} tii[19,17] := {124} tii[19,18] := {125} tii[19,19] := {44} tii[19,20] := {35} tii[19,21] := {76} tii[19,22] := {60} tii[19,23] := {91} tii[19,24] := {66} tii[19,25] := {74} tii[19,26] := {19} tii[19,27] := {95} tii[19,28] := {101} tii[19,29] := {67} tii[19,30] := {38} tii[19,31] := {107} tii[19,32] := {34} tii[19,33] := {110} tii[19,34] := {25} tii[19,35] := {116} tii[19,36] := {62} tii[19,37] := {117} tii[19,38] := {73} tii[19,39] := {122} tii[19,40] := {52} tii[19,41] := {70} tii[19,42] := {88} tii[19,43] := {89} tii[19,44] := {53} tii[19,45] := {104} tii[19,46] := {48} tii[19,47] := {105} tii[19,48] := {113} tii[19,49] := {72} tii[19,50] := {33} tii[19,51] := {114} tii[19,52] := {84} tii[19,53] := {17} tii[19,54] := {121} tii[19,55] := {87} tii[19,56] := {99} tii[19,57] := {100} tii[19,58] := {83} tii[19,59] := {112} tii[19,60] := {97} tii[19,61] := {13} tii[19,62] := {23} tii[19,63] := {29} tii[19,64] := {36} tii[19,65] := {15} tii[19,66] := {41} tii[19,67] := {61} tii[19,68] := {56} tii[19,69] := {59} tii[19,70] := {47} tii[19,71] := {82} tii[19,72] := {92} tii[19,73] := {49} tii[19,74] := {8} tii[19,75] := {22} tii[19,76] := {31} tii[19,77] := {63} tii[19,78] := {18} tii[19,79] := {75} tii[19,80] := {37} tii[19,81] := {10} tii[19,82] := {79} tii[19,83] := {39} tii[19,84] := {102} tii[19,85] := {69} tii[19,86] := {54} tii[19,87] := {50} tii[19,88] := {108} tii[19,89] := {11} tii[19,90] := {98} tii[19,91] := {6} tii[19,92] := {32} tii[19,93] := {1} tii[19,94] := {43} tii[19,95] := {118} tii[19,96] := {24} tii[19,97] := {27} tii[19,98] := {40} tii[19,99] := {14} tii[19,100] := {55} tii[19,101] := {20} tii[19,102] := {58} tii[19,103] := {81} tii[19,104] := {45} tii[19,105] := {28} tii[19,106] := {90} tii[19,107] := {26} tii[19,108] := {9} tii[19,109] := {78} tii[19,110] := {51} tii[19,111] := {16} tii[19,112] := {12} tii[19,113] := {106} tii[19,114] := {65} tii[19,115] := {7} tii[19,116] := {2} tii[19,117] := {42} tii[19,118] := {71} tii[19,119] := {103} tii[19,120] := {64} tii[19,121] := {5} tii[19,122] := {21} tii[19,123] := {30} tii[19,124] := {3} tii[19,125] := {4} tii[19,126] := {0} cell#23 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {213} tii[15,2] := {139, 252} tii[15,3] := {85, 335} tii[15,4] := {272} tii[15,5] := {249} tii[15,6] := {192, 311} tii[15,7] := {113, 183, 305, 426} tii[15,8] := {170, 263, 386, 461} tii[15,9] := {332} tii[15,10] := {251, 368} tii[15,11] := {356} tii[15,12] := {89, 284, 304, 422} tii[15,13] := {333, 439} tii[15,14] := {149, 347, 384, 457} tii[15,15] := {301, 414} tii[15,16] := {234, 382, 452, 453} tii[15,17] := {127, 397} tii[15,18] := {337} tii[15,19] := {138, 370} tii[15,20] := {309} tii[15,21] := {160, 243, 366, 478} tii[15,22] := {223, 323, 441, 504} tii[15,23] := {176, 448} tii[15,24] := {392} tii[15,25] := {369} tii[15,26] := {129, 468} tii[15,27] := {190, 423} tii[15,28] := {415} tii[15,29] := {56, 240, 344, 471} tii[15,30] := {178, 306, 421, 510} tii[15,31] := {83, 200, 449, 517} tii[15,32] := {393, 485} tii[15,33] := {99, 321, 403, 498} tii[15,34] := {258, 385, 487, 531} tii[15,35] := {420} tii[15,36] := {161, 360, 470, 534} tii[15,37] := {238, 465} tii[15,38] := {111, 293, 413, 546} tii[15,39] := {355, 484} tii[15,40] := {177, 320, 492, 493} tii[15,41] := {224, 436, 515, 547} tii[15,42] := {281, 474, 535, 552} tii[15,43] := {445} tii[15,44] := {250, 473} tii[15,45] := {467} tii[15,46] := {88, 303, 401, 509} tii[15,47] := {446, 516} tii[15,48] := {148, 383, 455, 529} tii[15,49] := {508} tii[15,50] := {74, 359, 450, 533} tii[15,51] := {300, 505} tii[15,52] := {41, 292, 399, 544} tii[15,53] := {233, 381, 522, 523} tii[15,54] := {464, 537} tii[15,55] := {119, 435, 496, 545} tii[15,56] := {447, 548} tii[15,57] := {162, 475, 518, 551} tii[15,58] := {358, 532} tii[15,59] := {291, 434, 542, 543} tii[15,60] := {271, 477, 549, 550} tii[15,61] := {24} tii[15,62] := {116} tii[15,63] := {26, 62} tii[15,64] := {48, 106} tii[15,65] := {42} tii[15,66] := {54, 275} tii[15,67] := {163} tii[15,68] := {75} tii[15,69] := {191} tii[15,70] := {33, 94} tii[15,71] := {76, 136, 242, 373} tii[15,72] := {30, 216} tii[15,73] := {120} tii[15,74] := {67, 155} tii[15,75] := {121, 207, 324, 411} tii[15,76] := {21, 66, 168, 266} tii[15,77] := {59, 134} tii[15,78] := {47, 172, 185, 312} tii[15,79] := {239} tii[15,80] := {102, 205} tii[15,81] := {25, 124, 145, 257} tii[15,82] := {214, 326} tii[15,83] := {80, 230, 265, 352} tii[15,84] := {117, 210, 289, 290} tii[15,85] := {128, 395} tii[15,86] := {71} tii[15,87] := {55, 277} tii[15,88] := {218} tii[15,89] := {310} tii[15,90] := {87, 416} tii[15,91] := {112} tii[15,92] := {130, 241, 365, 472} tii[15,93] := {61, 135} tii[15,94] := {39, 104, 221, 327} tii[15,95] := {50, 147, 396, 486} tii[15,96] := {169} tii[15,97] := {201, 322, 440, 500} tii[15,98] := {105, 206} tii[15,99] := {114, 297, 418, 507} tii[15,100] := {299} tii[15,101] := {131} tii[15,102] := {93, 181} tii[15,103] := {60, 225, 244, 371} tii[15,104] := {364} tii[15,105] := {57, 362} tii[15,106] := {72, 144, 253, 376} tii[15,107] := {273, 387} tii[15,108] := {73, 231, 354, 526} tii[15,109] := {153, 261} tii[15,110] := {295, 438} tii[15,111] := {171, 379, 483, 527} tii[15,112] := {202} tii[15,113] := {29, 174, 199, 315} tii[15,114] := {103, 288, 325, 409} tii[15,115] := {27, 100, 336, 442} tii[15,116] := {220, 424, 511, 541} tii[15,117] := {219, 331} tii[15,118] := {19, 140, 278, 460} tii[15,119] := {141, 269, 349, 350} tii[15,120] := {77, 343, 361, 466} tii[15,121] := {417} tii[15,122] := {133, 235} tii[15,123] := {53, 228, 255, 374} tii[15,124] := {44, 283, 294, 494} tii[15,125] := {204, 317} tii[15,126] := {122, 402, 437, 495} tii[15,127] := {353, 482} tii[15,128] := {334, 512} tii[15,129] := {165, 451, 476, 521} tii[15,130] := {189, 330, 404, 405} tii[15,131] := {22, 226, 247, 456} tii[15,132] := {215, 428, 490, 491} tii[15,133] := {109} tii[15,134] := {279} tii[15,135] := {86, 340} tii[15,136] := {159} tii[15,137] := {34, 182} tii[15,138] := {222} tii[15,139] := {69, 154, 282, 389} tii[15,140] := {68, 262} tii[15,141] := {58, 237} tii[15,142] := {90, 419} tii[15,143] := {179} tii[15,144] := {32, 184, 285, 427} tii[15,145] := {363} tii[15,146] := {110, 198, 313, 432} tii[15,147] := {101, 319} tii[15,148] := {51, 152, 398, 488} tii[15,149] := {338, 443} tii[15,150] := {259} tii[15,151] := {13, 146, 229, 377} tii[15,152] := {65, 264, 348, 463} tii[15,153] := {38, 193, 341, 503} tii[15,154] := {280, 391} tii[15,155] := {95, 209, 406, 407} tii[15,156] := {469} tii[15,157] := {236} tii[15,158] := {45, 298, 400, 506} tii[15,159] := {91, 296} tii[15,160] := {126, 256, 375, 481} tii[15,161] := {28, 196, 287, 430} tii[15,162] := {412, 514} tii[15,163] := {23, 232, 342, 524} tii[15,164] := {318} tii[15,165] := {150, 378} tii[15,166] := {78, 380, 454, 525} tii[15,167] := {394, 536} tii[15,168] := {70, 246, 367, 530} tii[15,169] := {308, 444} tii[15,170] := {137, 268, 458, 459} tii[15,171] := {115, 425, 489, 540} tii[15,172] := {5, 187, 286, 497} tii[15,173] := {339, 513} tii[15,174] := {158, 372, 519, 520} tii[15,175] := {132, 357} tii[15,176] := {52, 254, 346, 480} tii[15,177] := {203, 433} tii[15,178] := {20, 245, 345, 528} tii[15,179] := {188, 329, 501, 502} tii[15,180] := {212, 429, 538, 539} tii[15,181] := {9} tii[15,182] := {3, 18} tii[15,183] := {46} tii[15,184] := {14, 166} tii[15,185] := {11, 36} tii[15,186] := {79} tii[15,187] := {7, 37, 118, 211} tii[15,188] := {2, 49, 81, 157} tii[15,189] := {92} tii[15,190] := {31, 302} tii[15,191] := {16, 63} tii[15,192] := {43, 98, 195, 316} tii[15,193] := {151} tii[15,194] := {12, 64, 276, 388} tii[15,195] := {10, 82, 107, 208} tii[15,196] := {6, 96, 217, 410} tii[15,197] := {164, 270} tii[15,198] := {0, 123, 167, 351} tii[15,199] := {180} tii[15,200] := {84, 197, 314, 431} tii[15,201] := {35, 97} tii[15,202] := {260} tii[15,203] := {40, 186, 307, 499} tii[15,204] := {15, 125, 156, 267} tii[15,205] := {248, 390} tii[15,206] := {8, 173, 194, 408} tii[15,207] := {274, 479} tii[15,208] := {17, 143} tii[15,209] := {4, 108, 175, 328} tii[15,210] := {1, 142, 227, 462} cell#24 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {35} tii[22,2] := {41} tii[22,3] := {36} tii[22,4] := {46, 47} tii[22,5] := {52} tii[22,6] := {40} tii[22,7] := {50, 51} tii[22,8] := {37} tii[22,9] := {48, 49} tii[22,10] := {53, 54} tii[22,11] := {42} tii[22,12] := {26} tii[22,13] := {38, 39} tii[22,14] := {23} tii[22,15] := {33, 34} tii[22,16] := {44, 45} tii[22,17] := {12} tii[22,18] := {21, 22} tii[22,19] := {31, 32} tii[22,20] := {18, 43} tii[22,21] := {27} tii[22,22] := {14} tii[22,23] := {24, 25} tii[22,24] := {11} tii[22,25] := {19, 20} tii[22,26] := {29, 30} tii[22,27] := {5} tii[22,28] := {9, 10} tii[22,29] := {16, 17} tii[22,30] := {8, 28} tii[22,31] := {1} tii[22,32] := {3, 4} tii[22,33] := {6, 7} tii[22,34] := {2, 15} tii[22,35] := {0, 13} cell#25 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {62} tii[14,2] := {76, 103} tii[14,3] := {97, 121} tii[14,4] := {83} tii[14,5] := {66} tii[14,6] := {86, 118} tii[14,7] := {42, 92} tii[14,8] := {110, 130} tii[14,9] := {77, 127} tii[14,10] := {54, 115} tii[14,11] := {98, 136} tii[14,12] := {111, 141} tii[14,13] := {100} tii[14,14] := {85} tii[14,15] := {68, 128} tii[14,16] := {60, 109} tii[14,17] := {94, 137} tii[14,18] := {67} tii[14,19] := {56, 134} tii[14,20] := {37, 125} tii[14,21] := {44, 93} tii[14,22] := {80, 143} tii[14,23] := {28, 106} tii[14,24] := {96, 146} tii[14,25] := {39, 139} tii[14,26] := {25, 132} tii[14,27] := {59, 147} tii[14,28] := {14, 123} tii[14,29] := {79, 150} tii[14,30] := {95, 152} tii[14,31] := {82} tii[14,32] := {65} tii[14,33] := {48, 117} tii[14,34] := {43, 91} tii[14,35] := {71, 129} tii[14,36] := {47} tii[14,37] := {38, 126} tii[14,38] := {24, 114} tii[14,39] := {30, 70} tii[14,40] := {58, 135} tii[14,41] := {18, 87} tii[14,42] := {78, 140} tii[14,43] := {33} tii[14,44] := {26, 133} tii[14,45] := {20, 52} tii[14,46] := {16, 124} tii[14,47] := {41, 142} tii[14,48] := {8, 113} tii[14,49] := {11, 69} tii[14,50] := {57, 145} tii[14,51] := {7, 84} tii[14,52] := {75, 149} tii[14,53] := {17, 138} tii[14,54] := {9, 131} tii[14,55] := {27, 144} tii[14,56] := {4, 122} tii[14,57] := {40, 148} tii[14,58] := {2, 112} tii[14,59] := {55, 151} tii[14,60] := {64, 153} tii[14,61] := {46} tii[14,62] := {35, 74} tii[14,63] := {50} tii[14,64] := {53, 90} tii[14,65] := {29, 73} tii[14,66] := {22, 89} tii[14,67] := {49} tii[14,68] := {61, 108} tii[14,69] := {31, 72} tii[14,70] := {36, 105} tii[14,71] := {19, 88} tii[14,72] := {13, 102} tii[14,73] := {21} tii[14,74] := {45, 120} tii[14,75] := {12, 34} tii[14,76] := {6, 51} tii[14,77] := {23, 119} tii[14,78] := {10, 116} tii[14,79] := {3, 63} tii[14,80] := {1, 81} tii[14,81] := {32, 107} tii[14,82] := {15, 104} tii[14,83] := {5, 101} tii[14,84] := {0, 99} cell#26 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {209} tii[15,2] := {268, 269} tii[15,3] := {338, 339} tii[15,4] := {287} tii[15,5] := {265} tii[15,6] := {348, 349} tii[15,7] := {301, 302, 448, 449} tii[15,8] := {393, 394, 491, 492} tii[15,9] := {364} tii[15,10] := {425, 426} tii[15,11] := {421} tii[15,12] := {299, 300, 483, 484} tii[15,13] := {365, 485} tii[15,14] := {391, 392, 518, 519} tii[15,15] := {479, 480} tii[15,16] := {505, 506, 507, 508} tii[15,17] := {251, 416} tii[15,18] := {207} tii[15,19] := {266, 267} tii[15,20] := {187} tii[15,21] := {217, 376, 378, 500} tii[15,22] := {314, 434, 463, 528} tii[15,23] := {175, 477} tii[15,24] := {285} tii[15,25] := {122} tii[15,26] := {120, 495} tii[15,27] := {346, 347} tii[15,28] := {342} tii[15,29] := {215, 216, 422, 423} tii[15,30] := {148, 304, 444, 530} tii[15,31] := {74, 167, 478, 539} tii[15,32] := {286, 431} tii[15,33] := {312, 313, 466, 467} tii[15,34] := {234, 367, 515, 545} tii[15,35] := {181} tii[15,36] := {92, 270, 496, 546} tii[15,37] := {418, 419} tii[15,38] := {55, 192, 440, 550} tii[15,39] := {140, 280} tii[15,40] := {453, 454, 455, 456} tii[15,41] := {166, 335, 538, 551} tii[15,42] := {245, 246, 547, 552} tii[15,43] := {336} tii[15,44] := {264, 424} tii[15,45] := {371} tii[15,46] := {147, 298, 445, 446} tii[15,47] := {337, 461} tii[15,48] := {233, 390, 487, 488} tii[15,49] := {296} tii[15,50] := {91, 372, 379, 493} tii[15,51] := {341, 481} tii[15,52] := {54, 293, 309, 521} tii[15,53] := {387, 388, 509, 510} tii[15,54] := {252, 395} tii[15,55] := {165, 435, 459, 522} tii[15,56] := {183, 433} tii[15,57] := {244, 403, 498, 540} tii[15,58] := {420, 494} tii[15,59] := {457, 458, 523, 524} tii[15,60] := {398, 489, 503, 541} tii[15,61] := {8} tii[15,62] := {87} tii[15,63] := {32, 33} tii[15,64] := {80, 81} tii[15,65] := {22} tii[15,66] := {253, 254} tii[15,67] := {143} tii[15,68] := {48} tii[15,69] := {188} tii[15,70] := {67, 68} tii[15,71] := {218, 219, 380, 381} tii[15,72] := {184, 185} tii[15,73] := {89} tii[15,74] := {134, 135} tii[15,75] := {315, 316, 438, 439} tii[15,76] := {127, 128, 242, 243} tii[15,77] := {115, 116} tii[15,78] := {151, 152, 352, 353} tii[15,79] := {260} tii[15,80] := {197, 198} tii[15,81] := {98, 99, 274, 275} tii[15,82] := {210, 362} tii[15,83] := {237, 238, 412, 413} tii[15,84] := {328, 329, 330, 331} tii[15,85] := {109, 414} tii[15,86] := {46} tii[15,87] := {261, 262} tii[15,88] := {211} tii[15,89] := {71} tii[15,90] := {69, 441} tii[15,91] := {85} tii[15,92] := {90, 224, 375, 497} tii[15,93] := {118, 119} tii[15,94] := {190, 191, 320, 321} tii[15,95] := {36, 104, 415, 514} tii[15,96] := {145} tii[15,97] := {164, 290, 462, 526} tii[15,98] := {199, 200} tii[15,99] := {51, 189, 442, 529} tii[15,100] := {343} tii[15,101] := {112} tii[15,102] := {179, 180} tii[15,103] := {220, 221, 427, 428} tii[15,104] := {117} tii[15,105] := {34, 374} tii[15,106] := {226, 227, 385, 386} tii[15,107] := {288, 432} tii[15,108] := {25, 129, 370, 542} tii[15,109] := {278, 279} tii[15,110] := {84, 201} tii[15,111] := {100, 250, 513, 543} tii[15,112] := {194} tii[15,113] := {160, 161, 356, 357} tii[15,114] := {317, 318, 475, 476} tii[15,115] := {18, 61, 340, 464} tii[15,116] := {169, 170, 531, 549} tii[15,117] := {212, 363} tii[15,118] := {7, 45, 263, 490} tii[15,119] := {404, 405, 406, 407} tii[15,120] := {24, 225, 373, 520} tii[15,121] := {146} tii[15,122] := {257, 258} tii[15,123] := {229, 230, 429, 430} tii[15,124] := {11, 163, 294, 536} tii[15,125] := {359, 360} tii[15,126] := {56, 291, 460, 537} tii[15,127] := {110, 239} tii[15,128] := {70, 289} tii[15,129] := {106, 247, 499, 548} tii[15,130] := {470, 471, 472, 473} tii[15,131] := {4, 105, 223, 517} tii[15,132] := {174, 292, 532, 533} tii[15,133] := {21} tii[15,134] := {141} tii[15,135] := {182, 344} tii[15,136] := {47} tii[15,137] := {65, 66} tii[15,138] := {88} tii[15,139] := {126, 240, 271, 397} tii[15,140] := {132, 133} tii[15,141] := {113, 114} tii[15,142] := {72, 443} tii[15,143] := {63} tii[15,144] := {149, 150, 350, 351} tii[15,145] := {259} tii[15,146] := {155, 306, 308, 452} tii[15,147] := {195, 196} tii[15,148] := {41, 107, 417, 516} tii[15,149] := {208, 361} tii[15,150] := {130} tii[15,151] := {96, 97, 272, 273} tii[15,152] := {235, 236, 409, 410} tii[15,153] := {19, 83, 345, 527} tii[15,154] := {142, 283} tii[15,155] := {324, 325, 326, 327} tii[15,156] := {214} tii[15,157] := {31} tii[15,158] := {52, 295, 305, 482} tii[15,159] := {177, 178} tii[15,160] := {95, 231, 384, 504} tii[15,161] := {156, 157, 354, 355} tii[15,162] := {176, 319} tii[15,163] := {26, 213, 232, 511} tii[15,164] := {79} tii[15,165] := {276, 277} tii[15,166] := {101, 368, 389, 512} tii[15,167] := {121, 366} tii[15,168] := {27, 136, 377, 544} tii[15,169] := {86, 206} tii[15,170] := {399, 400, 401, 402} tii[15,171] := {171, 332, 447, 535} tii[15,172] := {13, 153, 168, 465} tii[15,173] := {73, 334} tii[15,174] := {248, 369, 501, 502} tii[15,175] := {111, 256} tii[15,176] := {94, 228, 382, 383} tii[15,177] := {193, 358} tii[15,178] := {28, 222, 241, 486} tii[15,179] := {322, 323, 468, 469} tii[15,180] := {333, 436, 450, 534} tii[15,181] := {3} tii[15,182] := {9, 10} tii[15,183] := {23} tii[15,184] := {123, 124} tii[15,185] := {16, 17} tii[15,186] := {50} tii[15,187] := {77, 78, 172, 173} tii[15,188] := {43, 44, 138, 139} tii[15,189] := {64} tii[15,190] := {15, 297} tii[15,191] := {39, 40} tii[15,192] := {158, 159, 310, 311} tii[15,193] := {131} tii[15,194] := {6, 29, 255, 396} tii[15,195] := {57, 58, 204, 205} tii[15,196] := {2, 20, 186, 437} tii[15,197] := {144, 284} tii[15,198] := {0, 30, 125, 411} tii[15,199] := {14} tii[15,200] := {53, 162, 307, 451} tii[15,201] := {75, 76} tii[15,202] := {42} tii[15,203] := {12, 82, 303, 525} tii[15,204] := {102, 103, 281, 282} tii[15,205] := {49, 137} tii[15,206] := {1, 62, 154, 474} tii[15,207] := {35, 249} tii[15,208] := {37, 38} tii[15,209] := {59, 60, 202, 203} tii[15,210] := {5, 93, 108, 408} cell#27 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {93} tii[9,2] := {103} tii[9,3] := {104} tii[9,4] := {78} tii[9,5] := {64} tii[9,6] := {21} tii[9,7] := {96} tii[9,8] := {37} tii[9,9] := {101} tii[9,10] := {72} tii[9,11] := {58} tii[9,12] := {84} tii[9,13] := {92} tii[9,14] := {99} tii[9,15] := {80} tii[9,16] := {66} tii[9,17] := {91} tii[9,18] := {83} tii[9,19] := {79} tii[9,20] := {33} tii[9,21] := {53} tii[9,22] := {86} tii[9,23] := {95} tii[9,24] := {74} tii[9,25] := {14} tii[9,26] := {48} tii[9,27] := {45} tii[9,28] := {24} tii[9,29] := {69} tii[9,30] := {63} tii[9,31] := {97} tii[9,32] := {7} tii[9,33] := {57} tii[9,34] := {5} tii[9,35] := {82} tii[9,36] := {102} tii[9,37] := {42} tii[9,38] := {71} tii[9,39] := {88} tii[9,40] := {16} tii[9,41] := {100} tii[9,42] := {20} tii[9,43] := {49} tii[9,44] := {98} tii[9,45] := {35} tii[9,46] := {62} tii[9,47] := {55} tii[9,48] := {26} tii[9,49] := {32} tii[9,50] := {52} tii[9,51] := {46} tii[9,52] := {15} tii[9,53] := {85} tii[9,54] := {67} tii[9,55] := {25} tii[9,56] := {11} tii[9,57] := {94} tii[9,58] := {73} tii[9,59] := {31} tii[9,60] := {89} tii[9,61] := {65} tii[9,62] := {34} tii[9,63] := {18} tii[9,64] := {87} tii[9,65] := {50} tii[9,66] := {51} tii[9,67] := {77} tii[9,68] := {70} tii[9,69] := {43} tii[9,70] := {76} tii[9,71] := {39} tii[9,72] := {56} tii[9,73] := {81} tii[9,74] := {54} tii[9,75] := {23} tii[9,76] := {38} tii[9,77] := {19} tii[9,78] := {44} tii[9,79] := {47} tii[9,80] := {4} tii[9,81] := {29} tii[9,82] := {8} tii[9,83] := {2} tii[9,84] := {68} tii[9,85] := {90} tii[9,86] := {60} tii[9,87] := {13} tii[9,88] := {1} tii[9,89] := {9} tii[9,90] := {22} tii[9,91] := {10} tii[9,92] := {41} tii[9,93] := {36} tii[9,94] := {75} tii[9,95] := {3} tii[9,96] := {30} tii[9,97] := {61} tii[9,98] := {40} tii[9,99] := {17} tii[9,100] := {28} tii[9,101] := {6} tii[9,102] := {59} tii[9,103] := {27} tii[9,104] := {12} tii[9,105] := {0} cell#28 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {78} tii[14,2] := {30, 103} tii[14,3] := {50, 122} tii[14,4] := {98} tii[14,5] := {77} tii[14,6] := {12, 119} tii[14,7] := {93, 94} tii[14,8] := {27, 131} tii[14,9] := {29, 128} tii[14,10] := {47, 116} tii[14,11] := {48, 137} tii[14,12] := {67, 142} tii[14,13] := {113} tii[14,14] := {96} tii[14,15] := {9, 129} tii[14,16] := {108, 109} tii[14,17] := {20, 138} tii[14,18] := {75} tii[14,19] := {22, 135} tii[14,20] := {38, 126} tii[14,21] := {89, 90} tii[14,22] := {39, 144} tii[14,23] := {104, 105} tii[14,24] := {60, 147} tii[14,25] := {40, 140} tii[14,26] := {61, 133} tii[14,27] := {62, 148} tii[14,28] := {81, 124} tii[14,29] := {82, 151} tii[14,30] := {100, 153} tii[14,31] := {97} tii[14,32] := {76} tii[14,33] := {1, 118} tii[14,34] := {91, 92} tii[14,35] := {6, 130} tii[14,36] := {51} tii[14,37] := {8, 127} tii[14,38] := {17, 115} tii[14,39] := {68, 69} tii[14,40] := {18, 136} tii[14,41] := {84, 85} tii[14,42] := {34, 141} tii[14,43] := {28} tii[14,44] := {21, 134} tii[14,45] := {45, 46} tii[14,46] := {36, 125} tii[14,47] := {37, 143} tii[14,48] := {57, 114} tii[14,49] := {64, 65} tii[14,50] := {58, 146} tii[14,51] := {44, 83} tii[14,52] := {80, 150} tii[14,53] := {7, 132} tii[14,54] := {15, 123} tii[14,55] := {16, 139} tii[14,56] := {31, 112} tii[14,57] := {32, 145} tii[14,58] := {13, 99} tii[14,59] := {55, 149} tii[14,60] := {41, 152} tii[14,61] := {56} tii[14,62] := {35, 74} tii[14,63] := {53} tii[14,64] := {14, 95} tii[14,65] := {72, 73} tii[14,66] := {49, 88} tii[14,67] := {52} tii[14,68] := {4, 111} tii[14,69] := {70, 71} tii[14,70] := {26, 107} tii[14,71] := {86, 87} tii[14,72] := {66, 102} tii[14,73] := {11} tii[14,74] := {2, 121} tii[14,75] := {24, 25} tii[14,76] := {42, 43} tii[14,77] := {19, 120} tii[14,78] := {59, 117} tii[14,79] := {23, 63} tii[14,80] := {10, 54} tii[14,81] := {0, 110} tii[14,82] := {5, 106} tii[14,83] := {33, 101} tii[14,84] := {3, 79} cell#29 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1, 1, 1, 1],[1]]+phi[[2, 1],[1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {70, 71} tii[12,2] := {38, 39} tii[12,3] := {85, 86} tii[12,4] := {25, 26} tii[12,5] := {68, 69} tii[12,6] := {80} tii[12,7] := {36, 37} tii[12,8] := {49} tii[12,9] := {96, 97} tii[12,10] := {21, 22} tii[12,11] := {83, 84} tii[12,12] := {93} tii[12,13] := {66, 67} tii[12,14] := {33, 34} tii[12,15] := {42} tii[12,16] := {79} tii[12,17] := {91} tii[12,18] := {47, 48} tii[12,19] := {60} tii[12,20] := {74} tii[12,21] := {102, 103} tii[12,22] := {8, 9} tii[12,23] := {94, 95} tii[12,24] := {101} tii[12,25] := {19, 20} tii[12,26] := {81, 82} tii[12,27] := {27} tii[12,28] := {92} tii[12,29] := {100} tii[12,30] := {76, 77} tii[12,31] := {31, 32} tii[12,32] := {90} tii[12,33] := {41} tii[12,34] := {55} tii[12,35] := {99} tii[12,36] := {104} tii[12,37] := {45, 46} tii[12,38] := {59} tii[12,39] := {73} tii[12,40] := {87} tii[12,41] := {12, 13} tii[12,42] := {56, 57} tii[12,43] := {23, 24} tii[12,44] := {43, 44} tii[12,45] := {14, 15} tii[12,46] := {53, 54} tii[12,47] := {28, 29} tii[12,48] := {65} tii[12,49] := {50} tii[12,50] := {6, 7} tii[12,51] := {51, 52} tii[12,52] := {16, 17} tii[12,53] := {64} tii[12,54] := {35} tii[12,55] := {78} tii[12,56] := {63} tii[12,57] := {2, 3} tii[12,58] := {61, 62} tii[12,59] := {75} tii[12,60] := {10, 11} tii[12,61] := {89} tii[12,62] := {30} tii[12,63] := {98} tii[12,64] := {58} tii[12,65] := {88} tii[12,66] := {0, 1} tii[12,67] := {4, 5} tii[12,68] := {18} tii[12,69] := {40} tii[12,70] := {72} cell#30 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {32} tii[14,2] := {25, 61} tii[14,3] := {46, 78} tii[14,4] := {47} tii[14,5] := {57} tii[14,6] := {42, 82} tii[14,7] := {48, 90} tii[14,8] := {66, 98} tii[14,9] := {59, 99} tii[14,10] := {38, 115} tii[14,11] := {89, 116} tii[14,12] := {102, 131} tii[14,13] := {68} tii[14,14] := {80} tii[14,15] := {24, 101} tii[14,16] := {69, 107} tii[14,17] := {45, 118} tii[14,18] := {100} tii[14,19] := {40, 119} tii[14,20] := {22, 132} tii[14,21] := {79, 127} tii[14,22] := {65, 133} tii[14,23] := {70, 138} tii[14,24] := {83, 144} tii[14,25] := {58, 134} tii[14,26] := {37, 145} tii[14,27] := {88, 146} tii[14,28] := {30, 150} tii[14,29] := {103, 151} tii[14,30] := {114, 153} tii[14,31] := {53} tii[14,32] := {72} tii[14,33] := {10, 92} tii[14,34] := {54, 95} tii[14,35] := {28, 109} tii[14,36] := {91} tii[14,37] := {23, 111} tii[14,38] := {9, 125} tii[14,39] := {71, 113} tii[14,40] := {44, 126} tii[14,41] := {55, 129} tii[14,42] := {60, 140} tii[14,43] := {73} tii[14,44] := {39, 128} tii[14,45] := {50, 94} tii[14,46] := {21, 141} tii[14,47] := {64, 142} tii[14,48] := {14, 148} tii[14,49] := {36, 112} tii[14,50] := {84, 149} tii[14,51] := {20, 122} tii[14,52] := {96, 152} tii[14,53] := {35, 110} tii[14,54] := {15, 123} tii[14,55] := {52, 124} tii[14,56] := {7, 136} tii[14,57] := {74, 137} tii[14,58] := {1, 121} tii[14,59] := {86, 147} tii[14,60] := {62, 135} tii[14,61] := {17} tii[14,62] := {6, 29} tii[14,63] := {41} tii[14,64] := {12, 43} tii[14,65] := {33, 67} tii[14,66] := {18, 77} tii[14,67] := {81} tii[14,68] := {27, 63} tii[14,69] := {56, 106} tii[14,70] := {26, 97} tii[14,71] := {49, 120} tii[14,72] := {34, 130} tii[14,73] := {51} tii[14,74] := {13, 87} tii[14,75] := {31, 76} tii[14,76] := {19, 93} tii[14,77] := {11, 117} tii[14,78] := {16, 143} tii[14,79] := {8, 105} tii[14,80] := {2, 85} tii[14,81] := {4, 75} tii[14,82] := {3, 108} tii[14,83] := {5, 139} tii[14,84] := {0, 104} cell#31 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {48} tii[7,2] := {64} tii[7,3] := {24, 77} tii[7,4] := {38, 99} tii[7,5] := {76} tii[7,6] := {57, 98} tii[7,7] := {80} tii[7,8] := {33, 94} tii[7,9] := {52, 114} tii[7,10] := {23, 108} tii[7,11] := {93} tii[7,12] := {14, 89} tii[7,13] := {75, 113} tii[7,14] := {37, 124} tii[7,15] := {46, 130} tii[7,16] := {107} tii[7,17] := {88, 123} tii[7,18] := {71, 129} tii[7,19] := {96} tii[7,20] := {44, 110} tii[7,21] := {66, 126} tii[7,22] := {109} tii[7,23] := {32, 120} tii[7,24] := {21, 106} tii[7,25] := {91, 125} tii[7,26] := {51, 134} tii[7,27] := {62, 138} tii[7,28] := {29, 128} tii[7,29] := {119} tii[7,30] := {19, 117} tii[7,31] := {42, 140} tii[7,32] := {105, 133} tii[7,33] := {11, 103} tii[7,34] := {87, 137} tii[7,35] := {55, 144} tii[7,36] := {70, 145} tii[7,37] := {127} tii[7,38] := {116, 139} tii[7,39] := {102, 143} tii[7,40] := {101, 146} tii[7,41] := {18} tii[7,42] := {28} tii[7,43] := {25} tii[7,44] := {17, 60} tii[7,45] := {39} tii[7,46] := {27, 83} tii[7,47] := {9, 50} tii[7,48] := {36, 68} tii[7,49] := {34} tii[7,50] := {16, 92} tii[7,51] := {15, 65} tii[7,52] := {53} tii[7,53] := {8, 72} tii[7,54] := {26, 112} tii[7,55] := {47, 84} tii[7,56] := {35, 121} tii[7,57] := {3, 61} tii[7,58] := {43, 111} tii[7,59] := {45} tii[7,60] := {20, 118} tii[7,61] := {22, 81} tii[7,62] := {67} tii[7,63] := {12, 104} tii[7,64] := {30, 132} tii[7,65] := {7, 78} tii[7,66] := {6, 86} tii[7,67] := {41, 136} tii[7,68] := {63, 100} tii[7,69] := {54, 141} tii[7,70] := {56, 122} tii[7,71] := {2, 73} tii[7,72] := {69, 135} tii[7,73] := {59} tii[7,74] := {31, 97} tii[7,75] := {82} tii[7,76] := {13, 95} tii[7,77] := {79, 115} tii[7,78] := {5, 90} tii[7,79] := {74, 131} tii[7,80] := {85, 142} tii[7,81] := {10} tii[7,82] := {4, 40} tii[7,83] := {1, 49} tii[7,84] := {0, 58} cell#32 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {33} tii[11,2] := {22} tii[11,3] := {30, 31} tii[11,4] := {11} tii[11,5] := {20, 21} tii[11,6] := {28, 29} tii[11,7] := {10} tii[11,8] := {17, 18} tii[11,9] := {26, 27} tii[11,10] := {34, 35} tii[11,11] := {4} tii[11,12] := {8, 9} tii[11,13] := {15, 16} tii[11,14] := {24, 25} tii[11,15] := {14, 32} tii[11,16] := {0} tii[11,17] := {2, 3} tii[11,18] := {6, 7} tii[11,19] := {12, 13} tii[11,20] := {5, 23} tii[11,21] := {1, 19} cell#33 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {11} tii[19,2] := {34} tii[19,3] := {47} tii[19,4] := {24} tii[19,5] := {17} tii[19,6] := {54} tii[19,7] := {37} tii[19,8] := {64} tii[19,9] := {40} tii[19,10] := {50} tii[19,11] := {69} tii[19,12] := {73} tii[19,13] := {41} tii[19,14] := {80} tii[19,15] := {84} tii[19,16] := {93} tii[19,17] := {94} tii[19,18] := {105} tii[19,19] := {43} tii[19,20] := {32} tii[19,21] := {70} tii[19,22] := {58} tii[19,23] := {82} tii[19,24] := {60} tii[19,25] := {66} tii[19,26] := {53} tii[19,27] := {87} tii[19,28] := {92} tii[19,29] := {61} tii[19,30] := {74} tii[19,31] := {96} tii[19,32] := {68} tii[19,33] := {97} tii[19,34] := {49} tii[19,35] := {106} tii[19,36] := {91} tii[19,37] := {107} tii[19,38] := {100} tii[19,39] := {114} tii[19,40] := {76} tii[19,41] := {85} tii[19,42] := {99} tii[19,43] := {103} tii[19,44] := {77} tii[19,45] := {109} tii[19,46] := {98} tii[19,47] := {110} tii[19,48] := {115} tii[19,49] := {112} tii[19,50] := {83} tii[19,51] := {116} tii[19,52] := {118} tii[19,53] := {78} tii[19,54] := {120} tii[19,55] := {117} tii[19,56] := {121} tii[19,57] := {122} tii[19,58] := {123} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {1} tii[19,62] := {4} tii[19,63] := {5} tii[19,64] := {8} tii[19,65] := {2} tii[19,66] := {10} tii[19,67] := {22} tii[19,68] := {16} tii[19,69] := {21} tii[19,70] := {12} tii[19,71] := {38} tii[19,72] := {46} tii[19,73] := {13} tii[19,74] := {31} tii[19,75] := {57} tii[19,76] := {7} tii[19,77] := {23} tii[19,78] := {51} tii[19,79] := {30} tii[19,80] := {9} tii[19,81] := {29} tii[19,82] := {36} tii[19,83] := {72} tii[19,84] := {59} tii[19,85] := {25} tii[19,86] := {88} tii[19,87] := {14} tii[19,88] := {63} tii[19,89] := {67} tii[19,90] := {55} tii[19,91] := {48} tii[19,92] := {90} tii[19,93] := {42} tii[19,94] := {101} tii[19,95] := {79} tii[19,96] := {104} tii[19,97] := {27} tii[19,98] := {39} tii[19,99] := {15} tii[19,100] := {52} tii[19,101] := {19} tii[19,102] := {56} tii[19,103] := {75} tii[19,104] := {44} tii[19,105] := {28} tii[19,106] := {81} tii[19,107] := {86} tii[19,108] := {35} tii[19,109] := {71} tii[19,110] := {102} tii[19,111] := {65} tii[19,112] := {33} tii[19,113] := {95} tii[19,114] := {111} tii[19,115] := {62} tii[19,116] := {45} tii[19,117] := {113} tii[19,118] := {89} tii[19,119] := {108} tii[19,120] := {119} tii[19,121] := {0} tii[19,122] := {3} tii[19,123] := {6} tii[19,124] := {20} tii[19,125] := {18} tii[19,126] := {26} cell#34 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {54} tii[14,2] := {19, 84} tii[14,3] := {32, 109} tii[14,4] := {74} tii[14,5] := {53} tii[14,6] := {8, 102} tii[14,7] := {69, 70} tii[14,8] := {17, 121} tii[14,9] := {18, 117} tii[14,10] := {29, 100} tii[14,11] := {30, 128} tii[14,12] := {46, 135} tii[14,13] := {95} tii[14,14] := {73} tii[14,15] := {7, 118} tii[14,16] := {90, 91} tii[14,17] := {13, 129} tii[14,18] := {52} tii[14,19] := {15, 126} tii[14,20] := {25, 115} tii[14,21] := {67, 68} tii[14,22] := {26, 136} tii[14,23] := {85, 86} tii[14,24] := {39, 140} tii[14,25] := {28, 133} tii[14,26] := {42, 124} tii[14,27] := {43, 141} tii[14,28] := {59, 114} tii[14,29] := {60, 144} tii[14,30] := {78, 147} tii[14,31] := {111} tii[14,32] := {93} tii[14,33] := {1, 127} tii[14,34] := {106, 107} tii[14,35] := {5, 137} tii[14,36] := {72} tii[14,37] := {6, 134} tii[14,38] := {10, 125} tii[14,39] := {88, 89} tii[14,40] := {11, 142} tii[14,41] := {103, 104} tii[14,42] := {21, 145} tii[14,43] := {63} tii[14,44] := {14, 139} tii[14,45] := {81, 82} tii[14,46] := {23, 132} tii[14,47] := {24, 146} tii[14,48] := {36, 123} tii[14,49] := {98, 99} tii[14,50] := {37, 148} tii[14,51] := {112, 113} tii[14,52] := {56, 150} tii[14,53] := {27, 143} tii[14,54] := {40, 138} tii[14,55] := {41, 149} tii[14,56] := {57, 131} tii[14,57] := {58, 151} tii[14,58] := {75, 130} tii[14,59] := {76, 152} tii[14,60] := {94, 153} tii[14,61] := {35} tii[14,62] := {22, 51} tii[14,63] := {34} tii[14,64] := {9, 71} tii[14,65] := {49, 50} tii[14,66] := {31, 66} tii[14,67] := {33} tii[14,68] := {3, 92} tii[14,69] := {47, 48} tii[14,70] := {16, 87} tii[14,71] := {64, 65} tii[14,72] := {45, 83} tii[14,73] := {44} tii[14,74] := {2, 108} tii[14,75] := {61, 62} tii[14,76] := {79, 80} tii[14,77] := {12, 105} tii[14,78] := {38, 101} tii[14,79] := {96, 97} tii[14,80] := {77, 110} tii[14,81] := {0, 120} tii[14,82] := {4, 119} tii[14,83] := {20, 116} tii[14,84] := {55, 122} cell#35 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {25} tii[6,2] := {32} tii[6,3] := {21} tii[6,4] := {16} tii[6,5] := {26} tii[6,6] := {31} tii[6,7] := {17} tii[6,8] := {13} tii[6,9] := {24} tii[6,10] := {9} tii[6,11] := {29} tii[6,12] := {34} tii[6,13] := {14} tii[6,14] := {10} tii[6,15] := {19} tii[6,16] := {7} tii[6,17] := {23} tii[6,18] := {4} tii[6,19] := {28} tii[6,20] := {33} tii[6,21] := {11} tii[6,22] := {8} tii[6,23] := {15} tii[6,24] := {5} tii[6,25] := {18} tii[6,26] := {2} tii[6,27] := {22} tii[6,28] := {1} tii[6,29] := {27} tii[6,30] := {30} tii[6,31] := {20} tii[6,32] := {12} tii[6,33] := {6} tii[6,34] := {3} tii[6,35] := {0} cell#36 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {42} tii[9,2] := {69} tii[9,3] := {76} tii[9,4] := {56} tii[9,5] := {70} tii[9,6] := {48} tii[9,7] := {83} tii[9,8] := {61} tii[9,9] := {91} tii[9,10] := {81} tii[9,11] := {86} tii[9,12] := {87} tii[9,13] := {93} tii[9,14] := {99} tii[9,15] := {100} tii[9,16] := {102} tii[9,17] := {103} tii[9,18] := {104} tii[9,19] := {30} tii[9,20] := {6} tii[9,21] := {14} tii[9,22] := {43} tii[9,23] := {54} tii[9,24] := {31} tii[9,25] := {35} tii[9,26] := {55} tii[9,27] := {12} tii[9,28] := {49} tii[9,29] := {22} tii[9,30] := {19} tii[9,31] := {57} tii[9,32] := {24} tii[9,33] := {68} tii[9,34] := {17} tii[9,35] := {32} tii[9,36] := {67} tii[9,37] := {73} tii[9,38] := {74} tii[9,39] := {44} tii[9,40] := {38} tii[9,41] := {52} tii[9,42] := {51} tii[9,43] := {82} tii[9,44] := {58} tii[9,45] := {88} tii[9,46] := {89} tii[9,47] := {95} tii[9,48] := {75} tii[9,49] := {20} tii[9,50] := {33} tii[9,51] := {29} tii[9,52] := {36} tii[9,53] := {71} tii[9,54] := {46} tii[9,55] := {50} tii[9,56] := {26} tii[9,57] := {80} tii[9,58] := {59} tii[9,59] := {64} tii[9,60] := {65} tii[9,61] := {92} tii[9,62] := {41} tii[9,63] := {37} tii[9,64] := {72} tii[9,65] := {96} tii[9,66] := {60} tii[9,67] := {97} tii[9,68] := {101} tii[9,69] := {77} tii[9,70] := {78} tii[9,71] := {90} tii[9,72] := {94} tii[9,73] := {84} tii[9,74] := {98} tii[9,75] := {3} tii[9,76] := {8} tii[9,77] := {1} tii[9,78] := {15} tii[9,79] := {11} tii[9,80] := {16} tii[9,81] := {4} tii[9,82] := {27} tii[9,83] := {9} tii[9,84] := {21} tii[9,85] := {40} tii[9,86] := {23} tii[9,87] := {39} tii[9,88] := {5} tii[9,89] := {53} tii[9,90] := {28} tii[9,91] := {25} tii[9,92] := {7} tii[9,93] := {45} tii[9,94] := {34} tii[9,95] := {10} tii[9,96] := {62} tii[9,97] := {63} tii[9,98] := {85} tii[9,99] := {66} tii[9,100] := {13} tii[9,101] := {18} tii[9,102] := {47} tii[9,103] := {79} tii[9,104] := {0} tii[9,105] := {2} cell#37 , |C| = 175 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1, 1],[2, 1]]+phi[[1, 1, 1],[2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[8,1] := {130, 131} tii[8,2] := {128, 129} tii[8,3] := {150, 151} tii[8,4] := {102, 103} tii[8,5] := {164, 165} tii[8,6] := {168} tii[8,7] := {173} tii[8,8] := {171, 172} tii[8,9] := {174} tii[8,10] := {126, 127} tii[8,11] := {144, 145} tii[8,12] := {158} tii[8,13] := {18, 19} tii[8,14] := {104, 105} tii[8,15] := {30, 31} tii[8,16] := {38, 39} tii[8,17] := {67, 68} tii[8,18] := {84, 85} tii[8,19] := {42, 43} tii[8,20] := {65, 66} tii[8,21] := {155} tii[8,22] := {44, 45} tii[8,23] := {148, 149} tii[8,24] := {55, 56} tii[8,25] := {166} tii[8,26] := {92, 93} tii[8,27] := {80, 81} tii[8,28] := {106, 107} tii[8,29] := {137} tii[8,30] := {162, 163} tii[8,31] := {61, 62} tii[8,32] := {117} tii[8,33] := {112, 113} tii[8,34] := {169} tii[8,35] := {90, 91} tii[8,36] := {154} tii[8,37] := {143} tii[8,38] := {78, 79} tii[8,39] := {146, 147} tii[8,40] := {110, 111} tii[8,41] := {159} tii[8,42] := {142} tii[8,43] := {28, 29} tii[8,44] := {74, 75} tii[8,45] := {114, 115} tii[8,46] := {100, 101} tii[8,47] := {156} tii[8,48] := {82, 83} tii[8,49] := {40, 41} tii[8,50] := {134, 135} tii[8,51] := {167} tii[8,52] := {139} tii[8,53] := {63, 64} tii[8,54] := {161} tii[8,55] := {57, 58} tii[8,56] := {122, 123} tii[8,57] := {124, 125} tii[8,58] := {157} tii[8,59] := {86, 87} tii[8,60] := {140} tii[8,61] := {152, 153} tii[8,62] := {170} tii[8,63] := {119} tii[8,64] := {76, 77} tii[8,65] := {108, 109} tii[8,66] := {141} tii[8,67] := {2, 3} tii[8,68] := {6, 7} tii[8,69] := {4, 5} tii[8,70] := {26, 27} tii[8,71] := {12, 13} tii[8,72] := {46, 47} tii[8,73] := {24, 25} tii[8,74] := {34, 35} tii[8,75] := {116} tii[8,76] := {59, 60} tii[8,77] := {10, 11} tii[8,78] := {36, 37} tii[8,79] := {136} tii[8,80] := {94} tii[8,81] := {88, 89} tii[8,82] := {22, 23} tii[8,83] := {50, 51} tii[8,84] := {120} tii[8,85] := {73} tii[8,86] := {97} tii[8,87] := {16, 17} tii[8,88] := {98, 99} tii[8,89] := {138} tii[8,90] := {52, 53} tii[8,91] := {32, 33} tii[8,92] := {132, 133} tii[8,93] := {95} tii[8,94] := {69, 70} tii[8,95] := {160} tii[8,96] := {121} tii[8,97] := {8, 9} tii[8,98] := {71, 72} tii[8,99] := {20, 21} tii[8,100] := {118} tii[8,101] := {48, 49} tii[8,102] := {96} tii[8,103] := {0, 1} tii[8,104] := {14, 15} tii[8,105] := {54} cell#38 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {71} tii[14,2] := {57, 108} tii[14,3] := {90, 128} tii[14,4] := {94} tii[14,5] := {103} tii[14,6] := {80, 130} tii[14,7] := {95, 139} tii[14,8] := {117, 146} tii[14,9] := {104, 147} tii[14,10] := {76, 151} tii[14,11] := {138, 152} tii[14,12] := {148, 153} tii[14,13] := {69} tii[14,14] := {77} tii[14,15] := {56, 105} tii[14,16] := {70, 116} tii[14,17] := {89, 126} tii[14,18] := {55} tii[14,19] := {78, 129} tii[14,20] := {51, 143} tii[14,21] := {46, 91} tii[14,22] := {115, 144} tii[14,23] := {28, 100} tii[14,24] := {131, 150} tii[14,25] := {54, 120} tii[14,26] := {33, 136} tii[14,27] := {87, 137} tii[14,28] := {22, 119} tii[14,29] := {107, 149} tii[14,30] := {132, 133} tii[14,31] := {44} tii[14,32] := {52} tii[14,33] := {37, 81} tii[14,34] := {45, 88} tii[14,35] := {63, 99} tii[14,36] := {35} tii[14,37] := {53, 101} tii[14,38] := {32, 121} tii[14,39] := {26, 64} tii[14,40] := {86, 123} tii[14,41] := {16, 73} tii[14,42] := {106, 140} tii[14,43] := {20} tii[14,44] := {34, 96} tii[14,45] := {15, 42} tii[14,46] := {18, 113} tii[14,47] := {62, 114} tii[14,48] := {13, 92} tii[14,49] := {9, 49} tii[14,50] := {82, 135} tii[14,51] := {5, 43} tii[14,52] := {109, 110} tii[14,53] := {19, 102} tii[14,54] := {11, 122} tii[14,55] := {41, 124} tii[14,56] := {6, 98} tii[14,57] := {59, 141} tii[14,58] := {3, 74} tii[14,59] := {83, 134} tii[14,60] := {111, 142} tii[14,61] := {47} tii[14,62] := {29, 66} tii[14,63] := {79} tii[14,64] := {39, 85} tii[14,65] := {72, 118} tii[14,66] := {48, 127} tii[14,67] := {36} tii[14,68] := {61, 112} tii[14,69] := {27, 65} tii[14,70] := {58, 145} tii[14,71] := {17, 75} tii[14,72] := {10, 68} tii[14,73] := {12} tii[14,74] := {40, 84} tii[14,75] := {8, 24} tii[14,76] := {4, 30} tii[14,77] := {38, 125} tii[14,78] := {14, 93} tii[14,79] := {2, 25} tii[14,80] := {0, 31} tii[14,81] := {23, 60} tii[14,82] := {21, 97} tii[14,83] := {7, 67} tii[14,84] := {1, 50} cell#39 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {37} tii[9,2] := {58} tii[9,3] := {69} tii[9,4] := {52} tii[9,5] := {68} tii[9,6] := {76} tii[9,7] := {77} tii[9,8] := {87} tii[9,9] := {86} tii[9,10] := {83} tii[9,11] := {93} tii[9,12] := {92} tii[9,13] := {90} tii[9,14] := {97} tii[9,15] := {99} tii[9,16] := {103} tii[9,17] := {102} tii[9,18] := {104} tii[9,19] := {25} tii[9,20] := {4} tii[9,21] := {11} tii[9,22] := {29} tii[9,23] := {40} tii[9,24] := {20} tii[9,25] := {57} tii[9,26] := {51} tii[9,27] := {9} tii[9,28] := {70} tii[9,29] := {18} tii[9,30] := {16} tii[9,31] := {44} tii[9,32] := {43} tii[9,33] := {67} tii[9,34] := {30} tii[9,35] := {26} tii[9,36] := {54} tii[9,37] := {80} tii[9,38] := {79} tii[9,39] := {31} tii[9,40] := {55} tii[9,41] := {49} tii[9,42] := {50} tii[9,43] := {75} tii[9,44] := {46} tii[9,45] := {85} tii[9,46] := {84} tii[9,47] := {94} tii[9,48] := {71} tii[9,49] := {15} tii[9,50] := {27} tii[9,51] := {24} tii[9,52] := {59} tii[9,53] := {60} tii[9,54] := {39} tii[9,55] := {73} tii[9,56] := {47} tii[9,57] := {72} tii[9,58] := {48} tii[9,59] := {66} tii[9,60] := {65} tii[9,61] := {89} tii[9,62] := {36} tii[9,63] := {61} tii[9,64] := {62} tii[9,65] := {96} tii[9,66] := {53} tii[9,67] := {95} tii[9,68] := {101} tii[9,69] := {82} tii[9,70] := {81} tii[9,71] := {88} tii[9,72] := {100} tii[9,73] := {78} tii[9,74] := {98} tii[9,75] := {2} tii[9,76] := {5} tii[9,77] := {1} tii[9,78] := {8} tii[9,79] := {10} tii[9,80] := {28} tii[9,81] := {3} tii[9,82] := {41} tii[9,83] := {19} tii[9,84] := {17} tii[9,85] := {34} tii[9,86] := {14} tii[9,87] := {35} tii[9,88] := {13} tii[9,89] := {42} tii[9,90] := {23} tii[9,91] := {45} tii[9,92] := {6} tii[9,93] := {38} tii[9,94] := {22} tii[9,95] := {21} tii[9,96] := {64} tii[9,97] := {63} tii[9,98] := {91} tii[9,99] := {56} tii[9,100] := {12} tii[9,101] := {32} tii[9,102] := {33} tii[9,103] := {74} tii[9,104] := {0} tii[9,105] := {7} cell#40 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {61} tii[7,2] := {86} tii[7,3] := {98, 99} tii[7,4] := {118, 119} tii[7,5] := {110} tii[7,6] := {124, 125} tii[7,7] := {60} tii[7,8] := {69, 121} tii[7,9] := {93, 136} tii[7,10] := {49, 137} tii[7,11] := {84} tii[7,12] := {33, 143} tii[7,13] := {103, 104} tii[7,14] := {67, 144} tii[7,15] := {56, 146} tii[7,16] := {97} tii[7,17] := {115, 116} tii[7,18] := {92, 132} tii[7,19] := {41} tii[7,20] := {48, 112} tii[7,21] := {65, 129} tii[7,22] := {58} tii[7,23] := {30, 130} tii[7,24] := {19, 140} tii[7,25] := {74, 75} tii[7,26] := {45, 141} tii[7,27] := {36, 145} tii[7,28] := {18, 111} tii[7,29] := {68} tii[7,30] := {9, 126} tii[7,31] := {29, 127} tii[7,32] := {90, 91} tii[7,33] := {5, 107} tii[7,34] := {64, 114} tii[7,35] := {22, 139} tii[7,36] := {28, 131} tii[7,37] := {59} tii[7,38] := {76, 77} tii[7,39] := {53, 101} tii[7,40] := {38, 87} tii[7,41] := {14} tii[7,42] := {27} tii[7,43] := {25} tii[7,44] := {70, 71} tii[7,45] := {43} tii[7,46] := {95, 96} tii[7,47] := {51, 52} tii[7,48] := {81, 82} tii[7,49] := {40} tii[7,50] := {31, 120} tii[7,51] := {72, 73} tii[7,52] := {63} tii[7,53] := {20, 133} tii[7,54] := {47, 134} tii[7,55] := {108, 109} tii[7,56] := {37, 142} tii[7,57] := {11, 117} tii[7,58] := {46, 138} tii[7,59] := {24} tii[7,60] := {8, 85} tii[7,61] := {50, 102} tii[7,62] := {42} tii[7,63] := {4, 105} tii[7,64] := {17, 106} tii[7,65] := {21, 135} tii[7,66] := {2, 78} tii[7,67] := {12, 123} tii[7,68] := {79, 80} tii[7,69] := {16, 113} tii[7,70] := {66, 122} tii[7,71] := {1, 57} tii[7,72] := {13, 88} tii[7,73] := {15} tii[7,74] := {32, 89} tii[7,75] := {26} tii[7,76] := {10, 128} tii[7,77] := {54, 55} tii[7,78] := {3, 83} tii[7,79] := {44, 100} tii[7,80] := {23, 62} tii[7,81] := {7} tii[7,82] := {34, 35} tii[7,83] := {6, 94} tii[7,84] := {0, 39} cell#41 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {33} tii[12,2] := {28} tii[12,3] := {48} tii[12,4] := {44} tii[12,5] := {55} tii[12,6] := {49, 79} tii[12,7] := {57} tii[12,8] := {40, 78} tii[12,9] := {63} tii[12,10] := {29} tii[12,11] := {73} tii[12,12] := {64, 90} tii[12,13] := {86} tii[12,14] := {43} tii[12,15] := {25, 60} tii[12,16] := {72, 98} tii[12,17] := {65, 102} tii[12,18] := {56} tii[12,19] := {38, 77} tii[12,20] := {32, 87} tii[12,21] := {69} tii[12,22] := {15} tii[12,23] := {81} tii[12,24] := {70, 96} tii[12,25] := {26} tii[12,26] := {92} tii[12,27] := {11, 45} tii[12,28] := {80, 101} tii[12,29] := {71, 104} tii[12,30] := {82} tii[12,31] := {41} tii[12,32] := {66, 95} tii[12,33] := {23, 59} tii[12,34] := {18, 75} tii[12,35] := {53, 100} tii[12,36] := {39, 103} tii[12,37] := {52} tii[12,38] := {36, 68} tii[12,39] := {22, 83} tii[12,40] := {10, 91} tii[12,41] := {0} tii[12,42] := {20} tii[12,43] := {2} tii[12,44] := {9} tii[12,45] := {4} tii[12,46] := {42} tii[12,47] := {16} tii[12,48] := {34, 61} tii[12,49] := {21, 47} tii[12,50] := {13} tii[12,51] := {74} tii[12,52] := {30} tii[12,53] := {54, 89} tii[12,54] := {27, 62} tii[12,55] := {50, 97} tii[12,56] := {35, 88} tii[12,57] := {5} tii[12,58] := {67} tii[12,59] := {51, 85} tii[12,60] := {17} tii[12,61] := {37, 93} tii[12,62] := {14, 46} tii[12,63] := {24, 99} tii[12,64] := {19, 76} tii[12,65] := {12, 94} tii[12,66] := {1} tii[12,67] := {7} tii[12,68] := {6, 31} tii[12,69] := {8, 58} tii[12,70] := {3, 84} cell#42 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {34} tii[7,2] := {49} tii[7,3] := {28, 67} tii[7,4] := {45, 81} tii[7,5] := {66} tii[7,6] := {77, 78} tii[7,7] := {68} tii[7,8] := {41, 87} tii[7,9] := {58, 102} tii[7,10] := {53, 105} tii[7,11] := {85} tii[7,12] := {38, 120} tii[7,13] := {97, 98} tii[7,14] := {79, 121} tii[7,15] := {89, 132} tii[7,16] := {103} tii[7,17] := {116, 117} tii[7,18] := {127, 128} tii[7,19] := {48} tii[7,20] := {27, 88} tii[7,21] := {44, 107} tii[7,22] := {65} tii[7,23] := {39, 108} tii[7,24] := {24, 123} tii[7,25] := {75, 76} tii[7,26] := {56, 124} tii[7,27] := {70, 136} tii[7,28] := {26, 125} tii[7,29] := {84} tii[7,30] := {13, 137} tii[7,31] := {43, 138} tii[7,32] := {95, 96} tii[7,33] := {8, 143} tii[7,34] := {109, 110} tii[7,35] := {54, 144} tii[7,36] := {72, 146} tii[7,37] := {104} tii[7,38] := {118, 119} tii[7,39] := {129, 130} tii[7,40] := {111, 140} tii[7,41] := {6} tii[7,42] := {12} tii[7,43] := {11} tii[7,44] := {15, 50} tii[7,45] := {22} tii[7,46] := {32, 64} tii[7,47] := {10, 35} tii[7,48] := {46, 47} tii[7,49] := {21} tii[7,50] := {40, 86} tii[7,51] := {19, 51} tii[7,52] := {37} tii[7,53] := {25, 99} tii[7,54] := {57, 100} tii[7,55] := {61, 62} tii[7,56] := {71, 115} tii[7,57] := {17, 80} tii[7,58] := {92, 93} tii[7,59] := {33} tii[7,60] := {14, 122} tii[7,61] := {30, 69} tii[7,62] := {52} tii[7,63] := {7, 133} tii[7,64] := {31, 134} tii[7,65] := {29, 101} tii[7,66] := {3, 141} tii[7,67] := {42, 142} tii[7,68] := {82, 83} tii[7,69] := {55, 145} tii[7,70] := {112, 113} tii[7,71] := {1, 131} tii[7,72] := {73, 139} tii[7,73] := {20} tii[7,74] := {18, 74} tii[7,75] := {36} tii[7,76] := {16, 106} tii[7,77] := {59, 60} tii[7,78] := {4, 135} tii[7,79] := {90, 91} tii[7,80] := {94, 126} tii[7,81] := {2} tii[7,82] := {5, 23} tii[7,83] := {9, 63} tii[7,84] := {0, 114} cell#43 , |C| = 56 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1, 1],[1, 1]]+phi[[1, 1, 1],[1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[4,1] := {23, 24} tii[4,2] := {30, 31} tii[4,3] := {36, 37} tii[4,4] := {41} tii[4,5] := {38, 39} tii[4,6] := {45, 46} tii[4,7] := {49} tii[4,8] := {50, 51} tii[4,9] := {54} tii[4,10] := {55} tii[4,11] := {4, 5} tii[4,12] := {16, 17} tii[4,13] := {6, 7} tii[4,14] := {12, 13} tii[4,15] := {10, 11} tii[4,16] := {28, 29} tii[4,17] := {18, 19} tii[4,18] := {34} tii[4,19] := {27} tii[4,20] := {43, 44} tii[4,21] := {14, 15} tii[4,22] := {48} tii[4,23] := {25, 26} tii[4,24] := {52} tii[4,25] := {35} tii[4,26] := {47} tii[4,27] := {21, 22} tii[4,28] := {32, 33} tii[4,29] := {42} tii[4,30] := {53} tii[4,31] := {0, 1} tii[4,32] := {2, 3} tii[4,33] := {8, 9} tii[4,34] := {20} tii[4,35] := {40} cell#44 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {15} tii[11,2] := {19} tii[11,3] := {16, 30} tii[11,4] := {26} tii[11,5] := {18, 33} tii[11,6] := {17, 35} tii[11,7] := {20} tii[11,8] := {12, 29} tii[11,9] := {11, 32} tii[11,10] := {8, 34} tii[11,11] := {13} tii[11,12] := {9, 23} tii[11,13] := {7, 27} tii[11,14] := {5, 31} tii[11,15] := {3, 28} tii[11,16] := {10} tii[11,17] := {6, 14} tii[11,18] := {4, 21} tii[11,19] := {2, 24} tii[11,20] := {1, 22} tii[11,21] := {0, 25} cell#45 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {21} tii[7,2] := {36} tii[7,3] := {16, 53} tii[7,4] := {32, 70} tii[7,5] := {52} tii[7,6] := {65, 66} tii[7,7] := {54} tii[7,8] := {29, 75} tii[7,9] := {47, 94} tii[7,10] := {44, 98} tii[7,11] := {73} tii[7,12] := {26, 115} tii[7,13] := {87, 88} tii[7,14] := {67, 116} tii[7,15] := {83, 130} tii[7,16] := {97} tii[7,17] := {113, 114} tii[7,18] := {127, 128} tii[7,19] := {76} tii[7,20] := {45, 82} tii[7,21] := {68, 105} tii[7,22] := {99} tii[7,23] := {62, 106} tii[7,24] := {43, 123} tii[7,25] := {117, 118} tii[7,26] := {92, 124} tii[7,27] := {108, 135} tii[7,28] := {80, 81} tii[7,29] := {120} tii[7,30] := {59, 102} tii[7,31] := {103, 119} tii[7,32] := {133, 134} tii[7,33] := {41, 79} tii[7,34] := {141, 142} tii[7,35] := {121, 129} tii[7,36] := {111, 139} tii[7,37] := {125} tii[7,38] := {137, 138} tii[7,39] := {143, 144} tii[7,40] := {136, 146} tii[7,41] := {2} tii[7,42] := {6} tii[7,43] := {5} tii[7,44] := {8, 37} tii[7,45] := {12} tii[7,46] := {19, 51} tii[7,47] := {4, 22} tii[7,48] := {33, 34} tii[7,49] := {11} tii[7,50] := {28, 74} tii[7,51] := {10, 38} tii[7,52] := {23} tii[7,53] := {14, 89} tii[7,54] := {46, 90} tii[7,55] := {48, 49} tii[7,56] := {63, 112} tii[7,57] := {9, 69} tii[7,58] := {84, 85} tii[7,59] := {20} tii[7,60] := {60, 61} tii[7,61] := {18, 55} tii[7,62] := {39} tii[7,63] := {42, 77} tii[7,64] := {78, 91} tii[7,65] := {17, 93} tii[7,66] := {25, 57} tii[7,67] := {100, 107} tii[7,68] := {71, 72} tii[7,69] := {86, 126} tii[7,70] := {109, 110} tii[7,71] := {15, 40} tii[7,72] := {101, 140} tii[7,73] := {35} tii[7,74] := {31, 64} tii[7,75] := {56} tii[7,76] := {30, 104} tii[7,77] := {95, 96} tii[7,78] := {27, 58} tii[7,79] := {131, 132} tii[7,80] := {122, 145} tii[7,81] := {0} tii[7,82] := {1, 13} tii[7,83] := {3, 50} tii[7,84] := {7, 24} cell#46 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {15} tii[6,2] := {20} tii[6,3] := {18} tii[6,4] := {13} tii[6,5] := {24} tii[6,6] := {27} tii[6,7] := {21} tii[6,8] := {16} tii[6,9] := {28} tii[6,10] := {11} tii[6,11] := {31} tii[6,12] := {32} tii[6,13] := {17} tii[6,14] := {12} tii[6,15] := {23} tii[6,16] := {6} tii[6,17] := {26} tii[6,18] := {5} tii[6,19] := {29} tii[6,20] := {33} tii[6,21] := {14} tii[6,22] := {7} tii[6,23] := {19} tii[6,24] := {4} tii[6,25] := {22} tii[6,26] := {2} tii[6,27] := {25} tii[6,28] := {1} tii[6,29] := {30} tii[6,30] := {34} tii[6,31] := {10} tii[6,32] := {9} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#47 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {21} tii[6,2] := {28} tii[6,3] := {29} tii[6,4] := {32} tii[6,5] := {33} tii[6,6] := {34} tii[6,7] := {20} tii[6,8] := {25} tii[6,9] := {26} tii[6,10] := {19} tii[6,11] := {31} tii[6,12] := {30} tii[6,13] := {11} tii[6,14] := {17} tii[6,15] := {18} tii[6,16] := {9} tii[6,17] := {24} tii[6,18] := {5} tii[6,19] := {22} tii[6,20] := {23} tii[6,21] := {6} tii[6,22] := {7} tii[6,23] := {8} tii[6,24] := {4} tii[6,25] := {16} tii[6,26] := {2} tii[6,27] := {12} tii[6,28] := {1} tii[6,29] := {15} tii[6,30] := {13} tii[6,31] := {14} tii[6,32] := {27} tii[6,33] := {10} tii[6,34] := {3} tii[6,35] := {0} cell#48 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {9} tii[6,2] := {15} tii[6,3] := {14} tii[6,4] := {8} tii[6,5] := {19} tii[6,6] := {22} tii[6,7] := {18} tii[6,8] := {13} tii[6,9] := {23} tii[6,10] := {7} tii[6,11] := {25} tii[6,12] := {28} tii[6,13] := {21} tii[6,14] := {17} tii[6,15] := {26} tii[6,16] := {12} tii[6,17] := {30} tii[6,18] := {10} tii[6,19] := {32} tii[6,20] := {34} tii[6,21] := {20} tii[6,22] := {16} tii[6,23] := {24} tii[6,24] := {11} tii[6,25] := {27} tii[6,26] := {6} tii[6,27] := {31} tii[6,28] := {1} tii[6,29] := {33} tii[6,30] := {29} tii[6,31] := {4} tii[6,32] := {3} tii[6,33] := {2} tii[6,34] := {5} tii[6,35] := {0} cell#49 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {4} tii[6,3] := {5} tii[6,4] := {9} tii[6,5] := {10} tii[6,6] := {18} tii[6,7] := {11} tii[6,8] := {19} tii[6,9] := {21} tii[6,10] := {26} tii[6,11] := {28} tii[6,12] := {32} tii[6,13] := {7} tii[6,14] := {14} tii[6,15] := {15} tii[6,16] := {24} tii[6,17] := {25} tii[6,18] := {13} tii[6,19] := {31} tii[6,20] := {23} tii[6,21] := {12} tii[6,22] := {20} tii[6,23] := {22} tii[6,24] := {27} tii[6,25] := {29} tii[6,26] := {17} tii[6,27] := {33} tii[6,28] := {8} tii[6,29] := {30} tii[6,30] := {34} tii[6,31] := {0} tii[6,32] := {3} tii[6,33] := {16} tii[6,34] := {6} tii[6,35] := {2} cell#50 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {9} tii[3,2] := {14} tii[3,3] := {8, 19} tii[3,4] := {18} tii[3,5] := {13, 23} tii[3,6] := {7, 25} tii[3,7] := {21} tii[3,8] := {17, 26} tii[3,9] := {12, 29} tii[3,10] := {10, 31} tii[3,11] := {24} tii[3,12] := {20, 27} tii[3,13] := {16, 30} tii[3,14] := {11, 32} tii[3,15] := {6, 34} tii[3,16] := {0} tii[3,17] := {4} tii[3,18] := {3, 15} tii[3,19] := {2, 22} tii[3,20] := {5, 28} tii[3,21] := {1, 33} cell#51 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 11} tii[2,6] := {1, 10} tii[2,7] := {0, 12} cell#52 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {6} tii[3,3] := {8, 9} tii[3,4] := {10} tii[3,5] := {17, 18} tii[3,6] := {25, 26} tii[3,7] := {13} tii[3,8] := {23, 24} tii[3,9] := {30, 31} tii[3,10] := {22, 34} tii[3,11] := {11} tii[3,12] := {19, 20} tii[3,13] := {27, 28} tii[3,14] := {14, 33} tii[3,15] := {7, 29} tii[3,16] := {0} tii[3,17] := {1} tii[3,18] := {4, 5} tii[3,19] := {15, 16} tii[3,20] := {12, 32} tii[3,21] := {3, 21} cell#53 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {3} tii[2,2] := {5, 6} tii[2,3] := {7, 8} tii[2,4] := {4, 12} tii[2,5] := {2, 9} tii[2,6] := {1, 11} tii[2,7] := {0, 10} cell#54 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}