TII subcells for the Spin(12,3) x PSp(14,R) block of Spin15 # cell#0 , |C| = 50 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3, 1, 1, 1, 1],[]]+phi[[3],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[22,1] := {0, 2} tii[22,2] := {16, 17} tii[22,3] := {1, 4} tii[22,4] := {18} tii[22,5] := {29, 30} tii[22,6] := {14, 15} tii[22,7] := {24} tii[22,8] := {3, 6} tii[22,9] := {19} tii[22,10] := {31} tii[22,11] := {40, 41} tii[22,12] := {27, 28} tii[22,13] := {37} tii[22,14] := {12, 13} tii[22,15] := {23} tii[22,16] := {35} tii[22,17] := {5, 8} tii[22,18] := {20} tii[22,19] := {32} tii[22,20] := {42} tii[22,21] := {48, 49} tii[22,22] := {38, 39} tii[22,23] := {46} tii[22,24] := {25, 26} tii[22,25] := {36} tii[22,26] := {45} tii[22,27] := {10, 11} tii[22,28] := {22} tii[22,29] := {34} tii[22,30] := {44} tii[22,31] := {7, 9} tii[22,32] := {21} tii[22,33] := {33} tii[22,34] := {43} tii[22,35] := {47} cell#1 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {8} tii[14,2] := {4, 32} tii[14,3] := {18, 42} tii[14,4] := {19} tii[14,5] := {28} tii[14,6] := {14, 53} tii[14,7] := {20, 56} tii[14,8] := {35, 63} tii[14,9] := {29, 69} tii[14,10] := {11, 81} tii[14,11] := {55, 82} tii[14,12] := {75, 99} tii[14,13] := {37} tii[14,14] := {49} tii[14,15] := {30, 74} tii[14,16] := {38, 79} tii[14,17] := {57, 84} tii[14,18] := {72} tii[14,19] := {51, 87} tii[14,20] := {26, 100} tii[14,21] := {46, 95} tii[14,22] := {78, 101} tii[14,23] := {39, 109} tii[14,24] := {92, 115} tii[14,25] := {71, 104} tii[14,26] := {47, 116} tii[14,27] := {94, 117} tii[14,28] := {23, 127} tii[14,29] := {108, 128} tii[14,30] := {121, 139} tii[14,31] := {58} tii[14,32] := {70} tii[14,33] := {52, 91} tii[14,34] := {59, 97} tii[14,35] := {80, 103} tii[14,36] := {90} tii[14,37] := {73, 105} tii[14,38] := {48, 118} tii[14,39] := {66, 113} tii[14,40] := {96, 119} tii[14,41] := {60, 124} tii[14,42] := {110, 130} tii[14,43] := {107} tii[14,44] := {89, 120} tii[14,45] := {86, 126} tii[14,46] := {68, 131} tii[14,47] := {112, 132} tii[14,48] := {45, 140} tii[14,49] := {64, 137} tii[14,50] := {123, 141} tii[14,51] := {61, 145} tii[14,52] := {134, 147} tii[14,53] := {106, 133} tii[14,54] := {85, 142} tii[14,55] := {125, 143} tii[14,56] := {65, 148} tii[14,57] := {136, 149} tii[14,58] := {43, 151} tii[14,59] := {144, 152} tii[14,60] := {150, 153} tii[14,61] := {2} tii[14,62] := {0, 7} tii[14,63] := {13} tii[14,64] := {1, 17} tii[14,65] := {9, 36} tii[14,66] := {3, 41} tii[14,67] := {50} tii[14,68] := {6, 33} tii[14,69] := {25, 77} tii[14,70] := {5, 62} tii[14,71] := {21, 93} tii[14,72] := {10, 98} tii[14,73] := {88} tii[14,74] := {16, 54} tii[14,75] := {67, 111} tii[14,76] := {44, 122} tii[14,77] := {15, 83} tii[14,78] := {12, 114} tii[14,79] := {40, 135} tii[14,80] := {22, 138} tii[14,81] := {34, 76} tii[14,82] := {31, 102} tii[14,83] := {27, 129} tii[14,84] := {24, 146} cell#2 , |C| = 105 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1, 1, 1, 1],[2]]+phi[[1, 1],[2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 63*X+21*X^2 TII subcells: tii[7,1] := {16, 17} tii[7,2] := {25, 26} tii[7,3] := {31} tii[7,4] := {41} tii[7,5] := {34, 35} tii[7,6] := {45} tii[7,7] := {36, 37} tii[7,8] := {43} tii[7,9] := {54} tii[7,10] := {55} tii[7,11] := {47, 48} tii[7,12] := {66} tii[7,13] := {58} tii[7,14] := {67} tii[7,15] := {78} tii[7,16] := {60, 61} tii[7,17] := {73} tii[7,18] := {84} tii[7,19] := {49, 50} tii[7,20] := {56} tii[7,21] := {69} tii[7,22] := {62, 63} tii[7,23] := {71} tii[7,24] := {81} tii[7,25] := {74} tii[7,26] := {82} tii[7,27] := {92} tii[7,28] := {83} tii[7,29] := {75, 76} tii[7,30] := {93} tii[7,31] := {94} tii[7,32] := {86} tii[7,33] := {99} tii[7,34] := {96} tii[7,35] := {100} tii[7,36] := {103} tii[7,37] := {87, 88} tii[7,38] := {97} tii[7,39] := {102} tii[7,40] := {104} tii[7,41] := {2, 3} tii[7,42] := {6, 7} tii[7,43] := {4, 5} tii[7,44] := {20} tii[7,45] := {11, 12} tii[7,46] := {30} tii[7,47] := {13} tii[7,48] := {22} tii[7,49] := {9, 10} tii[7,50] := {42} tii[7,51] := {21} tii[7,52] := {18, 19} tii[7,53] := {51} tii[7,54] := {52} tii[7,55] := {33} tii[7,56] := {65} tii[7,57] := {40} tii[7,58] := {57} tii[7,59] := {14, 15} tii[7,60] := {70} tii[7,61] := {32} tii[7,62] := {27, 28} tii[7,63] := {79} tii[7,64] := {80} tii[7,65] := {53} tii[7,66] := {89} tii[7,67] := {90} tii[7,68] := {46} tii[7,69] := {98} tii[7,70] := {72} tii[7,71] := {77} tii[7,72] := {95} tii[7,73] := {23, 24} tii[7,74] := {44} tii[7,75] := {38, 39} tii[7,76] := {68} tii[7,77] := {59} tii[7,78] := {91} tii[7,79] := {85} tii[7,80] := {101} tii[7,81] := {0, 1} tii[7,82] := {8} tii[7,83] := {29} tii[7,84] := {64} cell#3 , |C| = 27 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2, 1, 1, 1, 1, 1],[]]+phi[[2],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[11,1] := {25, 26} tii[11,2] := {17, 18} tii[11,3] := {23} tii[11,4] := {11, 12} tii[11,5] := {16} tii[11,6] := {22} tii[11,7] := {6, 7} tii[11,8] := {10} tii[11,9] := {15} tii[11,10] := {21} tii[11,11] := {2, 3} tii[11,12] := {5} tii[11,13] := {9} tii[11,14] := {14} tii[11,15] := {20} tii[11,16] := {0, 1} tii[11,17] := {4} tii[11,18] := {8} tii[11,19] := {13} tii[11,20] := {19} tii[11,21] := {24} cell#4 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {3} tii[11,2] := {12} tii[11,3] := {4, 17} tii[11,4] := {16} tii[11,5] := {11, 21} tii[11,6] := {5, 23} tii[11,7] := {20} tii[11,8] := {15, 25} tii[11,9] := {9, 27} tii[11,10] := {6, 30} tii[11,11] := {22} tii[11,12] := {18, 28} tii[11,13] := {13, 31} tii[11,14] := {8, 33} tii[11,15] := {7, 35} tii[11,16] := {19} tii[11,17] := {14, 24} tii[11,18] := {10, 26} tii[11,19] := {2, 29} tii[11,20] := {1, 32} tii[11,21] := {0, 34} cell#5 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {9} tii[6,2] := {14} tii[6,3] := {13} tii[6,4] := {8} tii[6,5] := {18} tii[6,6] := {21} tii[6,7] := {17} tii[6,8] := {12} tii[6,9] := {22} tii[6,10] := {7} tii[6,11] := {24} tii[6,12] := {26} tii[6,13] := {20} tii[6,14] := {16} tii[6,15] := {25} tii[6,16] := {11} tii[6,17] := {27} tii[6,18] := {6} tii[6,19] := {29} tii[6,20] := {31} tii[6,21] := {23} tii[6,22] := {19} tii[6,23] := {28} tii[6,24] := {15} tii[6,25] := {30} tii[6,26] := {10} tii[6,27] := {32} tii[6,28] := {5} tii[6,29] := {33} tii[6,30] := {34} tii[6,31] := {4} tii[6,32] := {3} tii[6,33] := {2} tii[6,34] := {1} tii[6,35] := {0} cell#6 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {9} tii[6,7] := {7} tii[6,8] := {10} tii[6,9] := {11} tii[6,10] := {13} tii[6,11] := {14} tii[6,12] := {19} tii[6,13] := {12} tii[6,14] := {15} tii[6,15] := {16} tii[6,16] := {20} tii[6,17] := {21} tii[6,18] := {24} tii[6,19] := {25} tii[6,20] := {29} tii[6,21] := {17} tii[6,22] := {22} tii[6,23] := {23} tii[6,24] := {26} tii[6,25] := {27} tii[6,26] := {30} tii[6,27] := {31} tii[6,28] := {32} tii[6,29] := {33} tii[6,30] := {34} tii[6,31] := {0} tii[6,32] := {2} tii[6,33] := {8} tii[6,34] := {18} tii[6,35] := {28} cell#7 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 10} tii[2,6] := {1, 11} tii[2,7] := {0, 12} cell#8 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {11} tii[6,7] := {8} tii[6,8] := {14} tii[6,9] := {15} tii[6,10] := {20} tii[6,11] := {21} tii[6,12] := {27} tii[6,13] := {16} tii[6,14] := {22} tii[6,15] := {23} tii[6,16] := {28} tii[6,17] := {29} tii[6,18] := {32} tii[6,19] := {33} tii[6,20] := {34} tii[6,21] := {7} tii[6,22] := {12} tii[6,23] := {13} tii[6,24] := {18} tii[6,25] := {19} tii[6,26] := {24} tii[6,27] := {25} tii[6,28] := {17} tii[6,29] := {31} tii[6,30] := {30} tii[6,31] := {0} tii[6,32] := {2} tii[6,33] := {10} tii[6,34] := {26} tii[6,35] := {9} cell#9 , |C| = 28 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1, 1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[3,1] := {4, 5} tii[3,2] := {7, 8} tii[3,3] := {9} tii[3,4] := {10, 11} tii[3,5] := {13} tii[3,6] := {16} tii[3,7] := {14, 15} tii[3,8] := {17} tii[3,9] := {21} tii[3,10] := {23} tii[3,11] := {18, 19} tii[3,12] := {22} tii[3,13] := {24} tii[3,14] := {26} tii[3,15] := {27} tii[3,16] := {0, 1} tii[3,17] := {2, 3} tii[3,18] := {6} tii[3,19] := {12} tii[3,20] := {20} tii[3,21] := {25} cell#10 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {4, 5} tii[2,4] := {7, 8} tii[2,5] := {9, 10} tii[2,6] := {6, 12} tii[2,7] := {3, 11} cell#11 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}