TII subcells for the Spin(13,2) x PSp(14,R) block of Spin15 # cell#0 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {0} tii[11,2] := {10} tii[11,3] := {1, 15} tii[11,4] := {14} tii[11,5] := {9, 19} tii[11,6] := {2, 22} tii[11,7] := {18} tii[11,8] := {13, 23} tii[11,9] := {8, 25} tii[11,10] := {3, 27} tii[11,11] := {21} tii[11,12] := {17, 26} tii[11,13] := {12, 28} tii[11,14] := {7, 30} tii[11,15] := {4, 32} tii[11,16] := {24} tii[11,17] := {20, 29} tii[11,18] := {16, 31} tii[11,19] := {11, 33} tii[11,20] := {6, 34} tii[11,21] := {5, 35} cell#1 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {0} tii[11,2] := {10} tii[11,3] := {1, 15} tii[11,4] := {14} tii[11,5] := {9, 19} tii[11,6] := {2, 22} tii[11,7] := {18} tii[11,8] := {13, 23} tii[11,9] := {8, 25} tii[11,10] := {3, 27} tii[11,11] := {21} tii[11,12] := {17, 26} tii[11,13] := {12, 28} tii[11,14] := {7, 30} tii[11,15] := {4, 32} tii[11,16] := {24} tii[11,17] := {20, 29} tii[11,18] := {16, 31} tii[11,19] := {11, 33} tii[11,20] := {6, 34} tii[11,21] := {5, 35} cell#2 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 10} tii[2,6] := {1, 11} tii[2,7] := {0, 12} cell#3 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 9} tii[2,5] := {2, 10} tii[2,6] := {1, 11} tii[2,7] := {0, 12} cell#4 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {9} tii[6,7] := {7} tii[6,8] := {10} tii[6,9] := {11} tii[6,10] := {13} tii[6,11] := {14} tii[6,12] := {19} tii[6,13] := {12} tii[6,14] := {15} tii[6,15] := {16} tii[6,16] := {20} tii[6,17] := {21} tii[6,18] := {24} tii[6,19] := {25} tii[6,20] := {29} tii[6,21] := {17} tii[6,22] := {22} tii[6,23] := {23} tii[6,24] := {26} tii[6,25] := {27} tii[6,26] := {30} tii[6,27] := {31} tii[6,28] := {32} tii[6,29] := {33} tii[6,30] := {34} tii[6,31] := {0} tii[6,32] := {2} tii[6,33] := {8} tii[6,34] := {18} tii[6,35] := {28} cell#5 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {3, 4} tii[2,4] := {5, 6} tii[2,5] := {8, 9} tii[2,6] := {10, 11} tii[2,7] := {7, 12} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}