TII subcells for the Spin(8,7) x PSp(14,R) block of Spin15 # cell#0 , |C| = 1 special orbit = [15] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 1 special orbit = [15] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#2 , |C| = 13 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {6, 7} tii[39,2] := {0, 2} tii[39,3] := {8, 9} tii[39,4] := {1, 4} tii[39,5] := {10, 11} tii[39,6] := {3, 5} tii[39,7] := {12} cell#3 , |C| = 8 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6],[1]]+phi[[],[7]] TII depth = 1 TII multiplicity polynomial = 6*X+X^2 TII subcells: tii[39,1] := {7} tii[39,2] := {6} tii[39,3] := {5} tii[39,4] := {4} tii[39,5] := {3} tii[39,6] := {1} tii[39,7] := {0, 2} cell#4 , |C| = 28 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5],[2]]+phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[38,1] := {6} tii[38,2] := {21} tii[38,3] := {9} tii[38,4] := {22} tii[38,5] := {12, 26} tii[38,6] := {18, 27} tii[38,7] := {0} tii[38,8] := {10} tii[38,9] := {3} tii[38,10] := {14} tii[38,11] := {5, 20} tii[38,12] := {15} tii[38,13] := {7} tii[38,14] := {16} tii[38,15] := {8, 23} tii[38,16] := {1} tii[38,17] := {13} tii[38,18] := {4, 19} tii[38,19] := {17} tii[38,20] := {11, 24} tii[38,21] := {2, 25} cell#5 , |C| = 35 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {29, 30} tii[38,2] := {10, 12} tii[38,3] := {31, 32} tii[38,4] := {14, 16} tii[38,5] := {33} tii[38,6] := {34} tii[38,7] := {20, 21} tii[38,8] := {6, 8} tii[38,9] := {22, 23} tii[38,10] := {7, 9} tii[38,11] := {26} tii[38,12] := {0, 3} tii[38,13] := {15, 17} tii[38,14] := {2, 5} tii[38,15] := {19} tii[38,16] := {24, 25} tii[38,17] := {11, 13} tii[38,18] := {27} tii[38,19] := {1, 4} tii[38,20] := {18} tii[38,21] := {28} cell#6 , |C| = 28 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5],[2]]+phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[38,1] := {27} tii[38,2] := {24} tii[38,3] := {21} tii[38,4] := {13} tii[38,5] := {7, 23} tii[38,6] := {19, 25} tii[38,7] := {26} tii[38,8] := {22} tii[38,9] := {16} tii[38,10] := {8} tii[38,11] := {2, 14} tii[38,12] := {20} tii[38,13] := {12} tii[38,14] := {5} tii[38,15] := {0, 10} tii[38,16] := {17} tii[38,17] := {9} tii[38,18] := {3, 15} tii[38,19] := {6} tii[38,20] := {1, 11} tii[38,21] := {4, 18} cell#7 , |C| = 49 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[35,1] := {42, 43} tii[35,2] := {25, 26} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {28, 29} tii[35,7] := {11, 12} tii[35,8] := {32} tii[35,9] := {40} tii[35,10] := {37, 38} tii[35,11] := {30, 31} tii[35,12] := {6, 7} tii[35,13] := {23, 24} tii[35,14] := {27} tii[35,15] := {34} tii[35,16] := {36} tii[35,17] := {13, 14} tii[35,18] := {4, 5} tii[35,19] := {33} tii[35,20] := {16} tii[35,21] := {41} tii[35,22] := {39} tii[35,23] := {45} tii[35,24] := {35} tii[35,25] := {46} tii[35,26] := {18, 19} tii[35,27] := {9, 10} tii[35,28] := {20} tii[35,29] := {2, 3} tii[35,30] := {15} tii[35,31] := {21} tii[35,32] := {0, 1} tii[35,33] := {8} tii[35,34] := {17} tii[35,35] := {22} cell#8 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {13} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {15} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {25} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {16} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {18} tii[37,30] := {3} tii[37,31] := {8} tii[37,32] := {17} tii[37,33] := {14} tii[37,34] := {4} tii[37,35] := {9} cell#9 , |C| = 105 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 1],[2]]+phi[[1, 1],[5]] TII depth = 4 TII multiplicity polynomial = 63*X+21*X^2 TII subcells: tii[34,1] := {104} tii[34,2] := {98} tii[34,3] := {87} tii[34,4] := {61, 103} tii[34,5] := {48} tii[34,6] := {13} tii[34,7] := {99} tii[34,8] := {46} tii[34,9] := {88} tii[34,10] := {69} tii[34,11] := {15, 76} tii[34,12] := {38, 86} tii[34,13] := {64} tii[34,14] := {102} tii[34,15] := {49} tii[34,16] := {8} tii[34,17] := {33} tii[34,18] := {100} tii[34,19] := {65} tii[34,20] := {84} tii[34,21] := {60} tii[34,22] := {96} tii[34,23] := {77} tii[34,24] := {10, 68} tii[34,25] := {91} tii[34,26] := {26, 83} tii[34,27] := {21} tii[34,28] := {93} tii[34,29] := {42} tii[34,30] := {51} tii[34,31] := {59} tii[34,32] := {85} tii[34,33] := {70} tii[34,34] := {17, 78} tii[34,35] := {75} tii[34,36] := {40, 92} tii[34,37] := {66} tii[34,38] := {79} tii[34,39] := {52} tii[34,40] := {11, 89} tii[34,41] := {72} tii[34,42] := {27, 97} tii[34,43] := {25, 95} tii[34,44] := {45, 101} tii[34,45] := {30} tii[34,46] := {19} tii[34,47] := {34} tii[34,48] := {20, 57} tii[34,49] := {31} tii[34,50] := {50} tii[34,51] := {94} tii[34,52] := {4} tii[34,53] := {67} tii[34,54] := {90} tii[34,55] := {16} tii[34,56] := {82} tii[34,57] := {6, 39} tii[34,58] := {32} tii[34,59] := {53} tii[34,60] := {80} tii[34,61] := {29} tii[34,62] := {73} tii[34,63] := {14, 47} tii[34,64] := {36} tii[34,65] := {5, 63} tii[34,66] := {55} tii[34,67] := {0} tii[34,68] := {12} tii[34,69] := {3, 28} tii[34,70] := {23} tii[34,71] := {18} tii[34,72] := {43} tii[34,73] := {74} tii[34,74] := {62} tii[34,75] := {9, 41} tii[34,76] := {24} tii[34,77] := {1, 54} tii[34,78] := {44} tii[34,79] := {35} tii[34,80] := {22, 58} tii[34,81] := {37} tii[34,82] := {7, 71} tii[34,83] := {56} tii[34,84] := {2, 81} cell#10 , |C| = 28 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5],[2]]+phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[38,1] := {6} tii[38,2] := {21} tii[38,3] := {9} tii[38,4] := {22} tii[38,5] := {12, 26} tii[38,6] := {18, 27} tii[38,7] := {0} tii[38,8] := {10} tii[38,9] := {3} tii[38,10] := {14} tii[38,11] := {5, 20} tii[38,12] := {15} tii[38,13] := {7} tii[38,14] := {16} tii[38,15] := {8, 23} tii[38,16] := {1} tii[38,17] := {13} tii[38,18] := {4, 19} tii[38,19] := {17} tii[38,20] := {11, 24} tii[38,21] := {2, 25} cell#11 , |C| = 28 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5],[2]]+phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[38,1] := {27} tii[38,2] := {24} tii[38,3] := {17} tii[38,4] := {7} tii[38,5] := {1, 15} tii[38,6] := {3, 20} tii[38,7] := {26} tii[38,8] := {25} tii[38,9] := {23} tii[38,10] := {19} tii[38,11] := {14, 21} tii[38,12] := {22} tii[38,13] := {18} tii[38,14] := {13} tii[38,15] := {9, 16} tii[38,16] := {12} tii[38,17] := {8} tii[38,18] := {5, 11} tii[38,19] := {4} tii[38,20] := {2, 6} tii[38,21] := {0, 10} cell#12 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {40} tii[35,2] := {43} tii[35,3] := {25, 51} tii[35,4] := {38, 54} tii[35,5] := {44, 55} tii[35,6] := {28} tii[35,7] := {26} tii[35,8] := {9, 39} tii[35,9] := {17, 45} tii[35,10] := {34} tii[35,11] := {27} tii[35,12] := {30} tii[35,13] := {11} tii[35,14] := {12, 41} tii[35,15] := {3, 21} tii[35,16] := {22, 48} tii[35,17] := {37} tii[35,18] := {31} tii[35,19] := {8, 46} tii[35,20] := {20, 36} tii[35,21] := {16, 50} tii[35,22] := {13, 49} tii[35,23] := {23, 52} tii[35,24] := {5, 47} tii[35,25] := {32, 53} tii[35,26] := {18} tii[35,27] := {7} tii[35,28] := {0, 15} tii[35,29] := {14} tii[35,30] := {6, 24} tii[35,31] := {2, 33} tii[35,32] := {19} tii[35,33] := {10, 29} tii[35,34] := {4, 35} tii[35,35] := {1, 42} cell#13 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {21} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {20} tii[30,7] := {24} tii[30,8] := {13} tii[30,9] := {5} tii[30,10] := {22} tii[30,11] := {11} tii[30,12] := {27} tii[30,13] := {17} tii[30,14] := {14} tii[30,15] := {25} tii[30,16] := {19} tii[30,17] := {9} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {3} tii[30,24] := {7} tii[30,25] := {6} tii[30,26] := {12} tii[30,27] := {2} tii[30,28] := {16} tii[30,29] := {8} tii[30,30] := {15} tii[30,31] := {4} tii[30,32] := {1} tii[30,33] := {18} tii[30,34] := {23} tii[30,35] := {0} cell#14 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {26} tii[37,4] := {19} tii[37,5] := {13} tii[37,6] := {0} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {32} tii[37,10] := {10} tii[37,11] := {30} tii[37,12] := {15} tii[37,13] := {28} tii[37,14] := {20} tii[37,15] := {25} tii[37,16] := {1} tii[37,17] := {6} tii[37,18] := {29} tii[37,19] := {11} tii[37,20] := {27} tii[37,21] := {16} tii[37,22] := {24} tii[37,23] := {22} tii[37,24] := {2} tii[37,25] := {7} tii[37,26] := {23} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {18} tii[37,30] := {3} tii[37,31] := {8} tii[37,32] := {17} tii[37,33] := {14} tii[37,34] := {4} tii[37,35] := {9} cell#15 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {21} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {20} tii[30,7] := {24} tii[30,8] := {13} tii[30,9] := {5} tii[30,10] := {22} tii[30,11] := {11} tii[30,12] := {27} tii[30,13] := {17} tii[30,14] := {14} tii[30,15] := {25} tii[30,16] := {19} tii[30,17] := {9} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {3} tii[30,24] := {7} tii[30,25] := {6} tii[30,26] := {12} tii[30,27] := {2} tii[30,28] := {16} tii[30,29] := {8} tii[30,30] := {15} tii[30,31] := {4} tii[30,32] := {1} tii[30,33] := {18} tii[30,34] := {23} tii[30,35] := {0} cell#16 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {49} tii[35,2] := {32} tii[35,3] := {36, 50} tii[35,4] := {51, 54} tii[35,5] := {53, 55} tii[35,6] := {35} tii[35,7] := {20} tii[35,8] := {13, 38} tii[35,9] := {30, 43} tii[35,10] := {45} tii[35,11] := {37} tii[35,12] := {12} tii[35,13] := {27} tii[35,14] := {8, 33} tii[35,15] := {16, 34} tii[35,16] := {23, 42} tii[35,17] := {21} tii[35,18] := {10} tii[35,19] := {14, 39} tii[35,20] := {2, 19} tii[35,21] := {31, 44} tii[35,22] := {26, 46} tii[35,23] := {41, 48} tii[35,24] := {17, 40} tii[35,25] := {47, 52} tii[35,26] := {25} tii[35,27] := {15} tii[35,28] := {5, 24} tii[35,29] := {9} tii[35,30] := {1, 18} tii[35,31] := {6, 28} tii[35,32] := {4} tii[35,33] := {0, 11} tii[35,34] := {3, 22} tii[35,35] := {7, 29} cell#17 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {21} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {8} tii[30,6] := {18} tii[30,7] := {24} tii[30,8] := {13} tii[30,9] := {5} tii[30,10] := {22} tii[30,11] := {12} tii[30,12] := {27} tii[30,13] := {17} tii[30,14] := {14} tii[30,15] := {25} tii[30,16] := {20} tii[30,17] := {10} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {7} tii[30,25] := {4} tii[30,26] := {11} tii[30,27] := {2} tii[30,28] := {15} tii[30,29] := {9} tii[30,30] := {16} tii[30,31] := {6} tii[30,32] := {3} tii[30,33] := {19} tii[30,34] := {23} tii[30,35] := {0} cell#18 , |C| = 105 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 1],[2]]+phi[[1, 1],[5]] TII depth = 4 TII multiplicity polynomial = 63*X+21*X^2 TII subcells: tii[34,1] := {104} tii[34,2] := {98} tii[34,3] := {82} tii[34,4] := {50, 88} tii[34,5] := {42} tii[34,6] := {44} tii[34,7] := {101} tii[34,8] := {46} tii[34,9] := {95} tii[34,10] := {85} tii[34,11] := {49, 68} tii[34,12] := {66, 80} tii[34,13] := {57} tii[34,14] := {103} tii[34,15] := {71} tii[34,16] := {27} tii[34,17] := {30} tii[34,18] := {102} tii[34,19] := {81} tii[34,20] := {89} tii[34,21] := {76} tii[34,22] := {100} tii[34,23] := {90} tii[34,24] := {33, 54} tii[34,25] := {97} tii[34,26] := {52, 70} tii[34,27] := {43} tii[34,28] := {94} tii[34,29] := {59} tii[34,30] := {14} tii[34,31] := {73} tii[34,32] := {91} tii[34,33] := {63} tii[34,34] := {18, 38} tii[34,35] := {86} tii[34,36] := {37, 56} tii[34,37] := {29} tii[34,38] := {75} tii[34,39] := {47} tii[34,40] := {4, 53} tii[34,41] := {64} tii[34,42] := {23, 69} tii[34,43] := {17, 67} tii[34,44] := {36, 79} tii[34,45] := {28} tii[34,46] := {15} tii[34,47] := {5} tii[34,48] := {0, 11} tii[34,49] := {58} tii[34,50] := {72} tii[34,51] := {99} tii[34,52] := {31} tii[34,53] := {83} tii[34,54] := {96} tii[34,55] := {19} tii[34,56] := {93} tii[34,57] := {8, 25} tii[34,58] := {60} tii[34,59] := {74} tii[34,60] := {92} tii[34,61] := {34} tii[34,62] := {87} tii[34,63] := {21, 41} tii[34,64] := {62} tii[34,65] := {35, 55} tii[34,66] := {78} tii[34,67] := {16} tii[34,68] := {6} tii[34,69] := {1, 12} tii[34,70] := {45} tii[34,71] := {20} tii[34,72] := {61} tii[34,73] := {84} tii[34,74] := {77} tii[34,75] := {9, 26} tii[34,76] := {48} tii[34,77] := {22, 40} tii[34,78] := {65} tii[34,79] := {7} tii[34,80] := {2, 13} tii[34,81] := {32} tii[34,82] := {10, 24} tii[34,83] := {51} tii[34,84] := {3, 39} cell#19 , |C| = 140 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[29,1] := {125, 126} tii[29,2] := {132} tii[29,3] := {139} tii[29,4] := {66, 67} tii[29,5] := {110} tii[29,6] := {94, 95} tii[29,7] := {108} tii[29,8] := {128} tii[29,9] := {135} tii[29,10] := {42, 43} tii[29,11] := {7, 8} tii[29,12] := {104, 105} tii[29,13] := {96} tii[29,14] := {73, 74} tii[29,15] := {112} tii[29,16] := {38} tii[29,17] := {120} tii[29,18] := {65} tii[29,19] := {131} tii[29,20] := {68, 69} tii[29,21] := {117, 118} tii[29,22] := {46, 47} tii[29,23] := {109} tii[29,24] := {106, 107} tii[29,25] := {70, 71} tii[29,26] := {82} tii[29,27] := {121} tii[29,28] := {127} tii[29,29] := {91, 92} tii[29,30] := {102} tii[29,31] := {134} tii[29,32] := {119} tii[29,33] := {129} tii[29,34] := {111} tii[29,35] := {133} tii[29,36] := {124} tii[29,37] := {137} tii[29,38] := {136} tii[29,39] := {138} tii[29,40] := {20, 21} tii[29,41] := {60} tii[29,42] := {87} tii[29,43] := {44, 45} tii[29,44] := {4, 5} tii[29,45] := {32, 33} tii[29,46] := {55, 56} tii[29,47] := {83} tii[29,48] := {28} tii[29,49] := {51} tii[29,50] := {103} tii[29,51] := {54} tii[29,52] := {15, 16} tii[29,53] := {99} tii[29,54] := {78, 79} tii[29,55] := {34, 35} tii[29,56] := {50} tii[29,57] := {116} tii[29,58] := {57, 58} tii[29,59] := {84} tii[29,60] := {77} tii[29,61] := {72} tii[29,62] := {123} tii[29,63] := {93} tii[29,64] := {22, 23} tii[29,65] := {13, 14} tii[29,66] := {61} tii[29,67] := {30} tii[29,68] := {88} tii[29,69] := {24, 25} tii[29,70] := {48, 49} tii[29,71] := {89, 90} tii[29,72] := {2, 3} tii[29,73] := {81} tii[29,74] := {59} tii[29,75] := {75, 76} tii[29,76] := {9} tii[29,77] := {101} tii[29,78] := {62} tii[29,79] := {86} tii[29,80] := {26, 27} tii[29,81] := {80} tii[29,82] := {19} tii[29,83] := {113} tii[29,84] := {52, 53} tii[29,85] := {100} tii[29,86] := {98} tii[29,87] := {115} tii[29,88] := {85} tii[29,89] := {97} tii[29,90] := {64} tii[29,91] := {122} tii[29,92] := {114} tii[29,93] := {130} tii[29,94] := {11, 12} tii[29,95] := {29} tii[29,96] := {39} tii[29,97] := {0, 1} tii[29,98] := {6} tii[29,99] := {17, 18} tii[29,100] := {63} tii[29,101] := {10} tii[29,102] := {36, 37} tii[29,103] := {31} tii[29,104] := {40} tii[29,105] := {41} cell#20 , |C| = 175 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[29,1] := {142} tii[29,2] := {95, 168} tii[29,3] := {141, 174} tii[29,4] := {82} tii[29,5] := {76, 131} tii[29,6] := {102} tii[29,7] := {58, 146} tii[29,8] := {114, 153} tii[29,9] := {130, 163} tii[29,10] := {100} tii[29,11] := {65} tii[29,12] := {118} tii[29,13] := {55, 143} tii[29,14] := {89} tii[29,15] := {43, 154} tii[29,16] := {26, 105} tii[29,17] := {97, 159} tii[29,18] := {51, 128} tii[29,19] := {116, 167} tii[29,20] := {117} tii[29,21] := {132} tii[29,22] := {101} tii[29,23] := {33, 151} tii[29,24] := {123} tii[29,25] := {85} tii[29,26] := {6, 135} tii[29,27] := {59, 160} tii[29,28] := {77, 164} tii[29,29] := {110} tii[29,30] := {22, 150} tii[29,31] := {99, 170} tii[29,32] := {56, 158} tii[29,33] := {78, 165} tii[29,34] := {36, 152} tii[29,35] := {96, 169} tii[29,36] := {61, 162} tii[29,37] := {115, 172} tii[29,38] := {113, 171} tii[29,39] := {129, 173} tii[29,40] := {45} tii[29,41] := {16, 87} tii[29,42] := {39, 112} tii[29,43] := {64} tii[29,44] := {44} tii[29,45] := {46} tii[29,46] := {69} tii[29,47] := {34, 104} tii[29,48] := {12, 86} tii[29,49] := {31, 74} tii[29,50] := {62, 127} tii[29,51] := {30, 111} tii[29,52] := {66} tii[29,53] := {57, 120} tii[29,54] := {88} tii[29,55] := {48} tii[29,56] := {5, 103} tii[29,57] := {81, 138} tii[29,58] := {72} tii[29,59] := {42, 107} tii[29,60] := {21, 126} tii[29,61] := {19, 119} tii[29,62] := {98, 147} tii[29,63] := {37, 137} tii[29,64] := {83} tii[29,65] := {67} tii[29,66] := {17, 122} tii[29,67] := {54, 94} tii[29,68] := {40, 140} tii[29,69] := {84} tii[29,70] := {68} tii[29,71] := {106} tii[29,72] := {47} tii[29,73] := {35, 134} tii[29,74] := {3, 121} tii[29,75] := {93} tii[29,76] := {32, 75} tii[29,77] := {63, 149} tii[29,78] := {24, 124} tii[29,79] := {11, 139} tii[29,80] := {49} tii[29,81] := {10, 133} tii[29,82] := {13, 92} tii[29,83] := {80, 155} tii[29,84] := {73} tii[29,85] := {25, 148} tii[29,86] := {18, 145} tii[29,87] := {41, 157} tii[29,88] := {9, 136} tii[29,89] := {20, 144} tii[29,90] := {2, 125} tii[29,91] := {60, 161} tii[29,92] := {38, 156} tii[29,93] := {79, 166} tii[29,94] := {27} tii[29,95] := {14, 52} tii[29,96] := {7, 71} tii[29,97] := {28} tii[29,98] := {15, 53} tii[29,99] := {29} tii[29,100] := {23, 91} tii[29,101] := {4, 70} tii[29,102] := {50} tii[29,103] := {1, 90} tii[29,104] := {8, 109} tii[29,105] := {0, 108} cell#21 , |C| = 27 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5],[1, 1]]+phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[36,1] := {22} tii[36,2] := {19} tii[36,3] := {23} tii[36,4] := {20} tii[36,5] := {24} tii[36,6] := {21, 26} tii[36,7] := {13} tii[36,8] := {16} tii[36,9] := {14} tii[36,10] := {17} tii[36,11] := {15, 25} tii[36,12] := {10} tii[36,13] := {7} tii[36,14] := {11} tii[36,15] := {8, 18} tii[36,16] := {3} tii[36,17] := {5} tii[36,18] := {4, 12} tii[36,19] := {2} tii[36,20] := {1, 6} tii[36,21] := {0, 9} cell#22 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4, 2, 1],[]]+phi[[4],[2, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {62, 64} tii[33,2] := {86, 87} tii[33,3] := {95, 96} tii[33,4] := {101} tii[33,5] := {104} tii[33,6] := {35, 37} tii[33,7] := {71, 72} tii[33,8] := {8, 10} tii[33,9] := {84, 85} tii[33,10] := {25, 26} tii[33,11] := {9, 12} tii[33,12] := {97} tii[33,13] := {27} tii[33,14] := {103} tii[33,15] := {88, 89} tii[33,16] := {68, 69} tii[33,17] := {75, 76} tii[33,18] := {48, 49} tii[33,19] := {91} tii[33,20] := {70} tii[33,21] := {100} tii[33,22] := {41, 43} tii[33,23] := {14, 16} tii[33,24] := {78} tii[33,25] := {29} tii[33,26] := {94} tii[33,27] := {90} tii[33,28] := {77} tii[33,29] := {99} tii[33,30] := {102} tii[33,31] := {31, 33} tii[33,32] := {50, 51} tii[33,33] := {32, 34} tii[33,34] := {58} tii[33,35] := {0, 2} tii[33,36] := {18, 19} tii[33,37] := {73, 74} tii[33,38] := {1, 5} tii[33,39] := {63, 65} tii[33,40] := {20} tii[33,41] := {79} tii[33,42] := {42, 44} tii[33,43] := {15, 17} tii[33,44] := {82, 83} tii[33,45] := {30} tii[33,46] := {92} tii[33,47] := {4, 7} tii[33,48] := {98} tii[33,49] := {22} tii[33,50] := {46} tii[33,51] := {52, 53} tii[33,52] := {36, 38} tii[33,53] := {59} tii[33,54] := {54, 55} tii[33,55] := {66, 67} tii[33,56] := {23, 24} tii[33,57] := {47} tii[33,58] := {80} tii[33,59] := {11, 13} tii[33,60] := {93} tii[33,61] := {28} tii[33,62] := {56} tii[33,63] := {39, 40} tii[33,64] := {60} tii[33,65] := {3, 6} tii[33,66] := {81} tii[33,67] := {21} tii[33,68] := {45} tii[33,69] := {61} tii[33,70] := {57} cell#23 , |C| = 105 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 1],[2]]+phi[[1, 1],[5]] TII depth = 4 TII multiplicity polynomial = 63*X+21*X^2 TII subcells: tii[34,1] := {104} tii[34,2] := {98} tii[34,3] := {87} tii[34,4] := {61, 103} tii[34,5] := {48} tii[34,6] := {13} tii[34,7] := {99} tii[34,8] := {46} tii[34,9] := {88} tii[34,10] := {69} tii[34,11] := {15, 76} tii[34,12] := {38, 86} tii[34,13] := {64} tii[34,14] := {102} tii[34,15] := {49} tii[34,16] := {8} tii[34,17] := {33} tii[34,18] := {100} tii[34,19] := {65} tii[34,20] := {84} tii[34,21] := {60} tii[34,22] := {96} tii[34,23] := {77} tii[34,24] := {10, 68} tii[34,25] := {91} tii[34,26] := {26, 83} tii[34,27] := {21} tii[34,28] := {93} tii[34,29] := {42} tii[34,30] := {51} tii[34,31] := {59} tii[34,32] := {85} tii[34,33] := {70} tii[34,34] := {17, 78} tii[34,35] := {75} tii[34,36] := {40, 92} tii[34,37] := {66} tii[34,38] := {79} tii[34,39] := {52} tii[34,40] := {11, 89} tii[34,41] := {72} tii[34,42] := {27, 97} tii[34,43] := {25, 95} tii[34,44] := {45, 101} tii[34,45] := {30} tii[34,46] := {19} tii[34,47] := {34} tii[34,48] := {20, 57} tii[34,49] := {31} tii[34,50] := {50} tii[34,51] := {94} tii[34,52] := {4} tii[34,53] := {67} tii[34,54] := {90} tii[34,55] := {16} tii[34,56] := {82} tii[34,57] := {6, 39} tii[34,58] := {32} tii[34,59] := {53} tii[34,60] := {80} tii[34,61] := {29} tii[34,62] := {73} tii[34,63] := {14, 47} tii[34,64] := {36} tii[34,65] := {5, 63} tii[34,66] := {55} tii[34,67] := {0} tii[34,68] := {12} tii[34,69] := {3, 28} tii[34,70] := {23} tii[34,71] := {18} tii[34,72] := {43} tii[34,73] := {74} tii[34,74] := {62} tii[34,75] := {9, 41} tii[34,76] := {24} tii[34,77] := {1, 54} tii[34,78] := {44} tii[34,79] := {35} tii[34,80] := {22, 58} tii[34,81] := {37} tii[34,82] := {7, 71} tii[34,83] := {56} tii[34,84] := {2, 81} cell#24 , |C| = 27 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5],[1, 1]]+phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[36,1] := {26} tii[36,2] := {25} tii[36,3] := {24} tii[36,4] := {22} tii[36,5] := {19} tii[36,6] := {15, 20} tii[36,7] := {23} tii[36,8] := {21} tii[36,9] := {18} tii[36,10] := {14} tii[36,11] := {11, 16} tii[36,12] := {17} tii[36,13] := {13} tii[36,14] := {10} tii[36,15] := {7, 12} tii[36,16] := {9} tii[36,17] := {6} tii[36,18] := {3, 8} tii[36,19] := {2} tii[36,20] := {1, 5} tii[36,21] := {0, 4} cell#25 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {78} tii[33,2] := {98} tii[33,3] := {80} tii[33,4] := {99, 100} tii[33,5] := {103, 104} tii[33,6] := {54} tii[33,7] := {86} tii[33,8] := {43} tii[33,9] := {56} tii[33,10] := {57} tii[33,11] := {45} tii[33,12] := {88, 89} tii[33,13] := {61, 62} tii[33,14] := {101, 102} tii[33,15] := {66} tii[33,16] := {36} tii[33,17] := {46} tii[33,18] := {35} tii[33,19] := {69, 70} tii[33,20] := {49, 50} tii[33,21] := {94, 95} tii[33,22] := {17} tii[33,23] := {11} tii[33,24] := {47, 48} tii[33,25] := {21, 22} tii[33,26] := {75, 76} tii[33,27] := {29, 68} tii[33,28] := {13, 58} tii[33,29] := {53, 96} tii[33,30] := {77, 97} tii[33,31] := {63} tii[33,32] := {81} tii[33,33] := {65} tii[33,34] := {84, 85} tii[33,35] := {25} tii[33,36] := {37} tii[33,37] := {87} tii[33,38] := {27} tii[33,39] := {79} tii[33,40] := {41, 42} tii[33,41] := {90, 91} tii[33,42] := {18} tii[33,43] := {12} tii[33,44] := {64} tii[33,45] := {23, 24} tii[33,46] := {82, 83} tii[33,47] := {3} tii[33,48] := {92, 93} tii[33,49] := {9, 10} tii[33,50] := {1, 20} tii[33,51] := {67} tii[33,52] := {55} tii[33,53] := {71, 72} tii[33,54] := {28} tii[33,55] := {44} tii[33,56] := {16} tii[33,57] := {31, 32} tii[33,58] := {59, 60} tii[33,59] := {6} tii[33,60] := {73, 74} tii[33,61] := {14, 15} tii[33,62] := {4, 30} tii[33,63] := {26} tii[33,64] := {39, 40} tii[33,65] := {2} tii[33,66] := {51, 52} tii[33,67] := {7, 8} tii[33,68] := {0, 19} tii[33,69] := {33, 34} tii[33,70] := {5, 38} cell#26 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {104} tii[33,2] := {98} tii[33,3] := {78} tii[33,4] := {46, 96} tii[33,5] := {59, 101} tii[33,6] := {103} tii[33,7] := {89} tii[33,8] := {100} tii[33,9] := {61} tii[33,10] := {94} tii[33,11] := {84} tii[33,12] := {29, 86} tii[33,13] := {71, 92} tii[33,14] := {43, 95} tii[33,15] := {82} tii[33,16] := {44} tii[33,17] := {68} tii[33,18] := {54} tii[33,19] := {17, 72} tii[33,20] := {39, 66} tii[33,21] := {27, 85} tii[33,22] := {36} tii[33,23] := {23} tii[33,24] := {8, 64} tii[33,25] := {13, 33} tii[33,26] := {16, 76} tii[33,27] := {5, 47} tii[33,28] := {1, 32} tii[33,29] := {11, 60} tii[33,30] := {4, 42} tii[33,31] := {102} tii[33,32] := {99} tii[33,33] := {91} tii[33,34] := {80, 97} tii[33,35] := {93} tii[33,36] := {83} tii[33,37] := {90} tii[33,38] := {70} tii[33,39] := {79} tii[33,40] := {56, 81} tii[33,41] := {65, 88} tii[33,42] := {69} tii[33,43] := {55} tii[33,44] := {63} tii[33,45] := {40, 67} tii[33,46] := {49, 75} tii[33,47] := {38} tii[33,48] := {31, 87} tii[33,49] := {26, 52} tii[33,50] := {15, 34} tii[33,51] := {77} tii[33,52] := {62} tii[33,53] := {48, 74} tii[33,54] := {53} tii[33,55] := {45} tii[33,56] := {37} tii[33,57] := {25, 51} tii[33,58] := {30, 58} tii[33,59] := {24} tii[33,60] := {19, 73} tii[33,61] := {14, 35} tii[33,62] := {7, 21} tii[33,63] := {28} tii[33,64] := {18, 41} tii[33,65] := {12} tii[33,66] := {9, 57} tii[33,67] := {6, 22} tii[33,68] := {2, 10} tii[33,69] := {3, 50} tii[33,70] := {0, 20} cell#27 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {144} tii[28,2] := {149, 176} tii[28,3] := {177, 186} tii[28,4] := {185, 188} tii[28,5] := {123} tii[28,6] := {80} tii[28,7] := {130, 165} tii[28,8] := {69, 126} tii[28,9] := {166, 182} tii[28,10] := {104, 143} tii[28,11] := {178, 187} tii[28,12] := {96} tii[28,13] := {108, 150} tii[28,14] := {68} tii[28,15] := {44} tii[28,16] := {59, 111} tii[28,17] := {151, 173} tii[28,18] := {27, 65} tii[28,19] := {90, 129} tii[28,20] := {170, 184} tii[28,21] := {82, 145} tii[28,22] := {58, 125} tii[28,23] := {132, 167} tii[28,24] := {89, 142} tii[28,25] := {38, 102} tii[28,26] := {160, 179} tii[28,27] := {152, 153} tii[28,28] := {137, 138} tii[28,29] := {171, 172} tii[28,30] := {180, 181} tii[28,31] := {106} tii[28,32] := {98, 146} tii[28,33] := {128, 161} tii[28,34] := {124} tii[28,35] := {54} tii[28,36] := {99} tii[28,37] := {110, 155} tii[28,38] := {43, 101} tii[28,39] := {73, 118} tii[28,40] := {141, 164} tii[28,41] := {77, 122} tii[28,42] := {32} tii[28,43] := {131, 168} tii[28,44] := {18} tii[28,45] := {25, 72} tii[28,46] := {8, 30} tii[28,47] := {159, 175} tii[28,48] := {112, 156} tii[28,49] := {49, 95} tii[28,50] := {12, 56} tii[28,51] := {169, 183} tii[28,52] := {5, 35} tii[28,53] := {29, 79} tii[28,54] := {52, 53} tii[28,55] := {97} tii[28,56] := {70} tii[28,57] := {84, 134} tii[28,58] := {45, 91} tii[28,59] := {117, 148} tii[28,60] := {42} tii[28,61] := {26} tii[28,62] := {55} tii[28,63] := {109, 154} tii[28,64] := {36, 85} tii[28,65] := {14, 41} tii[28,66] := {34, 78} tii[28,67] := {140, 163} tii[28,68] := {86, 135} tii[28,69] := {63, 107} tii[28,70] := {13} tii[28,71] := {21, 71} tii[28,72] := {46, 103} tii[28,73] := {157, 174} tii[28,74] := {10, 47} tii[28,75] := {6, 24} tii[28,76] := {40, 94} tii[28,77] := {1, 16} tii[28,78] := {66, 67} tii[28,79] := {83, 133} tii[28,80] := {116, 147} tii[28,81] := {60, 113} tii[28,82] := {37, 100} tii[28,83] := {39, 88} tii[28,84] := {136, 162} tii[28,85] := {64, 121} tii[28,86] := {23, 75} tii[28,87] := {92, 93} tii[28,88] := {11, 51} tii[28,89] := {114, 158} tii[28,90] := {119, 120} tii[28,91] := {81} tii[28,92] := {57, 105} tii[28,93] := {74, 127} tii[28,94] := {33} tii[28,95] := {19, 50} tii[28,96] := {7} tii[28,97] := {87, 139} tii[28,98] := {28, 76} tii[28,99] := {3, 17} tii[28,100] := {0, 9} tii[28,101] := {15, 48} tii[28,102] := {2, 20} tii[28,103] := {61, 115} tii[28,104] := {22, 62} tii[28,105] := {4, 31} cell#28 , |C| = 105 special orbit = [7, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {20} tii[27,8] := {68} tii[27,9] := {44} tii[27,10] := {70} tii[27,11] := {33} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {21} tii[27,20] := {45} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {34} tii[27,33] := {15} tii[27,34] := {9} tii[27,35] := {47} tii[27,36] := {3} tii[27,37] := {32} tii[27,38] := {58} tii[27,39] := {39} tii[27,40] := {14} tii[27,41] := {90} tii[27,42] := {27} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {22} tii[27,47] := {69} tii[27,48] := {38} tii[27,49] := {13} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {50} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {10} tii[27,59] := {59} tii[27,60] := {16} tii[27,61] := {24} tii[27,62] := {52} tii[27,63] := {43} tii[27,64] := {11} tii[27,65] := {79} tii[27,66] := {25} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {35} tii[27,71] := {63} tii[27,72] := {36} tii[27,73] := {97} tii[27,74] := {17} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {81} tii[27,78] := {48} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {12} tii[27,83] := {37} tii[27,84] := {29} tii[27,85] := {60} tii[27,86] := {40} tii[27,87] := {75} tii[27,88] := {0} tii[27,89] := {5} tii[27,90] := {26} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {23} tii[27,95] := {51} tii[27,96] := {42} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {19} tii[27,101] := {85} tii[27,102] := {41} tii[27,103] := {2} tii[27,104] := {8} tii[27,105] := {28} cell#29 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {331} tii[26,2] := {348} tii[26,3] := {260, 379} tii[26,4] := {37, 388} tii[26,5] := {289} tii[26,6] := {83, 410} tii[26,7] := {229} tii[26,8] := {315} tii[26,9] := {214} tii[26,10] := {213, 353} tii[26,11] := {105, 167, 390, 424} tii[26,12] := {148, 221, 408, 426} tii[26,13] := {329} tii[26,14] := {157, 374} tii[26,15] := {275} tii[26,16] := {308} tii[26,17] := {197} tii[26,18] := {170, 380} tii[26,19] := {334} tii[26,20] := {87, 257, 333, 412} tii[26,21] := {310, 368} tii[26,22] := {134, 303, 367, 421} tii[26,23] := {314} tii[26,24] := {128, 399} tii[26,25] := {276} tii[26,26] := {42, 252, 337, 377} tii[26,27] := {248, 323} tii[26,28] := {74, 301, 366, 403} tii[26,29] := {164, 411} tii[26,30] := {138, 222, 407, 423} tii[26,31] := {63} tii[26,32] := {118} tii[26,33] := {272} tii[26,34] := {261} tii[26,35] := {142, 209} tii[26,36] := {190, 264} tii[26,37] := {78} tii[26,38] := {19, 361} tii[26,39] := {292} tii[26,40] := {51, 395} tii[26,41] := {116} tii[26,42] := {182} tii[26,43] := {150} tii[26,44] := {6, 344} tii[26,45] := {171} tii[26,46] := {258} tii[26,47] := {160} tii[26,48] := {282} tii[26,49] := {70, 125, 363, 419} tii[26,50] := {15, 364} tii[26,51] := {161, 238} tii[26,52] := {216} tii[26,53] := {110, 179, 393, 425} tii[26,54] := {7, 34, 346, 394} tii[26,55] := {217, 285} tii[26,56] := {191} tii[26,57] := {84, 375} tii[26,58] := {226} tii[26,59] := {320} tii[26,60] := {235} tii[26,61] := {54, 350} tii[26,62] := {129} tii[26,63] := {253} tii[26,64] := {43, 166, 335, 413} tii[26,65] := {141, 279} tii[26,66] := {27, 93, 332, 385} tii[26,67] := {283} tii[26,68] := {228, 302} tii[26,69] := {189, 324} tii[26,70] := {75, 220, 369, 422} tii[26,71] := {162, 317} tii[26,72] := {165} tii[26,73] := {24, 205, 297, 398} tii[26,74] := {139, 223} tii[26,75] := {10, 158, 273, 382} tii[26,76] := {218, 356} tii[26,77] := {45, 262, 342, 417} tii[26,78] := {72, 299, 306, 405} tii[26,79] := {47} tii[26,80] := {16, 371} tii[26,81] := {250} tii[26,82] := {111} tii[26,83] := {81} tii[26,84] := {30, 391} tii[26,85] := {240} tii[26,86] := {211} tii[26,87] := {121} tii[26,88] := {122, 196} tii[26,89] := {17, 61, 373, 409} tii[26,90] := {175} tii[26,91] := {176, 245} tii[26,92] := {269} tii[26,93] := {65} tii[26,94] := {149} tii[26,95] := {119, 347} tii[26,96] := {281} tii[26,97] := {295} tii[26,98] := {193} tii[26,99] := {103} tii[26,100] := {53, 396} tii[26,101] := {185} tii[26,102] := {153} tii[26,103] := {86, 316} tii[26,104] := {55, 208, 294, 397} tii[26,105] := {104, 237} tii[26,106] := {271, 341} tii[26,107] := {146} tii[26,108] := {243} tii[26,109] := {38, 99, 389, 415} tii[26,110] := {49, 133, 290, 358} tii[26,111] := {147, 284} tii[26,112] := {94, 263, 340, 416} tii[26,113] := {256} tii[26,114] := {124} tii[26,115] := {123, 277} tii[26,116] := {32, 254, 255, 378} tii[26,117] := {195} tii[26,118] := {67, 132, 372, 420} tii[26,119] := {231, 305} tii[26,120] := {13, 203, 230, 355} tii[26,121] := {177, 322} tii[26,122] := {159, 246} tii[26,123] := {59, 300, 304, 404} tii[26,124] := {178} tii[26,125] := {187, 268} tii[26,126] := {90, 267, 338, 387} tii[26,127] := {192} tii[26,128] := {120, 349} tii[26,129] := {239} tii[26,130] := {151} tii[26,131] := {69, 280} tii[26,132] := {80, 174, 330, 384} tii[26,133] := {200} tii[26,134] := {109, 325} tii[26,135] := {236} tii[26,136] := {113} tii[26,137] := {88, 318} tii[26,138] := {23, 206, 296, 352} tii[26,139] := {50, 215, 309, 400} tii[26,140] := {204, 286} tii[26,141] := {135, 357} tii[26,142] := {155} tii[26,143] := {9, 183, 249, 321} tii[26,144] := {44, 265, 339, 386} tii[26,145] := {169, 247} tii[26,146] := {71, 224, 365, 406} tii[26,147] := {57, 351} tii[26,148] := {21, 227, 291, 354} tii[26,149] := {95, 383} tii[26,150] := {106, 180, 392, 418} tii[26,151] := {35} tii[26,152] := {52} tii[26,153] := {36, 98} tii[26,154] := {100} tii[26,155] := {0, 311} tii[26,156] := {140} tii[26,157] := {12, 336} tii[26,158] := {232} tii[26,159] := {85} tii[26,160] := {188} tii[26,161] := {2, 26, 313, 370} tii[26,162] := {64, 137} tii[26,163] := {163} tii[26,164] := {25, 298} tii[26,165] := {102, 173} tii[26,166] := {11, 46, 274, 343} tii[26,167] := {219} tii[26,168] := {4, 73, 234, 307} tii[26,169] := {39} tii[26,170] := {31, 376} tii[26,171] := {112} tii[26,172] := {68} tii[26,173] := {143} tii[26,174] := {20, 62, 362, 402} tii[26,175] := {79, 156} tii[26,176] := {108} tii[26,177] := {194} tii[26,178] := {89} tii[26,179] := {33, 319} tii[26,180] := {207} tii[26,181] := {41, 92, 345, 414} tii[26,182] := {117, 199} tii[26,183] := {184, 266} tii[26,184] := {14, 60, 293, 359} tii[26,185] := {136} tii[26,186] := {244} tii[26,187] := {145, 225} tii[26,188] := {8, 91, 259, 328} tii[26,189] := {58} tii[26,190] := {22, 131, 312, 401} tii[26,191] := {101, 241} tii[26,192] := {96} tii[26,193] := {3, 126, 233, 360} tii[26,194] := {107, 181} tii[26,195] := {76} tii[26,196] := {48, 115} tii[26,197] := {152} tii[26,198] := {56, 278} tii[26,199] := {82, 154} tii[26,200] := {201} tii[26,201] := {28, 97, 251, 326} tii[26,202] := {18, 130, 212, 288} tii[26,203] := {77} tii[26,204] := {29, 172, 270, 381} tii[26,205] := {66, 198} tii[26,206] := {114} tii[26,207] := {5, 168, 186, 327} tii[26,208] := {127, 202} tii[26,209] := {40, 242} tii[26,210] := {1, 144, 210, 287} cell#30 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {90} tii[33,2] := {71} tii[33,3] := {91} tii[33,4] := {73, 102} tii[33,5] := {87, 104} tii[33,6] := {78} tii[33,7] := {52} tii[33,8] := {62} tii[33,9] := {80} tii[33,10] := {50} tii[33,11] := {64} tii[33,12] := {54, 98} tii[33,13] := {51, 85} tii[33,14] := {75, 103} tii[33,15] := {33} tii[33,16] := {63} tii[33,17] := {22} tii[33,18] := {36} tii[33,19] := {35, 92} tii[33,20] := {24, 57} tii[33,21] := {56, 100} tii[33,22] := {45} tii[33,23] := {25} tii[33,24] := {18, 83} tii[33,25] := {15, 48} tii[33,26] := {37, 96} tii[33,27] := {8, 89} tii[33,28] := {4, 77} tii[33,29] := {20, 97} tii[33,30] := {29, 101} tii[33,31] := {79} tii[33,32] := {69} tii[33,33] := {81} tii[33,34] := {70, 94} tii[33,35] := {44} tii[33,36] := {31} tii[33,37] := {58} tii[33,38] := {46} tii[33,39] := {74} tii[33,40] := {32, 67} tii[33,41] := {60, 88} tii[33,42] := {16} tii[33,43] := {26} tii[33,44] := {82} tii[33,45] := {17, 49} tii[33,46] := {72, 95} tii[33,47] := {13} tii[33,48] := {59, 99} tii[33,49] := {6, 27} tii[33,50] := {2, 42} tii[33,51] := {39} tii[33,52] := {55} tii[33,53] := {41, 76} tii[33,54] := {10} tii[33,55] := {65} tii[33,56] := {19} tii[33,57] := {12, 38} tii[33,58] := {53, 86} tii[33,59] := {9} tii[33,60] := {40, 93} tii[33,61] := {5, 21} tii[33,62] := {1, 30} tii[33,63] := {47} tii[33,64] := {34, 68} tii[33,65] := {14} tii[33,66] := {23, 84} tii[33,67] := {7, 28} tii[33,68] := {3, 43} tii[33,69] := {11, 66} tii[33,70] := {0, 61} cell#31 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {103} tii[33,2] := {95} tii[33,3] := {92} tii[33,4] := {71, 101} tii[33,5] := {83, 104} tii[33,6] := {99} tii[33,7] := {84} tii[33,8] := {91} tii[33,9] := {77} tii[33,10] := {78} tii[33,11] := {62} tii[33,12] := {53, 96} tii[33,13] := {46, 74} tii[33,14] := {67, 102} tii[33,15] := {68} tii[33,16] := {59} tii[33,17] := {51} tii[33,18] := {36} tii[33,19] := {37, 86} tii[33,20] := {24, 49} tii[33,21] := {50, 98} tii[33,22] := {42} tii[33,23] := {28} tii[33,24] := {23, 72} tii[33,25] := {16, 40} tii[33,26] := {34, 88} tii[33,27] := {9, 61} tii[33,28] := {5, 48} tii[33,29] := {21, 81} tii[33,30] := {13, 94} tii[33,31] := {100} tii[33,32] := {93} tii[33,33] := {79} tii[33,34] := {64, 89} tii[33,35] := {76} tii[33,36] := {60} tii[33,37] := {85} tii[33,38] := {44} tii[33,39] := {70} tii[33,40] := {30, 57} tii[33,41] := {54, 82} tii[33,42] := {43} tii[33,43] := {29} tii[33,44] := {80} tii[33,45] := {17, 41} tii[33,46] := {65, 90} tii[33,47] := {14} tii[33,48] := {55, 97} tii[33,49] := {6, 26} tii[33,50] := {2, 18} tii[33,51] := {69} tii[33,52] := {52} tii[33,53] := {38, 66} tii[33,54] := {35} tii[33,55] := {63} tii[33,56] := {22} tii[33,57] := {10, 33} tii[33,58] := {47, 75} tii[33,59] := {8} tii[33,60] := {39, 87} tii[33,61] := {4, 20} tii[33,62] := {0, 12} tii[33,63] := {45} tii[33,64] := {31, 58} tii[33,65] := {15} tii[33,66] := {25, 73} tii[33,67] := {7, 27} tii[33,68] := {3, 19} tii[33,69] := {11, 56} tii[33,70] := {1, 32} cell#32 , |C| = 154 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[32,1] := {140, 141} tii[32,2] := {124, 126} tii[32,3] := {116, 117} tii[32,4] := {90, 92} tii[32,5] := {149, 150} tii[32,6] := {104, 106} tii[32,7] := {145, 147} tii[32,8] := {95, 96} tii[32,9] := {151, 152} tii[32,10] := {66, 68} tii[32,11] := {146, 148} tii[32,12] := {153} tii[32,13] := {120, 122} tii[32,14] := {73, 74} tii[32,15] := {130, 131} tii[32,16] := {47, 48} tii[32,17] := {121, 123} tii[32,18] := {134} tii[32,19] := {93, 94} tii[32,20] := {28, 29} tii[32,21] := {83, 84} tii[32,22] := {101} tii[32,23] := {41, 42} tii[32,24] := {59} tii[32,25] := {4, 5} tii[32,26] := {128, 129} tii[32,27] := {16, 17} tii[32,28] := {114, 115} tii[32,29] := {32, 33} tii[32,30] := {97, 98} tii[32,31] := {53, 54} tii[32,32] := {78, 79} tii[32,33] := {8, 9} tii[32,34] := {136, 138} tii[32,35] := {142, 143} tii[32,36] := {22, 23} tii[32,37] := {108, 110} tii[32,38] := {137, 139} tii[32,39] := {43, 45} tii[32,40] := {89, 91} tii[32,41] := {144} tii[32,42] := {69, 71} tii[32,43] := {34, 35} tii[32,44] := {132, 133} tii[32,45] := {55, 56} tii[32,46] := {125, 127} tii[32,47] := {99, 100} tii[32,48] := {135} tii[32,49] := {80, 81} tii[32,50] := {44, 46} tii[32,51] := {109, 111} tii[32,52] := {119} tii[32,53] := {70, 72} tii[32,54] := {103} tii[32,55] := {0, 1} tii[32,56] := {85, 87} tii[32,57] := {10, 11} tii[32,58] := {65, 67} tii[32,59] := {24, 26} tii[32,60] := {49, 51} tii[32,61] := {18, 19} tii[32,62] := {112, 113} tii[32,63] := {36, 37} tii[32,64] := {75, 76} tii[32,65] := {105, 107} tii[32,66] := {60, 61} tii[32,67] := {118} tii[32,68] := {25, 27} tii[32,69] := {86, 88} tii[32,70] := {102} tii[32,71] := {50, 52} tii[32,72] := {82} tii[32,73] := {6, 7} tii[32,74] := {57, 58} tii[32,75] := {20, 21} tii[32,76] := {38, 39} tii[32,77] := {12, 13} tii[32,78] := {63, 64} tii[32,79] := {30, 31} tii[32,80] := {77} tii[32,81] := {62} tii[32,82] := {2, 3} tii[32,83] := {14, 15} tii[32,84] := {40} cell#33 , |C| = 175 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[29,1] := {142} tii[29,2] := {95, 168} tii[29,3] := {141, 174} tii[29,4] := {82} tii[29,5] := {76, 131} tii[29,6] := {102} tii[29,7] := {58, 146} tii[29,8] := {114, 153} tii[29,9] := {130, 163} tii[29,10] := {100} tii[29,11] := {65} tii[29,12] := {118} tii[29,13] := {55, 143} tii[29,14] := {89} tii[29,15] := {43, 154} tii[29,16] := {26, 105} tii[29,17] := {97, 159} tii[29,18] := {51, 128} tii[29,19] := {116, 167} tii[29,20] := {117} tii[29,21] := {132} tii[29,22] := {101} tii[29,23] := {33, 151} tii[29,24] := {123} tii[29,25] := {85} tii[29,26] := {6, 135} tii[29,27] := {59, 160} tii[29,28] := {77, 164} tii[29,29] := {110} tii[29,30] := {22, 150} tii[29,31] := {99, 170} tii[29,32] := {56, 158} tii[29,33] := {78, 165} tii[29,34] := {36, 152} tii[29,35] := {96, 169} tii[29,36] := {61, 162} tii[29,37] := {115, 172} tii[29,38] := {113, 171} tii[29,39] := {129, 173} tii[29,40] := {45} tii[29,41] := {16, 87} tii[29,42] := {39, 112} tii[29,43] := {64} tii[29,44] := {44} tii[29,45] := {46} tii[29,46] := {69} tii[29,47] := {34, 104} tii[29,48] := {12, 86} tii[29,49] := {31, 74} tii[29,50] := {62, 127} tii[29,51] := {30, 111} tii[29,52] := {66} tii[29,53] := {57, 120} tii[29,54] := {88} tii[29,55] := {48} tii[29,56] := {5, 103} tii[29,57] := {81, 138} tii[29,58] := {72} tii[29,59] := {42, 107} tii[29,60] := {21, 126} tii[29,61] := {19, 119} tii[29,62] := {98, 147} tii[29,63] := {37, 137} tii[29,64] := {83} tii[29,65] := {67} tii[29,66] := {17, 122} tii[29,67] := {54, 94} tii[29,68] := {40, 140} tii[29,69] := {84} tii[29,70] := {68} tii[29,71] := {106} tii[29,72] := {47} tii[29,73] := {35, 134} tii[29,74] := {3, 121} tii[29,75] := {93} tii[29,76] := {32, 75} tii[29,77] := {63, 149} tii[29,78] := {24, 124} tii[29,79] := {11, 139} tii[29,80] := {49} tii[29,81] := {10, 133} tii[29,82] := {13, 92} tii[29,83] := {80, 155} tii[29,84] := {73} tii[29,85] := {25, 148} tii[29,86] := {18, 145} tii[29,87] := {41, 157} tii[29,88] := {9, 136} tii[29,89] := {20, 144} tii[29,90] := {2, 125} tii[29,91] := {60, 161} tii[29,92] := {38, 156} tii[29,93] := {79, 166} tii[29,94] := {27} tii[29,95] := {14, 52} tii[29,96] := {7, 71} tii[29,97] := {28} tii[29,98] := {15, 53} tii[29,99] := {29} tii[29,100] := {23, 91} tii[29,101] := {4, 70} tii[29,102] := {50} tii[29,103] := {1, 90} tii[29,104] := {8, 109} tii[29,105] := {0, 108} cell#34 , |C| = 105 special orbit = [7, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {93} tii[27,3] := {56} tii[27,4] := {46} tii[27,5] := {98} tii[27,6] := {83} tii[27,7] := {20} tii[27,8] := {68} tii[27,9] := {44} tii[27,10] := {70} tii[27,11] := {33} tii[27,12] := {101} tii[27,13] := {96} tii[27,14] := {74} tii[27,15] := {73} tii[27,16] := {86} tii[27,17] := {78} tii[27,18] := {103} tii[27,19] := {21} tii[27,20] := {45} tii[27,21] := {87} tii[27,22] := {82} tii[27,23] := {102} tii[27,24] := {94} tii[27,25] := {49} tii[27,26] := {100} tii[27,27] := {66} tii[27,28] := {57} tii[27,29] := {89} tii[27,30] := {71} tii[27,31] := {84} tii[27,32] := {34} tii[27,33] := {15} tii[27,34] := {9} tii[27,35] := {47} tii[27,36] := {3} tii[27,37] := {32} tii[27,38] := {58} tii[27,39] := {39} tii[27,40] := {14} tii[27,41] := {90} tii[27,42] := {27} tii[27,43] := {62} tii[27,44] := {31} tii[27,45] := {77} tii[27,46] := {22} tii[27,47] := {69} tii[27,48] := {38} tii[27,49] := {13} tii[27,50] := {95} tii[27,51] := {80} tii[27,52] := {50} tii[27,53] := {30} tii[27,54] := {67} tii[27,55] := {91} tii[27,56] := {61} tii[27,57] := {76} tii[27,58] := {10} tii[27,59] := {59} tii[27,60] := {16} tii[27,61] := {24} tii[27,62] := {52} tii[27,63] := {43} tii[27,64] := {11} tii[27,65] := {79} tii[27,66] := {25} tii[27,67] := {88} tii[27,68] := {99} tii[27,69] := {4} tii[27,70] := {35} tii[27,71] := {63} tii[27,72] := {36} tii[27,73] := {97} tii[27,74] := {17} tii[27,75] := {54} tii[27,76] := {55} tii[27,77] := {81} tii[27,78] := {48} tii[27,79] := {64} tii[27,80] := {65} tii[27,81] := {92} tii[27,82] := {12} tii[27,83] := {37} tii[27,84] := {29} tii[27,85] := {60} tii[27,86] := {40} tii[27,87] := {75} tii[27,88] := {0} tii[27,89] := {5} tii[27,90] := {26} tii[27,91] := {18} tii[27,92] := {1} tii[27,93] := {7} tii[27,94] := {23} tii[27,95] := {51} tii[27,96] := {42} tii[27,97] := {6} tii[27,98] := {72} tii[27,99] := {53} tii[27,100] := {19} tii[27,101] := {85} tii[27,102] := {41} tii[27,103] := {2} tii[27,104] := {8} tii[27,105] := {28} cell#35 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {154} tii[28,2] := {112, 175} tii[28,3] := {143, 185} tii[28,4] := {157, 188} tii[28,5] := {140} tii[28,6] := {100} tii[28,7] := {89, 168} tii[28,8] := {67, 133} tii[28,9] := {125, 181} tii[28,10] := {86, 153} tii[28,11] := {145, 186} tii[28,12] := {121} tii[28,13] := {65, 159} tii[28,14] := {99} tii[28,15] := {80} tii[28,16] := {33, 132} tii[28,17] := {101, 176} tii[28,18] := {58, 97} tii[28,19] := {50, 152} tii[28,20] := {129, 183} tii[28,21] := {44, 155} tii[28,22] := {27, 142} tii[28,23] := {79, 173} tii[28,24] := {41, 156} tii[28,25] := {14, 127} tii[28,26] := {109, 180} tii[28,27] := {66, 179} tii[28,28] := {49, 174} tii[28,29] := {92, 184} tii[28,30] := {113, 187} tii[28,31] := {123} tii[28,32] := {90, 149} tii[28,33] := {110, 165} tii[28,34] := {141} tii[28,35] := {76} tii[28,36] := {126} tii[28,37] := {72, 161} tii[28,38] := {45, 114} tii[28,39] := {105, 139} tii[28,40] := {93, 172} tii[28,41] := {62, 137} tii[28,42] := {55} tii[28,43] := {91, 169} tii[28,44] := {36} tii[28,45] := {28, 94} tii[28,46] := {22, 53} tii[28,47] := {111, 178} tii[28,48] := {70, 162} tii[28,49] := {42, 118} tii[28,50] := {12, 78} tii[28,51] := {128, 182} tii[28,52] := {5, 60} tii[28,53] := {25, 108} tii[28,54] := {16, 131} tii[28,55] := {122} tii[28,56] := {103} tii[28,57] := {51, 148} tii[28,58] := {82, 119} tii[28,59] := {71, 164} tii[28,60] := {77} tii[28,61] := {57} tii[28,62] := {81} tii[28,63] := {68, 160} tii[28,64] := {19, 115} tii[28,65] := {39, 75} tii[28,66] := {59, 98} tii[28,67] := {88, 171} tii[28,68] := {48, 150} tii[28,69] := {32, 138} tii[28,70] := {37} tii[28,71] := {7, 102} tii[28,72] := {47, 117} tii[28,73] := {107, 177} tii[28,74] := {3, 85} tii[28,75] := {23, 54} tii[28,76] := {18, 130} tii[28,77] := {11, 43} tii[28,78] := {9, 146} tii[28,79] := {46, 147} tii[28,80] := {63, 163} tii[28,81] := {30, 134} tii[28,82] := {13, 124} tii[28,83] := {20, 116} tii[28,84] := {84, 170} tii[28,85] := {26, 144} tii[28,86] := {6, 106} tii[28,87] := {17, 158} tii[28,88] := {2, 87} tii[28,89] := {61, 166} tii[28,90] := {31, 167} tii[28,91] := {104} tii[28,92] := {83, 120} tii[28,93] := {69, 136} tii[28,94] := {56} tii[28,95] := {38, 74} tii[28,96] := {21} tii[28,97] := {52, 151} tii[28,98] := {29, 95} tii[28,99] := {10, 35} tii[28,100] := {4, 24} tii[28,101] := {15, 73} tii[28,102] := {1, 40} tii[28,103] := {34, 135} tii[28,104] := {8, 96} tii[28,105] := {0, 64} cell#36 , |C| = 413 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 2],[]]+phi[[3, 2, 1],[1]]+phi[[3, 1],[2, 1]]+phi[[3],[2, 2]] TII depth = 3 TII multiplicity polynomial = 49*X+140*X^2+21*X^4 TII subcells: tii[26,1] := {384, 385} tii[26,2] := {317, 318} tii[26,3] := {337} tii[26,4] := {175, 176, 408, 409} tii[26,5] := {357, 358} tii[26,6] := {85, 86, 396, 397} tii[26,7] := {292, 293} tii[26,8] := {276, 277} tii[26,9] := {231, 232} tii[26,10] := {300} tii[26,11] := {165, 410} tii[26,12] := {223, 412} tii[26,13] := {382, 383} tii[26,14] := {32, 33, 349, 350} tii[26,15] := {229, 230} tii[26,16] := {359, 360} tii[26,17] := {152, 153} tii[26,18] := {257} tii[26,19] := {345, 346} tii[26,20] := {95, 388} tii[26,21] := {367} tii[26,22] := {146, 406} tii[26,23] := {272, 273} tii[26,24] := {299} tii[26,25] := {244, 245} tii[26,26] := {183, 333} tii[26,27] := {283} tii[26,28] := {241, 371} tii[26,29] := {332} tii[26,30] := {319, 373} tii[26,31] := {109, 110} tii[26,32] := {127, 128} tii[26,33] := {330, 331} tii[26,34] := {278, 279} tii[26,35] := {214} tii[26,36] := {266} tii[26,37] := {156, 157} tii[26,38] := {123, 124, 399, 400} tii[26,39] := {363, 364} tii[26,40] := {46, 47, 377, 378} tii[26,41] := {206, 207} tii[26,42] := {250, 251} tii[26,43] := {101, 102} tii[26,44] := {83, 84, 386, 387} tii[26,45] := {185, 186} tii[26,46] := {335, 336} tii[26,47] := {252, 253} tii[26,48] := {248, 249} tii[26,49] := {116, 403} tii[26,50] := {42, 43, 375, 376} tii[26,51] := {184} tii[26,52] := {305, 306} tii[26,53] := {172, 411} tii[26,54] := {75, 390} tii[26,55] := {242} tii[26,56] := {129, 130} tii[26,57] := {23, 24, 351, 352} tii[26,58] := {290, 291} tii[26,59] := {280, 281} tii[26,60] := {181, 182} tii[26,61] := {7, 8, 324, 325} tii[26,62] := {138, 139} tii[26,63] := {270, 271} tii[26,64] := {73, 389} tii[26,65] := {215} tii[26,66] := {18, 354} tii[26,67] := {239, 240} tii[26,68] := {301} tii[26,69] := {267} tii[26,70] := {122, 407} tii[26,71] := {254} tii[26,72] := {177, 178} tii[26,73] := {115, 366} tii[26,74] := {219} tii[26,75] := {72, 341} tii[26,76] := {307} tii[26,77] := {171, 393} tii[26,78] := {218, 374} tii[26,79] := {204, 205} tii[26,80] := {125, 126, 401, 402} tii[26,81] := {328, 329} tii[26,82] := {62, 63} tii[26,83] := {158, 159} tii[26,84] := {79, 80, 394, 395} tii[26,85] := {200, 201} tii[26,86] := {295, 296} tii[26,87] := {208, 209} tii[26,88] := {137} tii[26,89] := {118, 404} tii[26,90] := {260, 261} tii[26,91] := {196} tii[26,92] := {326, 327} tii[26,93] := {111, 112} tii[26,94] := {87, 88} tii[26,95] := {15, 16, 313, 314} tii[26,96] := {233, 234} tii[26,97] := {311, 312} tii[26,98] := {134, 135} tii[26,99] := {162, 163} tii[26,100] := {44, 45, 380, 381} tii[26,101] := {255, 256} tii[26,102] := {105, 106} tii[26,103] := {4, 5, 286, 287} tii[26,104] := {55, 365} tii[26,105] := {166} tii[26,106] := {338} tii[26,107] := {220, 221} tii[26,108] := {193, 194} tii[26,109] := {76, 398} tii[26,110] := {10, 320} tii[26,111] := {224} tii[26,112] := {100, 392} tii[26,113] := {274, 275} tii[26,114] := {132, 133} tii[26,115] := {213} tii[26,116] := {94, 334} tii[26,117] := {148, 149} tii[26,118] := {120, 405} tii[26,119] := {303} tii[26,120] := {52, 304} tii[26,121] := {265} tii[26,122] := {190} tii[26,123] := {145, 372} tii[26,124] := {191, 192} tii[26,125] := {268} tii[26,126] := {189, 343} tii[26,127] := {50, 51} tii[26,128] := {13, 14, 322, 323} tii[26,129] := {187, 188} tii[26,130] := {92, 93} tii[26,131] := {117} tii[26,132] := {28, 353} tii[26,133] := {143, 144} tii[26,134] := {173} tii[26,135] := {198, 199} tii[26,136] := {64, 65} tii[26,137] := {164} tii[26,138] := {136, 294} tii[26,139] := {59, 369} tii[26,140] := {236} tii[26,141] := {222} tii[26,142] := {107, 108} tii[26,143] := {89, 259} tii[26,144] := {195, 342} tii[26,145] := {197} tii[26,146] := {235, 310} tii[26,147] := {212} tii[26,148] := {131, 302} tii[26,149] := {264} tii[26,150] := {282, 344} tii[26,151] := {68, 69} tii[26,152] := {40, 41} tii[26,153] := {74} tii[26,154] := {160, 161} tii[26,155] := {48, 49, 361, 362} tii[26,156] := {210, 211} tii[26,157] := {19, 20, 347, 348} tii[26,158] := {297, 298} tii[26,159] := {81, 82} tii[26,160] := {262, 263} tii[26,161] := {37, 368} tii[26,162] := {119} tii[26,163] := {179, 180} tii[26,164] := {11, 12, 315, 316} tii[26,165] := {167} tii[26,166] := {27, 340} tii[26,167] := {237, 238} tii[26,168] := {56, 308} tii[26,169] := {70, 71} tii[26,170] := {21, 22, 355, 356} tii[26,171] := {60, 61} tii[26,172] := {113, 114} tii[26,173] := {216, 217} tii[26,174] := {38, 379} tii[26,175] := {96} tii[26,176] := {169, 170} tii[26,177] := {150, 151} tii[26,178] := {90, 91} tii[26,179] := {2, 3, 288, 289} tii[26,180] := {227, 228} tii[26,181] := {77, 391} tii[26,182] := {140} tii[26,183] := {258} tii[26,184] := {9, 321} tii[26,185] := {141, 142} tii[26,186] := {202, 203} tii[26,187] := {225} tii[26,188] := {25, 285} tii[26,189] := {53, 54} tii[26,190] := {39, 370} tii[26,191] := {168} tii[26,192] := {98, 99} tii[26,193] := {36, 309} tii[26,194] := {174} tii[26,195] := {30, 31} tii[26,196] := {58} tii[26,197] := {103, 104} tii[26,198] := {0, 1, 246, 247} tii[26,199] := {97} tii[26,200] := {154, 155} tii[26,201] := {6, 284} tii[26,202] := {17, 243} tii[26,203] := {34, 35} tii[26,204] := {29, 339} tii[26,205] := {121} tii[26,206] := {66, 67} tii[26,207] := {26, 269} tii[26,208] := {147} tii[26,209] := {78} tii[26,210] := {57, 226} cell#37 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {51} tii[35,2] := {36} tii[35,3] := {22, 52} tii[35,4] := {37, 54} tii[35,5] := {46, 55} tii[35,6] := {41} tii[35,7] := {23} tii[35,8] := {5, 38} tii[35,9] := {12, 45} tii[35,10] := {48} tii[35,11] := {42} tii[35,12] := {18} tii[35,13] := {33} tii[35,14] := {3, 34} tii[35,15] := {25, 39} tii[35,16] := {9, 40} tii[35,17] := {28} tii[35,18] := {19} tii[35,19] := {6, 43} tii[35,20] := {11, 27} tii[35,21] := {13, 47} tii[35,22] := {14, 49} tii[35,23] := {20, 50} tii[35,24] := {7, 44} tii[35,25] := {29, 53} tii[35,26] := {32} tii[35,27] := {24} tii[35,28] := {16, 31} tii[35,29] := {15} tii[35,30] := {8, 21} tii[35,31] := {1, 30} tii[35,32] := {10} tii[35,33] := {4, 17} tii[35,34] := {0, 26} tii[35,35] := {2, 35} cell#38 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {24} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {17} tii[30,7] := {23} tii[30,8] := {15} tii[30,9] := {6} tii[30,10] := {21} tii[30,11] := {9} tii[30,12] := {27} tii[30,13] := {20} tii[30,14] := {16} tii[30,15] := {25} tii[30,16] := {19} tii[30,17] := {12} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {4} tii[30,25] := {5} tii[30,26] := {8} tii[30,27] := {2} tii[30,28] := {13} tii[30,29] := {11} tii[30,30] := {14} tii[30,31] := {7} tii[30,32] := {3} tii[30,33] := {18} tii[30,34] := {22} tii[30,35] := {0} cell#39 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {92} tii[33,2] := {71} tii[33,3] := {61} tii[33,4] := {36, 89} tii[33,5] := {50, 98} tii[33,6] := {100} tii[33,7] := {51} tii[33,8] := {96} tii[33,9] := {40} tii[33,10] := {101} tii[33,11] := {97} tii[33,12] := {18, 74} tii[33,13] := {102, 103} tii[33,14] := {31, 91} tii[33,15] := {69} tii[33,16] := {22} tii[33,17] := {78} tii[33,18] := {70} tii[33,19] := {7, 55} tii[33,20] := {82, 83} tii[33,21] := {15, 76} tii[33,22] := {39} tii[33,23] := {32} tii[33,24] := {1, 73} tii[33,25] := {44, 45} tii[33,26] := {5, 90} tii[33,27] := {6, 88} tii[33,28] := {12, 80} tii[33,29] := {13, 99} tii[33,30] := {24, 104} tii[33,31] := {77} tii[33,32] := {62} tii[33,33] := {41} tii[33,34] := {25, 58} tii[33,35] := {86} tii[33,36] := {93} tii[33,37] := {53} tii[33,38] := {87} tii[33,39] := {35} tii[33,40] := {94, 95} tii[33,41] := {19, 48} tii[33,42] := {79} tii[33,43] := {72} tii[33,44] := {42} tii[33,45] := {84, 85} tii[33,46] := {26, 59} tii[33,47] := {54} tii[33,48] := {20, 75} tii[33,49] := {67, 68} tii[33,50] := {49, 81} tii[33,51] := {33} tii[33,52] := {17} tii[33,53] := {8, 29} tii[33,54] := {60} tii[33,55] := {23} tii[33,56] := {52} tii[33,57] := {65, 66} tii[33,58] := {11, 38} tii[33,59] := {34} tii[33,60] := {9, 57} tii[33,61] := {46, 47} tii[33,62] := {30, 64} tii[33,63] := {10} tii[33,64] := {3, 21} tii[33,65] := {16} tii[33,66] := {2, 37} tii[33,67] := {27, 28} tii[33,68] := {14, 43} tii[33,69] := {0, 56} tii[33,70] := {4, 63} cell#40 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {106} tii[28,2] := {114, 155} tii[28,3] := {157, 173} tii[28,4] := {171, 182} tii[28,5] := {79} tii[28,6] := {23} tii[28,7] := {87, 137} tii[28,8] := {16, 64} tii[28,9] := {139, 161} tii[28,10] := {44, 85} tii[28,11] := {160, 176} tii[28,12] := {105} tii[28,13] := {113, 154} tii[28,14] := {77} tii[28,15] := {88} tii[28,16] := {62, 117} tii[28,17] := {156, 172} tii[28,18] := {78, 127} tii[28,19] := {101, 133} tii[28,20] := {170, 181} tii[28,21] := {136, 167} tii[28,22] := {116, 153} tii[28,23] := {169, 180} tii[28,24] := {146, 164} tii[28,25] := {86, 163} tii[28,26] := {178, 185} tii[28,27] := {177, 184} tii[28,28] := {168, 179} tii[28,29] := {183, 187} tii[28,30] := {186, 188} tii[28,31] := {49} tii[28,32] := {37, 93} tii[28,33] := {71, 111} tii[28,34] := {80} tii[28,35] := {14} tii[28,36] := {53} tii[28,37] := {63, 120} tii[28,38] := {6, 54} tii[28,39] := {29, 74} tii[28,40] := {102, 135} tii[28,41] := {31, 76} tii[28,42] := {32} tii[28,43] := {91, 141} tii[28,44] := {51} tii[28,45] := {26, 81} tii[28,46] := {33, 83} tii[28,47] := {129, 152} tii[28,48] := {65, 122} tii[28,49] := {56, 104} tii[28,50] := {52, 107} tii[28,51] := {145, 166} tii[28,52] := {22, 124} tii[28,53] := {82, 125} tii[28,54] := {108, 143} tii[28,55] := {50} tii[28,56] := {28} tii[28,57] := {38, 94} tii[28,58] := {11, 46} tii[28,59] := {72, 112} tii[28,60] := {47} tii[28,61] := {59} tii[28,62] := {7} tii[28,63] := {61, 118} tii[28,64] := {36, 92} tii[28,65] := {48, 100} tii[28,66] := {1, 21} tii[28,67] := {99, 134} tii[28,68] := {40, 96} tii[28,69] := {70, 110} tii[28,70] := {35} tii[28,71] := {60, 115} tii[28,72] := {5, 43} tii[28,73] := {123, 148} tii[28,74] := {34, 130} tii[28,75] := {24, 73} tii[28,76] := {98, 131} tii[28,77] := {8, 84} tii[28,78] := {119, 147} tii[28,79] := {90, 140} tii[28,80] := {128, 151} tii[28,81] := {66, 121} tii[28,82] := {89, 138} tii[28,83] := {42, 95} tii[28,84] := {144, 165} tii[28,85] := {126, 150} tii[28,86] := {58, 149} tii[28,87] := {142, 162} tii[28,88] := {39, 132} tii[28,89] := {159, 175} tii[28,90] := {158, 174} tii[28,91] := {27} tii[28,92] := {10, 45} tii[28,93] := {18, 68} tii[28,94] := {3} tii[28,95] := {0, 13} tii[28,96] := {25} tii[28,97] := {41, 97} tii[28,98] := {2, 30} tii[28,99] := {15, 57} tii[28,100] := {4, 75} tii[28,101] := {12, 55} tii[28,102] := {9, 103} tii[28,103] := {19, 69} tii[28,104] := {20, 67} tii[28,105] := {17, 109} cell#41 , |C| = 175 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[29,1] := {163} tii[29,2] := {125, 168} tii[29,3] := {137, 174} tii[29,4] := {81} tii[29,5] := {23, 126} tii[29,6] := {135} tii[29,7] := {87, 142} tii[29,8] := {55, 151} tii[29,9] := {79, 162} tii[29,10] := {101} tii[29,11] := {62} tii[29,12] := {147} tii[29,13] := {17, 139} tii[29,14] := {122} tii[29,15] := {72, 152} tii[29,16] := {64, 95} tii[29,17] := {44, 158} tii[29,18] := {89, 118} tii[29,19] := {70, 167} tii[29,20] := {119} tii[29,21] := {156} tii[29,22] := {102} tii[29,23] := {33, 149} tii[29,24] := {148} tii[29,25] := {120} tii[29,26] := {35, 129} tii[29,27] := {91, 159} tii[29,28] := {65, 164} tii[29,29] := {138} tii[29,30] := {54, 146} tii[29,31] := {90, 170} tii[29,32] := {51, 157} tii[29,33] := {109, 165} tii[29,34] := {71, 150} tii[29,35] := {86, 169} tii[29,36] := {92, 161} tii[29,37] := {108, 172} tii[29,38] := {104, 171} tii[29,39] := {124, 173} tii[29,40] := {41} tii[29,41] := {19, 75} tii[29,42] := {31, 100} tii[29,43] := {61} tii[29,44] := {40} tii[29,45] := {45} tii[29,46] := {105} tii[29,47] := {5, 94} tii[29,48] := {43, 74} tii[29,49] := {27, 58} tii[29,50] := {15, 117} tii[29,51] := {69, 99} tii[29,52] := {60} tii[29,53] := {11, 111} tii[29,54] := {121} tii[29,55] := {84} tii[29,56] := {24, 93} tii[29,57] := {22, 132} tii[29,58] := {106} tii[29,59] := {4, 96} tii[29,60] := {50, 116} tii[29,61] := {42, 110} tii[29,62] := {37, 143} tii[29,63] := {68, 131} tii[29,64] := {83} tii[29,65] := {66} tii[29,66] := {3, 113} tii[29,67] := {47, 80} tii[29,68] := {10, 134} tii[29,69] := {82} tii[29,70] := {103} tii[29,71] := {136} tii[29,72] := {46} tii[29,73] := {6, 128} tii[29,74] := {18, 112} tii[29,75] := {123} tii[29,76] := {28, 59} tii[29,77] := {16, 145} tii[29,78] := {2, 114} tii[29,79] := {36, 133} tii[29,80] := {85} tii[29,81] := {34, 127} tii[29,82] := {48, 78} tii[29,83] := {30, 153} tii[29,84] := {107} tii[29,85] := {53, 144} tii[29,86] := {20, 141} tii[29,87] := {32, 155} tii[29,88] := {8, 130} tii[29,89] := {52, 140} tii[29,90] := {21, 115} tii[29,91] := {49, 160} tii[29,92] := {73, 154} tii[29,93] := {67, 166} tii[29,94] := {25} tii[29,95] := {12, 38} tii[29,96] := {7, 57} tii[29,97] := {26} tii[29,98] := {13, 39} tii[29,99] := {63} tii[29,100] := {1, 77} tii[29,101] := {29, 56} tii[29,102] := {88} tii[29,103] := {14, 76} tii[29,104] := {0, 98} tii[29,105] := {9, 97} cell#42 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {144} tii[28,2] := {100, 173} tii[28,3] := {138, 184} tii[28,4] := {152, 187} tii[28,5] := {127} tii[28,6] := {90} tii[28,7] := {79, 166} tii[28,8] := {58, 130} tii[28,9] := {121, 179} tii[28,10] := {84, 151} tii[28,11] := {139, 185} tii[28,12] := {109} tii[28,13] := {57, 156} tii[28,14] := {89} tii[28,15] := {71} tii[28,16] := {28, 129} tii[28,17] := {101, 174} tii[28,18] := {55, 97} tii[28,19] := {46, 150} tii[28,20] := {123, 181} tii[28,21] := {38, 163} tii[28,22] := {21, 153} tii[28,23] := {82, 177} tii[28,24] := {41, 164} tii[28,25] := {13, 141} tii[28,26] := {105, 183} tii[28,27] := {94, 182} tii[28,28] := {74, 178} tii[28,29] := {120, 186} tii[28,30] := {137, 188} tii[28,31] := {111} tii[28,32] := {80, 147} tii[28,33] := {103, 162} tii[28,34] := {128} tii[28,35] := {69} tii[28,36] := {112} tii[28,37] := {65, 158} tii[28,38] := {39, 113} tii[28,39] := {99, 134} tii[28,40] := {86, 170} tii[28,41] := {61, 135} tii[28,42] := {49} tii[28,43] := {81, 167} tii[28,44] := {31} tii[28,45] := {22, 93} tii[28,46] := {19, 52} tii[28,47] := {104, 176} tii[28,48] := {64, 159} tii[28,49] := {42, 119} tii[28,50] := {10, 106} tii[28,51] := {122, 180} tii[28,52] := {5, 87} tii[28,53] := {23, 126} tii[28,54] := {34, 143} tii[28,55] := {110} tii[28,56] := {91} tii[28,57] := {45, 146} tii[28,58] := {77, 117} tii[28,59] := {66, 161} tii[28,60] := {70} tii[28,61] := {51} tii[28,62] := {72} tii[28,63] := {59, 157} tii[28,64] := {15, 114} tii[28,65] := {37, 76} tii[28,66] := {56, 98} tii[28,67] := {85, 169} tii[28,68] := {44, 148} tii[28,69] := {29, 136} tii[28,70] := {32} tii[28,71] := {7, 124} tii[28,72] := {43, 116} tii[28,73] := {102, 175} tii[28,74] := {3, 107} tii[28,75] := {20, 53} tii[28,76] := {16, 142} tii[28,77] := {12, 68} tii[28,78] := {25, 155} tii[28,79] := {40, 145} tii[28,80] := {62, 160} tii[28,81] := {27, 131} tii[28,82] := {11, 140} tii[28,83] := {17, 115} tii[28,84] := {83, 168} tii[28,85] := {24, 154} tii[28,86] := {6, 125} tii[28,87] := {35, 165} tii[28,88] := {2, 108} tii[28,89] := {60, 171} tii[28,90] := {54, 172} tii[28,91] := {92} tii[28,92] := {78, 118} tii[28,93] := {63, 133} tii[28,94] := {50} tii[28,95] := {36, 75} tii[28,96] := {18} tii[28,97] := {47, 149} tii[28,98] := {26, 95} tii[28,99] := {9, 33} tii[28,100] := {4, 48} tii[28,101] := {14, 73} tii[28,102] := {1, 67} tii[28,103] := {30, 132} tii[28,104] := {8, 96} tii[28,105] := {0, 88} cell#43 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {158} tii[28,2] := {115, 179} tii[28,3] := {147, 186} tii[28,4] := {157, 188} tii[28,5] := {143} tii[28,6] := {101} tii[28,7] := {92, 172} tii[28,8] := {55, 135} tii[28,9] := {129, 183} tii[28,10] := {76, 149} tii[28,11] := {142, 187} tii[28,12] := {133} tii[28,13] := {66, 169} tii[28,14] := {114} tii[28,15] := {93} tii[28,16] := {26, 146} tii[28,17] := {106, 180} tii[28,18] := {71, 111} tii[28,19] := {41, 156} tii[28,20] := {123, 185} tii[28,21] := {52, 159} tii[28,22] := {34, 145} tii[28,23] := {95, 173} tii[28,24] := {51, 155} tii[28,25] := {20, 130} tii[28,26] := {113, 181} tii[28,27] := {70, 163} tii[28,28] := {50, 153} tii[28,29] := {90, 176} tii[28,30] := {62, 182} tii[28,31] := {125} tii[28,32] := {79, 151} tii[28,33] := {99, 162} tii[28,34] := {144} tii[28,35] := {77} tii[28,36] := {126} tii[28,37] := {69, 165} tii[28,38] := {36, 116} tii[28,39] := {107, 138} tii[28,40] := {89, 171} tii[28,41] := {53, 134} tii[28,42] := {65} tii[28,43] := {94, 174} tii[28,44] := {43} tii[28,45] := {21, 105} tii[28,46] := {28, 59} tii[28,47] := {112, 178} tii[28,48] := {72, 166} tii[28,49] := {35, 122} tii[28,50] := {12, 80} tii[28,51] := {132, 184} tii[28,52] := {4, 58} tii[28,53] := {24, 100} tii[28,54] := {11, 75} tii[28,55] := {124} tii[28,56] := {102} tii[28,57] := {45, 150} tii[28,58] := {81, 118} tii[28,59] := {63, 161} tii[28,60] := {91} tii[28,61] := {67} tii[28,62] := {78} tii[28,63] := {68, 164} tii[28,64] := {13, 128} tii[28,65] := {47, 86} tii[28,66] := {56, 97} tii[28,67] := {87, 170} tii[28,68] := {48, 152} tii[28,69] := {25, 141} tii[28,70] := {46} tii[28,71] := {8, 104} tii[28,72] := {38, 117} tii[28,73] := {110, 177} tii[28,74] := {2, 83} tii[28,75] := {31, 64} tii[28,76] := {18, 121} tii[28,77] := {16, 40} tii[28,78] := {7, 98} tii[28,79] := {44, 160} tii[28,80] := {60, 168} tii[28,81] := {29, 148} tii[28,82] := {19, 127} tii[28,83] := {14, 131} tii[28,84] := {85, 175} tii[28,85] := {33, 140} tii[28,86] := {9, 108} tii[28,87] := {17, 120} tii[28,88] := {3, 88} tii[28,89] := {73, 167} tii[28,90] := {32, 139} tii[28,91] := {103} tii[28,92] := {82, 119} tii[28,93] := {57, 137} tii[28,94] := {54} tii[28,95] := {37, 74} tii[28,96] := {27} tii[28,97] := {49, 154} tii[28,98] := {22, 96} tii[28,99] := {15, 42} tii[28,100] := {6, 23} tii[28,101] := {10, 84} tii[28,102] := {1, 39} tii[28,103] := {30, 136} tii[28,104] := {5, 109} tii[28,105] := {0, 61} cell#44 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {382} tii[26,2] := {285} tii[26,3] := {212, 311} tii[26,4] := {130, 421} tii[26,5] := {409} tii[26,6] := {201, 401} tii[26,7] := {373} tii[26,8] := {232} tii[26,9] := {354} tii[26,10] := {164, 261} tii[26,11] := {235, 306, 388, 423} tii[26,12] := {294, 364, 415, 425} tii[26,13] := {420} tii[26,14] := {107, 331} tii[26,15] := {283} tii[26,16] := {417} tii[26,17] := {259} tii[26,18] := {116, 310} tii[26,19] := {422} tii[26,20] := {135, 208, 304, 391} tii[26,21] := {418, 426} tii[26,22] := {193, 272, 363, 406} tii[26,23] := {329} tii[26,24] := {163, 353} tii[26,25] := {348} tii[26,26] := {56, 207, 295, 390} tii[26,27] := {330, 394} tii[26,28] := {97, 274, 339, 405} tii[26,29] := {206, 385} tii[26,30] := {182, 276, 402, 403} tii[26,31] := {65} tii[26,32] := {67} tii[26,33] := {301} tii[26,34] := {213} tii[26,35] := {73, 147} tii[26,36] := {126, 199} tii[26,37] := {105} tii[26,38] := {86, 408} tii[26,39] := {346} tii[26,40] := {153, 372} tii[26,41] := {152} tii[26,42] := {332} tii[26,43] := {54} tii[26,44] := {48, 383} tii[26,45] := {309} tii[26,46] := {308} tii[26,47] := {202} tii[26,48] := {187} tii[26,49] := {184, 256, 350, 412} tii[26,50] := {68, 351} tii[26,51] := {59, 115} tii[26,52] := {268} tii[26,53] := {245, 321, 395, 419} tii[26,54] := {49, 123, 313, 376} tii[26,55] := {100, 175} tii[26,56] := {90} tii[26,57] := {108, 334} tii[26,58] := {370} tii[26,59] := {239} tii[26,60] := {136} tii[26,61] := {70, 289} tii[26,62] := {260} tii[26,63] := {386} tii[26,64] := {137, 209, 305, 392} tii[26,65] := {74, 160} tii[26,66] := {51, 125, 243, 326} tii[26,67] := {194} tii[26,68] := {371, 414} tii[26,69] := {127, 224} tii[26,70] := {195, 273, 365, 407} tii[26,71] := {112, 205} tii[26,72] := {303} tii[26,73] := {95, 247, 257, 356} tii[26,74] := {286, 367} tii[26,75] := {55, 198, 217, 316} tii[26,76] := {170, 271} tii[26,77] := {145, 297, 323, 380} tii[26,78] := {188, 280, 343, 344} tii[26,79] := {151} tii[26,80] := {84, 410} tii[26,81] := {384} tii[26,82] := {25} tii[26,83] := {200} tii[26,84] := {109, 389} tii[26,85] := {139} tii[26,86] := {352} tii[26,87] := {251} tii[26,88] := {29, 75} tii[26,89] := {85, 172, 358, 404} tii[26,90] := {318} tii[26,91] := {61, 128} tii[26,92] := {399} tii[26,93] := {180} tii[26,94] := {52} tii[26,95] := {66, 287} tii[26,96] := {185} tii[26,97] := {411} tii[26,98] := {92} tii[26,99] := {234} tii[26,100] := {154, 375} tii[26,101] := {336} tii[26,102] := {211} tii[26,103] := {35, 236} tii[26,104] := {93, 161, 255, 357} tii[26,105] := {39, 114} tii[26,106] := {400, 424} tii[26,107] := {293} tii[26,108] := {142} tii[26,109] := {131, 222, 338, 397} tii[26,110] := {21, 79, 190, 277} tii[26,111] := {81, 174} tii[26,112] := {143, 225, 322, 381} tii[26,113] := {387} tii[26,114] := {253} tii[26,115] := {72, 158} tii[26,116] := {58, 196, 210, 312} tii[26,117] := {254} tii[26,118] := {181, 266, 360, 413} tii[26,119] := {374, 416} tii[26,120] := {26, 148, 168, 267} tii[26,121] := {122, 221} tii[26,122] := {233, 324} tii[26,123] := {99, 249, 275, 345} tii[26,124] := {320} tii[26,125] := {337, 398} tii[26,126] := {140, 228, 298, 299} tii[26,127] := {88} tii[26,128] := {69, 288} tii[26,129] := {237} tii[26,130] := {134} tii[26,131] := {16, 159} tii[26,132] := {50, 124, 242, 325} tii[26,133] := {192} tii[26,134] := {44, 223} tii[26,135] := {302} tii[26,136] := {156} tii[26,137] := {37, 204} tii[26,138] := {28, 162, 246, 355} tii[26,139] := {89, 166, 264, 361} tii[26,140] := {284, 366} tii[26,141] := {78, 270} tii[26,142] := {219} tii[26,143] := {6, 120, 197, 315} tii[26,144] := {60, 226, 296, 379} tii[26,145] := {238, 327} tii[26,146] := {96, 178, 341, 342} tii[26,147] := {71, 252} tii[26,148] := {24, 165, 248, 359} tii[26,149] := {121, 319} tii[26,150] := {138, 229, 377, 378} tii[26,151] := {34} tii[26,152] := {17} tii[26,153] := {4, 33} tii[26,154] := {106} tii[26,155] := {22, 347} tii[26,156] := {155} tii[26,157] := {36, 307} tii[26,158] := {258} tii[26,159] := {40} tii[26,160] := {218} tii[26,161] := {23, 80, 263, 340} tii[26,162] := {18, 62} tii[26,163] := {113} tii[26,164] := {14, 262} tii[26,165] := {41, 102} tii[26,166] := {7, 45, 216, 300} tii[26,167] := {171} tii[26,168] := {0, 63, 176, 250} tii[26,169] := {132} tii[26,170] := {110, 335} tii[26,171] := {30} tii[26,172] := {183} tii[26,173] := {290} tii[26,174] := {87, 173, 292, 368} tii[26,175] := {12, 47} tii[26,176] := {244} tii[26,177] := {94} tii[26,178] := {203} tii[26,179] := {38, 241} tii[26,180] := {349} tii[26,181] := {133, 215, 314, 393} tii[26,182] := {32, 77} tii[26,183] := {333, 396} tii[26,184] := {27, 82, 191, 282} tii[26,185] := {269} tii[26,186] := {144} tii[26,187] := {291, 369} tii[26,188] := {9, 104, 146, 230} tii[26,189] := {157} tii[26,190] := {91, 167, 265, 362} tii[26,191] := {42, 118} tii[26,192] := {220} tii[26,193] := {31, 150, 177, 279} tii[26,194] := {240, 328} tii[26,195] := {10} tii[26,196] := {3, 20} tii[26,197] := {57} tii[26,198] := {15, 189} tii[26,199] := {13, 43} tii[26,200] := {98} tii[26,201] := {8, 46, 141, 231} tii[26,202] := {1, 64, 101, 179} tii[26,203] := {111} tii[26,204] := {53, 119, 214, 317} tii[26,205] := {19, 76} tii[26,206] := {169} tii[26,207] := {11, 103, 129, 227} tii[26,208] := {186, 281} tii[26,209] := {5, 117} tii[26,210] := {2, 83, 149, 278} cell#45 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[3]]+phi[[2, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {225, 226} tii[20,2] := {295, 296} tii[20,3] := {288} tii[20,4] := {187, 188} tii[20,5] := {76, 77} tii[20,6] := {277, 278} tii[20,7] := {308} tii[20,8] := {313} tii[20,9] := {241} tii[20,10] := {223, 224} tii[20,11] := {158, 159} tii[20,12] := {293, 294} tii[20,13] := {174} tii[20,14] := {283} tii[20,15] := {205} tii[20,16] := {301} tii[20,17] := {252, 253} tii[20,18] := {306, 307} tii[20,19] := {221, 222} tii[20,20] := {289} tii[20,21] := {247} tii[20,22] := {303} tii[20,23] := {311, 312} tii[20,24] := {314} tii[20,25] := {133, 134} tii[20,26] := {115, 116} tii[20,27] := {210, 211} tii[20,28] := {250, 251} tii[20,29] := {269} tii[20,30] := {104, 105} tii[20,31] := {55, 56} tii[20,32] := {36, 37} tii[20,33] := {160, 161} tii[20,34] := {299} tii[20,35] := {212} tii[20,36] := {193, 194} tii[20,37] := {86, 87} tii[20,38] := {309} tii[20,39] := {238} tii[20,40] := {235, 236} tii[20,41] := {150, 151} tii[20,42] := {242} tii[20,43] := {197, 198} tii[20,44] := {110, 111} tii[20,45] := {214} tii[20,46] := {91, 92} tii[20,47] := {112} tii[20,48] := {284} tii[20,49] := {231, 232} tii[20,50] := {169, 170} tii[20,51] := {180} tii[20,52] := {240} tii[20,53] := {144} tii[20,54] := {262, 263} tii[20,55] := {302} tii[20,56] := {256, 257} tii[20,57] := {130, 131} tii[20,58] := {271} tii[20,59] := {166} tii[20,60] := {249} tii[20,61] := {281, 282} tii[20,62] := {291} tii[20,63] := {305} tii[20,64] := {66, 67} tii[20,65] := {244} tii[20,66] := {117, 118} tii[20,67] := {18, 19} tii[20,68] := {154, 155} tii[20,69] := {267} tii[20,70] := {51, 52} tii[20,71] := {203, 204} tii[20,72] := {106, 107} tii[20,73] := {209} tii[20,74] := {272} tii[20,75] := {156, 157} tii[20,76] := {135} tii[20,77] := {70, 71} tii[20,78] := {113, 114} tii[20,79] := {6, 7} tii[20,80] := {175} tii[20,81] := {264} tii[20,82] := {191, 192} tii[20,83] := {246} tii[20,84] := {171} tii[20,85] := {121, 122} tii[20,86] := {287} tii[20,87] := {22, 23} tii[20,88] := {139} tii[20,89] := {206} tii[20,90] := {233, 234} tii[20,91] := {286} tii[20,92] := {95} tii[20,93] := {20, 21} tii[20,94] := {227, 228} tii[20,95] := {243} tii[20,96] := {152, 153} tii[20,97] := {300} tii[20,98] := {61} tii[20,99] := {132} tii[20,100] := {217} tii[20,101] := {47, 48} tii[20,102] := {258, 259} tii[20,103] := {183} tii[20,104] := {274} tii[20,105] := {102} tii[20,106] := {292} tii[20,107] := {148, 149} tii[20,108] := {213} tii[20,109] := {195, 196} tii[20,110] := {108, 109} tii[20,111] := {229, 230} tii[20,112] := {179} tii[20,113] := {239} tii[20,114] := {167, 168} tii[20,115] := {260, 261} tii[20,116] := {189, 190} tii[20,117] := {72, 73} tii[20,118] := {254, 255} tii[20,119] := {270} tii[20,120] := {138} tii[20,121] := {265} tii[20,122] := {218} tii[20,123] := {279, 280} tii[20,124] := {123, 124} tii[20,125] := {248} tii[20,126] := {290} tii[20,127] := {185} tii[20,128] := {304} tii[20,129] := {275, 276} tii[20,130] := {273} tii[20,131] := {297, 298} tii[20,132] := {310} tii[20,133] := {59, 60} tii[20,134] := {99, 100} tii[20,135] := {93, 94} tii[20,136] := {176} tii[20,137] := {16, 17} tii[20,138] := {64, 65} tii[20,139] := {49, 50} tii[20,140] := {207} tii[20,141] := {142, 143} tii[20,142] := {42, 43} tii[20,143] := {136} tii[20,144] := {181, 182} tii[20,145] := {172} tii[20,146] := {97} tii[20,147] := {82, 83} tii[20,148] := {146} tii[20,149] := {245} tii[20,150] := {68, 69} tii[20,151] := {4, 5} tii[20,152] := {216} tii[20,153] := {268} tii[20,154] := {53, 54} tii[20,155] := {127, 128} tii[20,156] := {14, 15} tii[20,157] := {78} tii[20,158] := {74, 75} tii[20,159] := {177} tii[20,160] := {12, 13} tii[20,161] := {25, 26} tii[20,162] := {285} tii[20,163] := {178} tii[20,164] := {164, 165} tii[20,165] := {103} tii[20,166] := {31, 32} tii[20,167] := {141} tii[20,168] := {208} tii[20,169] := {125, 126} tii[20,170] := {46} tii[20,171] := {101} tii[20,172] := {90} tii[20,173] := {186} tii[20,174] := {29, 30} tii[20,175] := {266} tii[20,176] := {201, 202} tii[20,177] := {57, 58} tii[20,178] := {79} tii[20,179] := {220} tii[20,180] := {129} tii[20,181] := {38, 39} tii[20,182] := {27, 28} tii[20,183] := {88, 89} tii[20,184] := {44, 45} tii[20,185] := {137} tii[20,186] := {215} tii[20,187] := {10, 11} tii[20,188] := {119, 120} tii[20,189] := {84, 85} tii[20,190] := {98} tii[20,191] := {173} tii[20,192] := {63} tii[20,193] := {147} tii[20,194] := {40, 41} tii[20,195] := {96} tii[20,196] := {2, 3} tii[20,197] := {237} tii[20,198] := {162, 163} tii[20,199] := {80, 81} tii[20,200] := {33} tii[20,201] := {184} tii[20,202] := {145} tii[20,203] := {199, 200} tii[20,204] := {219} tii[20,205] := {34, 35} tii[20,206] := {140} tii[20,207] := {8, 9} tii[20,208] := {62} tii[20,209] := {0, 1} tii[20,210] := {24} cell#46 , |C| = 98 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1],[1, 1]]+phi[[],[5, 2]] TII depth = 4 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[32,1] := {96} tii[32,2] := {89} tii[32,3] := {73} tii[32,4] := {50} tii[32,5] := {97} tii[32,6] := {82} tii[32,7] := {95} tii[32,8] := {61} tii[32,9] := {93} tii[32,10] := {37} tii[32,11] := {88} tii[32,12] := {81, 91} tii[32,13] := {86} tii[32,14] := {47} tii[32,15] := {78} tii[32,16] := {23} tii[32,17] := {69} tii[32,18] := {58, 76} tii[32,19] := {55} tii[32,20] := {11} tii[32,21] := {41} tii[32,22] := {28, 53} tii[32,23] := {13} tii[32,24] := {5, 26} tii[32,25] := {17} tii[32,26] := {94} tii[32,27] := {32} tii[32,28] := {90} tii[32,29] := {46} tii[32,30] := {84} tii[32,31] := {62} tii[32,32] := {75} tii[32,33] := {18} tii[32,34] := {92} tii[32,35] := {87} tii[32,36] := {33} tii[32,37] := {83} tii[32,38] := {80} tii[32,39] := {48} tii[32,40] := {74} tii[32,41] := {71, 85} tii[32,42] := {65} tii[32,43] := {20} tii[32,44] := {79} tii[32,45] := {35} tii[32,46] := {70} tii[32,47] := {64} tii[32,48] := {59, 77} tii[32,49] := {52} tii[32,50] := {22} tii[32,51] := {57} tii[32,52] := {44, 67} tii[32,53] := {39} tii[32,54] := {30, 60} tii[32,55] := {7} tii[32,56] := {72} tii[32,57] := {19} tii[32,58] := {63} tii[32,59] := {34} tii[32,60] := {51} tii[32,61] := {8} tii[32,62] := {68} tii[32,63] := {21} tii[32,64] := {49} tii[32,65] := {56} tii[32,66] := {38} tii[32,67] := {43, 66} tii[32,68] := {10} tii[32,69] := {42} tii[32,70] := {29, 54} tii[32,71] := {25} tii[32,72] := {15, 45} tii[32,73] := {2} tii[32,74] := {36} tii[32,75] := {9} tii[32,76] := {24} tii[32,77] := {3} tii[32,78] := {27} tii[32,79] := {12} tii[32,80] := {14, 40} tii[32,81] := {6, 31} tii[32,82] := {0} tii[32,83] := {4} tii[32,84] := {1, 16} cell#47 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {413} tii[26,2] := {345} tii[26,3] := {372, 373} tii[26,4] := {177, 424} tii[26,5] := {396} tii[26,6] := {77, 414} tii[26,7] := {329} tii[26,8] := {306} tii[26,9] := {243} tii[26,10] := {335, 336} tii[26,11] := {162, 163, 405, 425} tii[26,12] := {224, 225, 422, 426} tii[26,13] := {403} tii[26,14] := {34, 367} tii[26,15] := {260} tii[26,16] := {381} tii[26,17] := {159} tii[26,18] := {290, 291} tii[26,19] := {351} tii[26,20] := {84, 85, 349, 407} tii[26,21] := {315, 377} tii[26,22] := {148, 149, 390, 416} tii[26,23] := {283} tii[26,24] := {244, 337} tii[26,25] := {241} tii[26,26] := {83, 181, 265, 353} tii[26,27] := {194, 276} tii[26,28] := {147, 253, 321, 379} tii[26,29] := {293, 354} tii[26,30] := {248, 320, 328, 380} tii[26,31] := {231} tii[26,32] := {124} tii[26,33] := {368} tii[26,34] := {289} tii[26,35] := {216, 217} tii[26,36] := {273, 274} tii[26,37] := {281} tii[26,38] := {123, 418} tii[26,39] := {397} tii[26,40] := {43, 398} tii[26,41] := {233} tii[26,42] := {282} tii[26,43] := {103} tii[26,44] := {78, 404} tii[26,45] := {190} tii[26,46] := {371} tii[26,47] := {284} tii[26,48] := {262} tii[26,49] := {113, 114, 383, 420} tii[26,50] := {61, 384} tii[26,51] := {188, 189} tii[26,52] := {341} tii[26,53] := {169, 170, 410, 423} tii[26,54] := {88, 89, 355, 401} tii[26,55] := {256, 257} tii[26,56] := {156} tii[26,57] := {22, 369} tii[26,58] := {310} tii[26,59] := {307} tii[26,60] := {209} tii[26,61] := {14, 332} tii[26,62] := {135} tii[26,63] := {267} tii[26,64] := {71, 72, 350, 408} tii[26,65] := {239, 240} tii[26,66] := {25, 26, 295, 361} tii[26,67] := {263} tii[26,68] := {220, 308} tii[26,69] := {302, 303} tii[26,70] := {118, 119, 391, 417} tii[26,71] := {285, 286} tii[26,72] := {164} tii[26,73] := {40, 112, 312, 400} tii[26,74] := {117, 214} tii[26,75] := {21, 80, 271, 376} tii[26,76] := {342, 343} tii[26,77] := {75, 171, 359, 412} tii[26,78] := {122, 215, 393, 394} tii[26,79] := {232} tii[26,80] := {125, 419} tii[26,81] := {366} tii[26,82] := {62} tii[26,83] := {179} tii[26,84] := {102, 406} tii[26,85] := {211} tii[26,86] := {333} tii[26,87] := {234} tii[26,88] := {133, 134} tii[26,89] := {139, 140, 386, 415} tii[26,90] := {297} tii[26,91] := {203, 204} tii[26,92] := {348} tii[26,93] := {126} tii[26,94] := {104} tii[26,95] := {15, 330} tii[26,96] := {261} tii[26,97] := {313} tii[26,98] := {157} tii[26,99] := {182} tii[26,100] := {60, 399} tii[26,101] := {288} tii[26,102] := {108} tii[26,103] := {7, 287} tii[26,104] := {46, 47, 311, 385} tii[26,105] := {186, 187} tii[26,106] := {269, 346} tii[26,107] := {249} tii[26,108] := {212} tii[26,109] := {86, 87, 375, 411} tii[26,110] := {18, 19, 246, 323} tii[26,111] := {254, 255} tii[26,112] := {96, 97, 358, 402} tii[26,113] := {268} tii[26,114] := {128} tii[26,115] := {237, 238} tii[26,116] := {23, 82, 266, 374} tii[26,117] := {136} tii[26,118] := {115, 116, 387, 421} tii[26,119] := {223, 309} tii[26,120] := {9, 64, 222, 340} tii[26,121] := {300, 301} tii[26,122] := {94, 175} tii[26,123] := {58, 150, 322, 395} tii[26,124] := {199} tii[26,125] := {172, 278} tii[26,126] := {100, 176, 362, 363} tii[26,127] := {63} tii[26,128] := {20, 331} tii[26,129] := {210} tii[26,130] := {106} tii[26,131] := {131, 132} tii[26,132] := {37, 38, 294, 360} tii[26,133] := {160} tii[26,134] := {201, 202} tii[26,135] := {191} tii[26,136] := {65} tii[26,137] := {184, 185} tii[26,138] := {48, 130, 218, 338} tii[26,139] := {55, 56, 317, 388} tii[26,140] := {145, 229} tii[26,141] := {251, 252} tii[26,142] := {111} tii[26,143] := {29, 105, 167, 296} tii[26,144] := {98, 205, 275, 365} tii[26,145] := {99, 208} tii[26,146] := {152, 230, 325, 326} tii[26,147] := {129, 236} tii[26,148] := {57, 155, 221, 319} tii[26,149] := {200, 299} tii[26,150] := {207, 277, 279, 364} tii[26,151] := {178} tii[26,152] := {154} tii[26,153] := {192, 193} tii[26,154] := {180} tii[26,155] := {44, 382} tii[26,156] := {235} tii[26,157] := {33, 352} tii[26,158] := {334} tii[26,159] := {101} tii[26,160] := {298} tii[26,161] := {53, 54, 316, 378} tii[26,162] := {137, 138} tii[26,163] := {183} tii[26,164] := {16, 314} tii[26,165] := {165, 166} tii[26,166] := {30, 31, 272, 347} tii[26,167] := {250} tii[26,168] := {12, 50, 226, 324} tii[26,169] := {79} tii[26,170] := {32, 370} tii[26,171] := {70} tii[26,172] := {127} tii[26,173] := {242} tii[26,174] := {51, 52, 339, 392} tii[26,175] := {109, 110} tii[26,176] := {198} tii[26,177] := {158} tii[26,178] := {81} tii[26,179] := {4, 292} tii[26,180] := {219} tii[26,181] := {73, 74, 356, 409} tii[26,182] := {141, 142} tii[26,183] := {168, 264} tii[26,184] := {10, 11, 247, 327} tii[26,185] := {146} tii[26,186] := {213} tii[26,187] := {120, 228} tii[26,188] := {2, 24, 206, 305} tii[26,189] := {45} tii[26,190] := {41, 42, 318, 389} tii[26,191] := {195, 196} tii[26,192] := {95} tii[26,193] := {8, 49, 227, 344} tii[26,194] := {76, 174} tii[26,195] := {39} tii[26,196] := {67, 68} tii[26,197] := {107} tii[26,198] := {1, 245} tii[26,199] := {90, 91} tii[26,200] := {161} tii[26,201] := {5, 6, 197, 280} tii[26,202] := {0, 17, 151, 259} tii[26,203] := {35} tii[26,204] := {27, 28, 270, 357} tii[26,205] := {143, 144} tii[26,206] := {69} tii[26,207] := {3, 36, 173, 304} tii[26,208] := {59, 153} tii[26,209] := {92, 93} tii[26,210] := {13, 66, 121, 258} cell#48 , |C| = 70 special orbit = [5, 5, 5] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {39} tii[21,3] := {60} tii[21,4] := {23} tii[21,5] := {46} tii[21,6] := {64} tii[21,7] := {41} tii[21,8] := {52} tii[21,9] := {38} tii[21,10] := {53} tii[21,11] := {66} tii[21,12] := {55} tii[21,13] := {62} tii[21,14] := {58} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {67} tii[21,18] := {18} tii[21,19] := {14} tii[21,20] := {32} tii[21,21] := {4} tii[21,22] := {25} tii[21,23] := {45} tii[21,24] := {13} tii[21,25] := {22} tii[21,26] := {33} tii[21,27] := {15} tii[21,28] := {40} tii[21,29] := {27} tii[21,30] := {51} tii[21,31] := {47} tii[21,32] := {56} tii[21,33] := {10} tii[21,34] := {34} tii[21,35] := {21} tii[21,36] := {30} tii[21,37] := {17} tii[21,38] := {42} tii[21,39] := {24} tii[21,40] := {48} tii[21,41] := {11} tii[21,42] := {37} tii[21,43] := {29} tii[21,44] := {57} tii[21,45] := {54} tii[21,46] := {36} tii[21,47] := {61} tii[21,48] := {31} tii[21,49] := {49} tii[21,50] := {44} tii[21,51] := {59} tii[21,52] := {50} tii[21,53] := {65} tii[21,54] := {1} tii[21,55] := {7} tii[21,56] := {3} tii[21,57] := {12} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {20} tii[21,61] := {8} tii[21,62] := {26} tii[21,63] := {2} tii[21,64] := {19} tii[21,65] := {35} tii[21,66] := {16} tii[21,67] := {6} tii[21,68] := {28} tii[21,69] := {43} tii[21,70] := {0} cell#49 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {413} tii[26,2] := {350} tii[26,3] := {237, 367} tii[26,4] := {136, 425} tii[26,5] := {399} tii[26,6] := {139, 409} tii[26,7] := {349} tii[26,8] := {313} tii[26,9] := {279} tii[26,10] := {193, 334} tii[26,11] := {146, 214, 368, 424} tii[26,12] := {204, 263, 388, 426} tii[26,13] := {414} tii[26,14] := {63, 365} tii[26,15] := {273} tii[26,16] := {400} tii[26,17] := {192} tii[26,18] := {150, 296} tii[26,19] := {381} tii[26,20] := {68, 126, 297, 404} tii[26,21] := {358, 397} tii[26,22] := {119, 175, 331, 416} tii[26,23] := {315} tii[26,24] := {111, 281} tii[26,25] := {276} tii[26,26] := {21, 148, 216, 370} tii[26,27] := {241, 305} tii[26,28] := {54, 206, 254, 390} tii[26,29] := {152, 324} tii[26,30] := {116, 180, 289, 348} tii[26,31] := {182} tii[26,32] := {185} tii[26,33] := {378} tii[26,34] := {321} tii[26,35] := {191, 257} tii[26,36] := {250, 304} tii[26,37] := {228} tii[26,38] := {95, 422} tii[26,39] := {401} tii[26,40] := {98, 391} tii[26,41] := {272} tii[26,42] := {314} tii[26,43] := {140} tii[26,44] := {65, 415} tii[26,45] := {236} tii[26,46] := {383} tii[26,47] := {316} tii[26,48] := {280} tii[26,49] := {104, 170, 335, 417} tii[26,50] := {44, 403} tii[26,51] := {147, 215} tii[26,52] := {360} tii[26,53] := {160, 222, 363, 423} tii[26,54] := {26, 60, 384, 412} tii[26,55] := {205, 264} tii[26,56] := {184} tii[26,57] := {64, 380} tii[26,58] := {351} tii[26,59] := {320} tii[26,60] := {232} tii[26,61] := {46, 354} tii[26,62] := {194} tii[26,63] := {317} tii[26,64] := {70, 127, 298, 411} tii[26,65] := {105, 256} tii[26,66] := {28, 62, 326, 375} tii[26,67] := {291} tii[26,68] := {285, 342} tii[26,69] := {161, 303} tii[26,70] := {121, 176, 332, 420} tii[26,71] := {145, 295} tii[26,72] := {240} tii[26,73] := {43, 107, 284, 393} tii[26,74] := {199, 271} tii[26,75] := {31, 82, 244, 372} tii[26,76] := {203, 341} tii[26,77] := {86, 163, 312, 407} tii[26,78] := {125, 211, 268, 387} tii[26,79] := {181} tii[26,80] := {99, 421} tii[26,81] := {377} tii[26,82] := {97} tii[26,83] := {229} tii[26,84] := {72, 410} tii[26,85] := {235} tii[26,86] := {355} tii[26,87] := {274} tii[26,88] := {103, 169} tii[26,89] := {47, 92, 395, 419} tii[26,90] := {328} tii[26,91] := {159, 221} tii[26,92] := {379} tii[26,93] := {183} tii[26,94] := {137} tii[26,95] := {38, 352} tii[26,96] := {277} tii[26,97] := {353} tii[26,98] := {186} tii[26,99] := {231} tii[26,100] := {109, 392} tii[26,101] := {319} tii[26,102] := {151} tii[26,103] := {23, 318} tii[26,104] := {42, 89, 258, 394} tii[26,105] := {69, 213} tii[26,106] := {325, 374} tii[26,107] := {290} tii[26,108] := {245} tii[26,109] := {76, 133, 371, 406} tii[26,110] := {11, 35, 286, 343} tii[26,111] := {120, 262} tii[26,112] := {85, 131, 294, 408} tii[26,113] := {322} tii[26,114] := {188} tii[26,115] := {101, 255} tii[26,116] := {22, 71, 239, 369} tii[26,117] := {195} tii[26,118] := {113, 172, 338, 418} tii[26,119] := {287, 346} tii[26,120] := {14, 53, 198, 339} tii[26,121] := {157, 302} tii[26,122] := {154, 226} tii[26,123] := {55, 122, 270, 389} tii[26,124] := {247} tii[26,125] := {251, 307} tii[26,126] := {88, 167, 224, 362} tii[26,127] := {96} tii[26,128] := {45, 333} tii[26,129] := {234} tii[26,130] := {142} tii[26,131] := {41, 168} tii[26,132] := {27, 61, 299, 361} tii[26,133] := {200} tii[26,134] := {84, 220} tii[26,135] := {238} tii[26,136] := {100} tii[26,137] := {66, 212} tii[26,138] := {8, 106, 196, 336} tii[26,139] := {50, 90, 259, 385} tii[26,140] := {197, 269} tii[26,141] := {117, 261} tii[26,142] := {156} tii[26,143] := {3, 81, 155, 301} tii[26,144] := {32, 162, 227, 364} tii[26,145] := {164, 223} tii[26,146] := {58, 178, 210, 330} tii[26,147] := {40, 190} tii[26,148] := {13, 115, 174, 340} tii[26,149] := {83, 249} tii[26,150] := {87, 135, 253, 309} tii[26,151] := {141} tii[26,152] := {108} tii[26,153] := {75, 132} tii[26,154] := {230} tii[26,155] := {39, 402} tii[26,156] := {275} tii[26,157] := {24, 382} tii[26,158] := {356} tii[26,159] := {149} tii[26,160] := {329} tii[26,161] := {12, 36, 359, 398} tii[26,162] := {112, 177} tii[26,163] := {233} tii[26,164] := {9, 357} tii[26,165] := {153, 218} tii[26,166] := {4, 19, 327, 376} tii[26,167] := {292} tii[26,168] := {0, 17, 293, 345} tii[26,169] := {138} tii[26,170] := {74, 366} tii[26,171] := {110} tii[26,172] := {187} tii[26,173] := {278} tii[26,174] := {49, 94, 337, 386} tii[26,175] := {77, 134} tii[26,176] := {246} tii[26,177] := {189} tii[26,178] := {144} tii[26,179] := {25, 323} tii[26,180] := {283} tii[26,181] := {79, 130, 300, 405} tii[26,182] := {114, 173} tii[26,183] := {243, 311} tii[26,184] := {15, 37, 288, 347} tii[26,185] := {202} tii[26,186] := {248} tii[26,187] := {208, 267} tii[26,188] := {6, 34, 252, 308} tii[26,189] := {102} tii[26,190] := {52, 91, 260, 396} tii[26,191] := {80, 217} tii[26,192] := {158} tii[26,193] := {16, 57, 209, 344} tii[26,194] := {166, 225} tii[26,195] := {73} tii[26,196] := {48, 93} tii[26,197] := {143} tii[26,198] := {10, 282} tii[26,199] := {78, 129} tii[26,200] := {201} tii[26,201] := {5, 20, 242, 310} tii[26,202] := {1, 18, 207, 266} tii[26,203] := {67} tii[26,204] := {30, 59, 219, 373} tii[26,205] := {51, 171} tii[26,206] := {118} tii[26,207] := {7, 33, 165, 306} tii[26,208] := {124, 179} tii[26,209] := {29, 128} tii[26,210] := {2, 56, 123, 265} cell#50 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {267} tii[20,2] := {276} tii[20,3] := {73, 304} tii[20,4] := {242} tii[20,5] := {163} tii[20,6] := {256} tii[20,7] := {123, 312} tii[20,8] := {156, 314} tii[20,9] := {88, 287} tii[20,10] := {231} tii[20,11] := {177} tii[20,12] := {245} tii[20,13] := {90, 246} tii[20,14] := {134, 306} tii[20,15] := {121, 263} tii[20,16] := {171, 310} tii[20,17] := {255} tii[20,18] := {218} tii[20,19] := {232} tii[20,20] := {133, 289} tii[20,21] := {207, 254} tii[20,22] := {170, 299} tii[20,23] := {248} tii[20,24] := {225, 265} tii[20,25] := {100} tii[20,26] := {191} tii[20,27] := {153} tii[20,28] := {185} tii[20,29] := {50, 300} tii[20,30] := {129} tii[20,31] := {135} tii[20,32] := {132} tii[20,33] := {217} tii[20,34] := {95, 311} tii[20,35] := {19, 271} tii[20,36] := {182} tii[20,37] := {169} tii[20,38] := {126, 313} tii[20,39] := {31, 284} tii[20,40] := {211} tii[20,41] := {158} tii[20,42] := {41, 286} tii[20,43] := {244} tii[20,44] := {188} tii[20,45] := {26, 269} tii[20,46] := {118} tii[20,47] := {42, 193} tii[20,48] := {77, 305} tii[20,49] := {209} tii[20,50] := {227} tii[20,51] := {14, 250} tii[20,52] := {39, 282} tii[20,53] := {67, 215} tii[20,54] := {235} tii[20,55] := {113, 309} tii[20,56] := {233} tii[20,57] := {148} tii[20,58] := {52, 294} tii[20,59] := {119, 176} tii[20,60] := {36, 280} tii[20,61] := {259} tii[20,62] := {86, 302} tii[20,63] := {115, 290} tii[20,64] := {99} tii[20,65] := {33, 277} tii[20,66] := {190} tii[20,67] := {102} tii[20,68] := {152} tii[20,69] := {49, 291} tii[20,70] := {139} tii[20,71] := {184} tii[20,72] := {128} tii[20,73] := {62, 268} tii[20,74] := {53, 293} tii[20,75] := {216} tii[20,76] := {64, 221} tii[20,77] := {159} tii[20,78] := {147} tii[20,79] := {75} tii[20,80] := {44, 243} tii[20,81] := {105, 295} tii[20,82] := {181} tii[20,83] := {34, 279} tii[20,84] := {92, 241} tii[20,85] := {197} tii[20,86] := {71, 301} tii[20,87] := {111} tii[20,88] := {28, 222} tii[20,89] := {61, 260} tii[20,90] := {210} tii[20,91] := {142, 303} tii[20,92] := {43, 192} tii[20,93] := {101} tii[20,94] := {208} tii[20,95] := {76, 278} tii[20,96] := {178} tii[20,97] := {96, 308} tii[20,98] := {30, 165} tii[20,99] := {68, 214} tii[20,100] := {58, 258} tii[20,101] := {138} tii[20,102] := {234} tii[20,103] := {149, 204} tii[20,104] := {112, 292} tii[20,105] := {94, 186} tii[20,106] := {144, 275} tii[20,107] := {116} tii[20,108] := {65, 270} tii[20,109] := {205} tii[20,110] := {146} tii[20,111] := {162} tii[20,112] := {45, 251} tii[20,113] := {87, 283} tii[20,114] := {180} tii[20,115] := {200} tii[20,116] := {206} tii[20,117] := {117} tii[20,118] := {189} tii[20,119] := {104, 272} tii[20,120] := {66, 223} tii[20,121] := {109, 297} tii[20,122] := {179, 230} tii[20,123] := {228} tii[20,124] := {150} tii[20,125] := {83, 253} tii[20,126] := {141, 285} tii[20,127] := {151, 203} tii[20,128] := {174, 262} tii[20,129] := {161} tii[20,130] := {108, 274} tii[20,131] := {199} tii[20,132] := {202, 238} tii[20,133] := {54} tii[20,134] := {72} tii[20,135] := {79} tii[20,136] := {9, 249} tii[20,137] := {103} tii[20,138] := {56} tii[20,139] := {140} tii[20,140] := {18, 266} tii[20,141] := {98} tii[20,142] := {131} tii[20,143] := {5, 220} tii[20,144] := {125} tii[20,145] := {12, 240} tii[20,146] := {1, 195} tii[20,147] := {168} tii[20,148] := {4, 213} tii[20,149] := {32, 288} tii[20,150] := {106} tii[20,151] := {51} tii[20,152] := {20, 273} tii[20,153] := {48, 298} tii[20,154] := {80} tii[20,155] := {127} tii[20,156] := {85} tii[20,157] := {25, 164} tii[20,158] := {160} tii[20,159] := {13, 247} tii[20,160] := {74} tii[20,161] := {107} tii[20,162] := {70, 307} tii[20,163] := {10, 252} tii[20,164] := {155} tii[20,165] := {47, 187} tii[20,166] := {110} tii[20,167] := {6, 224} tii[20,168] := {24, 264} tii[20,169] := {198} tii[20,170] := {15, 137} tii[20,171] := {2, 201} tii[20,172] := {69, 157} tii[20,173] := {11, 237} tii[20,174] := {63} tii[20,175] := {59, 296} tii[20,176] := {183} tii[20,177] := {91} tii[20,178] := {29, 166} tii[20,179] := {22, 261} tii[20,180] := {93, 145} tii[20,181] := {78} tii[20,182] := {55} tii[20,183] := {97} tii[20,184] := {130} tii[20,185] := {27, 219} tii[20,186] := {21, 257} tii[20,187] := {81} tii[20,188] := {124} tii[20,189] := {167} tii[20,190] := {16, 194} tii[20,191] := {40, 239} tii[20,192] := {8, 172} tii[20,193] := {23, 212} tii[20,194] := {89} tii[20,195] := {46, 196} tii[20,196] := {57} tii[20,197] := {84, 281} tii[20,198] := {154} tii[20,199] := {120} tii[20,200] := {17, 143} tii[20,201] := {38, 236} tii[20,202] := {122, 175} tii[20,203] := {136} tii[20,204] := {60, 229} tii[20,205] := {37} tii[20,206] := {3, 226} tii[20,207] := {82} tii[20,208] := {0, 173} tii[20,209] := {35} tii[20,210] := {7, 114} cell#51 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {250} tii[20,2] := {304} tii[20,3] := {91, 298} tii[20,4] := {222} tii[20,5] := {132} tii[20,6] := {291} tii[20,7] := {160, 312} tii[20,8] := {208, 314} tii[20,9] := {90, 263} tii[20,10] := {191} tii[20,11] := {131} tii[20,12] := {275} tii[20,13] := {46, 212} tii[20,14] := {159, 295} tii[20,15] := {82, 238} tii[20,16] := {207, 308} tii[20,17] := {223} tii[20,18] := {292} tii[20,19] := {197} tii[20,20] := {225, 265} tii[20,21] := {167, 218} tii[20,22] := {257, 289} tii[20,23] := {305} tii[20,24] := {293, 311} tii[20,25] := {124} tii[20,26] := {164} tii[20,27] := {194} tii[20,28] := {235} tii[20,29] := {63, 283} tii[20,30] := {157} tii[20,31] := {99} tii[20,32] := {97} tii[20,33] := {198} tii[20,34] := {128, 306} tii[20,35] := {28, 242} tii[20,36] := {227} tii[20,37] := {145} tii[20,38] := {177, 313} tii[20,39] := {58, 262} tii[20,40] := {259} tii[20,41] := {190} tii[20,42] := {41, 273} tii[20,43] := {228} tii[20,44] := {158} tii[20,45] := {25, 255} tii[20,46] := {72} tii[20,47] := {13, 150} tii[20,48] := {98, 299} tii[20,49] := {254} tii[20,50] := {206} tii[20,51] := {17, 231} tii[20,52] := {55, 272} tii[20,53] := {35, 181} tii[20,54] := {278} tii[20,55] := {146, 309} tii[20,56] := {274} tii[20,57] := {101} tii[20,58] := {130, 284} tii[20,59] := {77, 121} tii[20,60] := {105, 269} tii[20,61] := {294} tii[20,62] := {179, 300} tii[20,63] := {210, 310} tii[20,64] := {123} tii[20,65] := {48, 267} tii[20,66] := {163} tii[20,67] := {69} tii[20,68] := {193} tii[20,69] := {84, 282} tii[20,70] := {112} tii[20,71] := {234} tii[20,72] := {156} tii[20,73] := {64, 251} tii[20,74] := {68, 286} tii[20,75] := {196} tii[20,76] := {27, 182} tii[20,77] := {125} tii[20,78] := {100} tii[20,79] := {47} tii[20,80] := {45, 229} tii[20,81] := {129, 285} tii[20,82] := {226} tii[20,83] := {49, 268} tii[20,84] := {57, 211} tii[20,85] := {174} tii[20,86] := {111, 297} tii[20,87] := {83} tii[20,88] := {31, 201} tii[20,89] := {81, 248} tii[20,90] := {258} tii[20,91] := {178, 301} tii[20,92] := {16, 166} tii[20,93] := {66} tii[20,94] := {252} tii[20,95] := {161, 264} tii[20,96] := {133} tii[20,97] := {136, 307} tii[20,98] := {11, 139} tii[20,99] := {38, 189} tii[20,100] := {137, 244} tii[20,101] := {109} tii[20,102] := {276} tii[20,103] := {106, 154} tii[20,104] := {209, 288} tii[20,105] := {62, 153} tii[20,106] := {237, 302} tii[20,107] := {122} tii[20,108] := {67, 241} tii[20,109] := {162} tii[20,110] := {92} tii[20,111] := {192} tii[20,112] := {50, 214} tii[20,113] := {110, 261} tii[20,114] := {140} tii[20,115] := {233} tii[20,116] := {165} tii[20,117] := {65} tii[20,118] := {224} tii[20,119] := {195, 240} tii[20,120] := {33, 183} tii[20,121] := {135, 280} tii[20,122] := {138, 188} tii[20,123] := {256} tii[20,124] := {108} tii[20,125] := {171, 215} tii[20,126] := {236, 271} tii[20,127] := {116, 152} tii[20,128] := {260, 290} tii[20,129] := {253} tii[20,130] := {202, 245} tii[20,131] := {277} tii[20,132] := {279, 303} tii[20,133] := {71} tii[20,134] := {114} tii[20,135] := {96} tii[20,136] := {14, 213} tii[20,137] := {70} tii[20,138] := {73} tii[20,139] := {113} tii[20,140] := {36, 239} tii[20,141] := {144} tii[20,142] := {94} tii[20,143] := {7, 200} tii[20,144] := {170} tii[20,145] := {23, 221} tii[20,146] := {3, 173} tii[20,147] := {142} tii[20,148] := {40, 187} tii[20,149] := {44, 266} tii[20,150] := {127} tii[20,151] := {26} tii[20,152] := {30, 243} tii[20,153] := {80, 281} tii[20,154] := {102} tii[20,155] := {176} tii[20,156] := {56} tii[20,157] := {6, 134} tii[20,158] := {126} tii[20,159] := {15, 230} tii[20,160] := {42} tii[20,161] := {75} tii[20,162] := {103, 296} tii[20,163] := {18, 216} tii[20,164] := {204} tii[20,165] := {22, 155} tii[20,166] := {78} tii[20,167] := {10, 205} tii[20,168] := {37, 249} tii[20,169] := {175} tii[20,170] := {2, 107} tii[20,171] := {4, 180} tii[20,172] := {39, 119} tii[20,173] := {61, 219} tii[20,174] := {24} tii[20,175] := {76, 287} tii[20,176] := {232} tii[20,177] := {54} tii[20,178] := {8, 118} tii[20,179] := {85, 247} tii[20,180] := {60, 89} tii[20,181] := {95} tii[20,182] := {74} tii[20,183] := {143} tii[20,184] := {93} tii[20,185] := {29, 199} tii[20,186] := {32, 246} tii[20,187] := {52} tii[20,188] := {169} tii[20,189] := {141} tii[20,190] := {21, 172} tii[20,191] := {59, 220} tii[20,192] := {12, 148} tii[20,193] := {88, 186} tii[20,194] := {43} tii[20,195] := {20, 151} tii[20,196] := {34} tii[20,197] := {104, 270} tii[20,198] := {203} tii[20,199] := {79} tii[20,200] := {5, 117} tii[20,201] := {115, 217} tii[20,202] := {87, 120} tii[20,203] := {168} tii[20,204] := {147, 185} tii[20,205] := {51} tii[20,206] := {9, 184} tii[20,207] := {53} tii[20,208] := {0, 149} tii[20,209] := {19} tii[20,210] := {1, 86} cell#52 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {163} tii[17,2] := {102, 214} tii[17,3] := {197} tii[17,4] := {68, 233} tii[17,5] := {164, 224} tii[17,6] := {189, 234} tii[17,7] := {113, 242} tii[17,8] := {140, 244} tii[17,9] := {83} tii[17,10] := {142} tii[17,11] := {78, 201} tii[17,12] := {101} tii[17,13] := {44, 137} tii[17,14] := {71, 161} tii[17,15] := {162} tii[17,16] := {57, 213} tii[17,17] := {143} tii[17,18] := {17, 176} tii[17,19] := {121, 199} tii[17,20] := {132, 169} tii[17,21] := {33, 195} tii[17,22] := {149, 217} tii[17,23] := {77, 223} tii[17,24] := {105, 235} tii[17,25] := {62, 220} tii[17,26] := {109} tii[17,27] := {125} tii[17,28] := {64, 159} tii[17,29] := {93, 180} tii[17,30] := {120} tii[17,31] := {181} tii[17,32] := {147} tii[17,33] := {98} tii[17,34] := {144, 212} tii[17,35] := {165} tii[17,36] := {12, 193} tii[17,37] := {47, 225} tii[17,38] := {45, 167} tii[17,39] := {127} tii[17,40] := {170, 227} tii[17,41] := {155, 190} tii[17,42] := {23, 210} tii[17,43] := {72, 191} tii[17,44] := {56, 184} tii[17,45] := {123, 200} tii[17,46] := {65, 232} tii[17,47] := {112, 187} tii[17,48] := {81, 204} tii[17,49] := {94, 239} tii[17,50] := {53, 230} tii[17,51] := {151, 218} tii[17,52] := {131, 229} tii[17,53] := {182} tii[17,54] := {21, 207} tii[17,55] := {174, 205} tii[17,56] := {37, 222} tii[17,57] := {87, 238} tii[17,58] := {31, 211} tii[17,59] := {154, 215} tii[17,60] := {119, 243} tii[17,61] := {74, 237} tii[17,62] := {51, 226} tii[17,63] := {95, 240} tii[17,64] := {96, 241} tii[17,65] := {61} tii[17,66] := {79} tii[17,67] := {29, 114} tii[17,68] := {43} tii[17,69] := {50, 141} tii[17,70] := {25, 70} tii[17,71] := {18, 136} tii[17,72] := {100} tii[17,73] := {7, 110} tii[17,74] := {85, 129} tii[17,75] := {35, 160} tii[17,76] := {48, 178} tii[17,77] := {97} tii[17,78] := {63} tii[17,79] := {124} tii[17,80] := {75} tii[17,81] := {28, 146} tii[17,82] := {41, 92} tii[17,83] := {103} tii[17,84] := {49, 171} tii[17,85] := {122} tii[17,86] := {38, 166} tii[17,87] := {9, 158} tii[17,88] := {99, 185} tii[17,89] := {55} tii[17,90] := {26, 117} tii[17,91] := {111, 150} tii[17,92] := {58, 188} tii[17,93] := {128, 206} tii[17,94] := {84, 168} tii[17,95] := {3, 134} tii[17,96] := {20, 179} tii[17,97] := {80} tii[17,98] := {106, 219} tii[17,99] := {32, 194} tii[17,100] := {89, 130} tii[17,101] := {24, 183} tii[17,102] := {8, 156} tii[17,103] := {108, 186} tii[17,104] := {40, 203} tii[17,105] := {82, 228} tii[17,106] := {46, 208} tii[17,107] := {86} tii[17,108] := {60, 118} tii[17,109] := {76} tii[17,110] := {145} tii[17,111] := {6, 177} tii[17,112] := {42, 139} tii[17,113] := {104} tii[17,114] := {135, 172} tii[17,115] := {13, 196} tii[17,116] := {2, 157} tii[17,117] := {22, 209} tii[17,118] := {116, 153} tii[17,119] := {19, 198} tii[17,120] := {133, 202} tii[17,121] := {5, 175} tii[17,122] := {27, 148} tii[17,123] := {34, 216} tii[17,124] := {90, 173} tii[17,125] := {36, 221} tii[17,126] := {73, 236} tii[17,127] := {11, 192} tii[17,128] := {54, 231} tii[17,129] := {30} tii[17,130] := {14, 52} tii[17,131] := {10, 69} tii[17,132] := {39} tii[17,133] := {16, 91} tii[17,134] := {59} tii[17,135] := {4, 88} tii[17,136] := {67, 107} tii[17,137] := {15, 126} tii[17,138] := {1, 115} tii[17,139] := {66, 152} tii[17,140] := {0, 138} cell#53 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {331} tii[26,2] := {348} tii[26,3] := {260, 379} tii[26,4] := {37, 388} tii[26,5] := {289} tii[26,6] := {83, 410} tii[26,7] := {229} tii[26,8] := {315} tii[26,9] := {214} tii[26,10] := {213, 353} tii[26,11] := {105, 167, 390, 424} tii[26,12] := {148, 221, 408, 426} tii[26,13] := {329} tii[26,14] := {157, 374} tii[26,15] := {275} tii[26,16] := {308} tii[26,17] := {197} tii[26,18] := {170, 380} tii[26,19] := {334} tii[26,20] := {87, 257, 333, 412} tii[26,21] := {310, 368} tii[26,22] := {134, 303, 367, 421} tii[26,23] := {314} tii[26,24] := {128, 399} tii[26,25] := {276} tii[26,26] := {42, 252, 337, 377} tii[26,27] := {248, 323} tii[26,28] := {74, 301, 366, 403} tii[26,29] := {164, 411} tii[26,30] := {138, 222, 407, 423} tii[26,31] := {63} tii[26,32] := {118} tii[26,33] := {272} tii[26,34] := {261} tii[26,35] := {142, 209} tii[26,36] := {190, 264} tii[26,37] := {78} tii[26,38] := {19, 361} tii[26,39] := {292} tii[26,40] := {51, 395} tii[26,41] := {116} tii[26,42] := {182} tii[26,43] := {150} tii[26,44] := {6, 344} tii[26,45] := {171} tii[26,46] := {258} tii[26,47] := {160} tii[26,48] := {282} tii[26,49] := {70, 125, 363, 419} tii[26,50] := {15, 364} tii[26,51] := {161, 238} tii[26,52] := {216} tii[26,53] := {110, 179, 393, 425} tii[26,54] := {7, 34, 346, 394} tii[26,55] := {217, 285} tii[26,56] := {191} tii[26,57] := {84, 375} tii[26,58] := {226} tii[26,59] := {320} tii[26,60] := {235} tii[26,61] := {54, 350} tii[26,62] := {129} tii[26,63] := {253} tii[26,64] := {43, 166, 335, 413} tii[26,65] := {141, 279} tii[26,66] := {27, 93, 332, 385} tii[26,67] := {283} tii[26,68] := {228, 302} tii[26,69] := {189, 324} tii[26,70] := {75, 220, 369, 422} tii[26,71] := {162, 317} tii[26,72] := {165} tii[26,73] := {24, 205, 297, 398} tii[26,74] := {139, 223} tii[26,75] := {10, 158, 273, 382} tii[26,76] := {218, 356} tii[26,77] := {45, 262, 342, 417} tii[26,78] := {72, 299, 306, 405} tii[26,79] := {47} tii[26,80] := {16, 371} tii[26,81] := {250} tii[26,82] := {111} tii[26,83] := {81} tii[26,84] := {30, 391} tii[26,85] := {240} tii[26,86] := {211} tii[26,87] := {121} tii[26,88] := {122, 196} tii[26,89] := {17, 61, 373, 409} tii[26,90] := {175} tii[26,91] := {176, 245} tii[26,92] := {269} tii[26,93] := {65} tii[26,94] := {149} tii[26,95] := {119, 347} tii[26,96] := {281} tii[26,97] := {295} tii[26,98] := {193} tii[26,99] := {103} tii[26,100] := {53, 396} tii[26,101] := {185} tii[26,102] := {153} tii[26,103] := {86, 316} tii[26,104] := {55, 208, 294, 397} tii[26,105] := {104, 237} tii[26,106] := {271, 341} tii[26,107] := {146} tii[26,108] := {243} tii[26,109] := {38, 99, 389, 415} tii[26,110] := {49, 133, 290, 358} tii[26,111] := {147, 284} tii[26,112] := {94, 263, 340, 416} tii[26,113] := {256} tii[26,114] := {124} tii[26,115] := {123, 277} tii[26,116] := {32, 254, 255, 378} tii[26,117] := {195} tii[26,118] := {67, 132, 372, 420} tii[26,119] := {231, 305} tii[26,120] := {13, 203, 230, 355} tii[26,121] := {177, 322} tii[26,122] := {159, 246} tii[26,123] := {59, 300, 304, 404} tii[26,124] := {178} tii[26,125] := {187, 268} tii[26,126] := {90, 267, 338, 387} tii[26,127] := {192} tii[26,128] := {120, 349} tii[26,129] := {239} tii[26,130] := {151} tii[26,131] := {69, 280} tii[26,132] := {80, 174, 330, 384} tii[26,133] := {200} tii[26,134] := {109, 325} tii[26,135] := {236} tii[26,136] := {113} tii[26,137] := {88, 318} tii[26,138] := {23, 206, 296, 352} tii[26,139] := {50, 215, 309, 400} tii[26,140] := {204, 286} tii[26,141] := {135, 357} tii[26,142] := {155} tii[26,143] := {9, 183, 249, 321} tii[26,144] := {44, 265, 339, 386} tii[26,145] := {169, 247} tii[26,146] := {71, 224, 365, 406} tii[26,147] := {57, 351} tii[26,148] := {21, 227, 291, 354} tii[26,149] := {95, 383} tii[26,150] := {106, 180, 392, 418} tii[26,151] := {35} tii[26,152] := {52} tii[26,153] := {36, 98} tii[26,154] := {100} tii[26,155] := {0, 311} tii[26,156] := {140} tii[26,157] := {12, 336} tii[26,158] := {232} tii[26,159] := {85} tii[26,160] := {188} tii[26,161] := {2, 26, 313, 370} tii[26,162] := {64, 137} tii[26,163] := {163} tii[26,164] := {25, 298} tii[26,165] := {102, 173} tii[26,166] := {11, 46, 274, 343} tii[26,167] := {219} tii[26,168] := {4, 73, 234, 307} tii[26,169] := {39} tii[26,170] := {31, 376} tii[26,171] := {112} tii[26,172] := {68} tii[26,173] := {143} tii[26,174] := {20, 62, 362, 402} tii[26,175] := {79, 156} tii[26,176] := {108} tii[26,177] := {194} tii[26,178] := {89} tii[26,179] := {33, 319} tii[26,180] := {207} tii[26,181] := {41, 92, 345, 414} tii[26,182] := {117, 199} tii[26,183] := {184, 266} tii[26,184] := {14, 60, 293, 359} tii[26,185] := {136} tii[26,186] := {244} tii[26,187] := {145, 225} tii[26,188] := {8, 91, 259, 328} tii[26,189] := {58} tii[26,190] := {22, 131, 312, 401} tii[26,191] := {101, 241} tii[26,192] := {96} tii[26,193] := {3, 126, 233, 360} tii[26,194] := {107, 181} tii[26,195] := {76} tii[26,196] := {48, 115} tii[26,197] := {152} tii[26,198] := {56, 278} tii[26,199] := {82, 154} tii[26,200] := {201} tii[26,201] := {28, 97, 251, 326} tii[26,202] := {18, 130, 212, 288} tii[26,203] := {77} tii[26,204] := {29, 172, 270, 381} tii[26,205] := {66, 198} tii[26,206] := {114} tii[26,207] := {5, 168, 186, 327} tii[26,208] := {127, 202} tii[26,209] := {40, 242} tii[26,210] := {1, 144, 210, 287} cell#54 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {163} tii[17,2] := {102, 214} tii[17,3] := {197} tii[17,4] := {68, 233} tii[17,5] := {164, 224} tii[17,6] := {189, 234} tii[17,7] := {113, 242} tii[17,8] := {140, 244} tii[17,9] := {83} tii[17,10] := {142} tii[17,11] := {78, 201} tii[17,12] := {101} tii[17,13] := {44, 137} tii[17,14] := {71, 161} tii[17,15] := {162} tii[17,16] := {57, 213} tii[17,17] := {143} tii[17,18] := {17, 176} tii[17,19] := {121, 199} tii[17,20] := {132, 169} tii[17,21] := {33, 195} tii[17,22] := {149, 217} tii[17,23] := {77, 223} tii[17,24] := {105, 235} tii[17,25] := {62, 220} tii[17,26] := {109} tii[17,27] := {125} tii[17,28] := {64, 159} tii[17,29] := {93, 180} tii[17,30] := {120} tii[17,31] := {181} tii[17,32] := {147} tii[17,33] := {98} tii[17,34] := {144, 212} tii[17,35] := {165} tii[17,36] := {12, 193} tii[17,37] := {47, 225} tii[17,38] := {45, 167} tii[17,39] := {127} tii[17,40] := {170, 227} tii[17,41] := {155, 190} tii[17,42] := {23, 210} tii[17,43] := {72, 191} tii[17,44] := {56, 184} tii[17,45] := {123, 200} tii[17,46] := {65, 232} tii[17,47] := {112, 187} tii[17,48] := {81, 204} tii[17,49] := {94, 239} tii[17,50] := {53, 230} tii[17,51] := {151, 218} tii[17,52] := {131, 229} tii[17,53] := {182} tii[17,54] := {21, 207} tii[17,55] := {174, 205} tii[17,56] := {37, 222} tii[17,57] := {87, 238} tii[17,58] := {31, 211} tii[17,59] := {154, 215} tii[17,60] := {119, 243} tii[17,61] := {74, 237} tii[17,62] := {51, 226} tii[17,63] := {95, 240} tii[17,64] := {96, 241} tii[17,65] := {61} tii[17,66] := {79} tii[17,67] := {29, 114} tii[17,68] := {43} tii[17,69] := {50, 141} tii[17,70] := {25, 70} tii[17,71] := {18, 136} tii[17,72] := {100} tii[17,73] := {7, 110} tii[17,74] := {85, 129} tii[17,75] := {35, 160} tii[17,76] := {48, 178} tii[17,77] := {97} tii[17,78] := {63} tii[17,79] := {124} tii[17,80] := {75} tii[17,81] := {28, 146} tii[17,82] := {41, 92} tii[17,83] := {103} tii[17,84] := {49, 171} tii[17,85] := {122} tii[17,86] := {38, 166} tii[17,87] := {9, 158} tii[17,88] := {99, 185} tii[17,89] := {55} tii[17,90] := {26, 117} tii[17,91] := {111, 150} tii[17,92] := {58, 188} tii[17,93] := {128, 206} tii[17,94] := {84, 168} tii[17,95] := {3, 134} tii[17,96] := {20, 179} tii[17,97] := {80} tii[17,98] := {106, 219} tii[17,99] := {32, 194} tii[17,100] := {89, 130} tii[17,101] := {24, 183} tii[17,102] := {8, 156} tii[17,103] := {108, 186} tii[17,104] := {40, 203} tii[17,105] := {82, 228} tii[17,106] := {46, 208} tii[17,107] := {86} tii[17,108] := {60, 118} tii[17,109] := {76} tii[17,110] := {145} tii[17,111] := {6, 177} tii[17,112] := {42, 139} tii[17,113] := {104} tii[17,114] := {135, 172} tii[17,115] := {13, 196} tii[17,116] := {2, 157} tii[17,117] := {22, 209} tii[17,118] := {116, 153} tii[17,119] := {19, 198} tii[17,120] := {133, 202} tii[17,121] := {5, 175} tii[17,122] := {27, 148} tii[17,123] := {34, 216} tii[17,124] := {90, 173} tii[17,125] := {36, 221} tii[17,126] := {73, 236} tii[17,127] := {11, 192} tii[17,128] := {54, 231} tii[17,129] := {30} tii[17,130] := {14, 52} tii[17,131] := {10, 69} tii[17,132] := {39} tii[17,133] := {16, 91} tii[17,134] := {59} tii[17,135] := {4, 88} tii[17,136] := {67, 107} tii[17,137] := {15, 126} tii[17,138] := {1, 115} tii[17,139] := {66, 152} tii[17,140] := {0, 138} cell#55 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {226} tii[20,2] := {257} tii[20,3] := {88, 288} tii[20,4] := {195} tii[20,5] := {107} tii[20,6] := {277} tii[20,7] := {157, 310} tii[20,8] := {194, 313} tii[20,9] := {153, 251} tii[20,10] := {225} tii[20,11] := {171} tii[20,12] := {292} tii[20,13] := {90, 199} tii[20,14] := {221, 289} tii[20,15] := {129, 239} tii[20,16] := {249, 304} tii[20,17] := {250} tii[20,18] := {302} tii[20,19] := {227} tii[20,20] := {268, 290} tii[20,21] := {218, 264} tii[20,22] := {287, 305} tii[20,23] := {309} tii[20,24] := {308, 314} tii[20,25] := {45} tii[20,26] := {139} tii[20,27] := {104} tii[20,28] := {148} tii[20,29] := {59, 271} tii[20,30] := {71} tii[20,31] := {77} tii[20,32] := {76} tii[20,33] := {172} tii[20,34] := {122, 301} tii[20,35] := {20, 231} tii[20,36] := {135} tii[20,37] := {115} tii[20,38] := {162, 311} tii[20,39] := {44, 267} tii[20,40] := {180} tii[20,41] := {99} tii[20,42] := {87, 252} tii[20,43] := {204} tii[20,44] := {132} tii[20,45] := {60, 230} tii[20,46] := {106} tii[20,47] := {36, 134} tii[20,48] := {156, 291} tii[20,49] := {165} tii[20,50] := {179} tii[20,51] := {33, 206} tii[20,52] := {95, 265} tii[20,53] := {66, 181} tii[20,54] := {209} tii[20,55] := {193, 306} tii[20,56] := {196} tii[20,57] := {133} tii[20,58] := {189, 276} tii[20,59] := {120, 183} tii[20,60] := {154, 261} tii[20,61] := {236} tii[20,62] := {222, 298} tii[20,63] := {247, 285} tii[20,64] := {100} tii[20,65] := {40, 255} tii[20,66] := {138} tii[20,67] := {49} tii[20,68] := {167} tii[20,69] := {70, 283} tii[20,70] := {83} tii[20,71] := {210} tii[20,72] := {130} tii[20,73] := {119, 224} tii[20,74] := {63, 273} tii[20,75] := {170} tii[20,76] := {61, 166} tii[20,77] := {101} tii[20,78] := {137} tii[20,79] := {27} tii[20,80] := {89, 198} tii[20,81] := {190, 274} tii[20,82] := {200} tii[20,83] := {41, 258} tii[20,84] := {96, 211} tii[20,85] := {145} tii[20,86] := {98, 295} tii[20,87] := {55} tii[20,88] := {57, 173} tii[20,89] := {128, 237} tii[20,90] := {238} tii[20,91] := {223, 296} tii[20,92] := {38, 136} tii[20,93] := {47} tii[20,94] := {228} tii[20,95] := {220, 256} tii[20,96] := {164} tii[20,97] := {127, 303} tii[20,98] := {17, 110} tii[20,99] := {68, 182} tii[20,100] := {187, 235} tii[20,101] := {81} tii[20,102] := {262} tii[20,103] := {155, 214} tii[20,104] := {248, 284} tii[20,105] := {93, 151} tii[20,106] := {269, 299} tii[20,107] := {163} tii[20,108] := {121, 229} tii[20,109] := {203} tii[20,110] := {131} tii[20,111] := {232} tii[20,112] := {86, 205} tii[20,113] := {161, 263} tii[20,114] := {178} tii[20,115] := {266} tii[20,116] := {197} tii[20,117] := {102} tii[20,118] := {253} tii[20,119] := {246, 275} tii[20,120] := {58, 174} tii[20,121] := {192, 278} tii[20,122] := {188, 241} tii[20,123] := {281} tii[20,124] := {146} tii[20,125] := {219, 260} tii[20,126] := {270, 297} tii[20,127] := {159, 216} tii[20,128] := {286, 307} tii[20,129] := {272} tii[20,130] := {245, 279} tii[20,131] := {294} tii[20,132] := {300, 312} tii[20,133] := {12} tii[20,134] := {32} tii[20,135] := {26} tii[20,136] := {7, 201} tii[20,137] := {50} tii[20,138] := {13} tii[20,139] := {84} tii[20,140] := {24, 240} tii[20,141] := {54} tii[20,142] := {74} tii[20,143] := {19, 169} tii[20,144] := {78} tii[20,145] := {43, 213} tii[20,146] := {6, 144} tii[20,147] := {113} tii[20,148] := {65, 185} tii[20,149] := {39, 254} tii[20,150] := {48} tii[20,151] := {11} tii[20,152] := {22, 233} tii[20,153] := {69, 282} tii[20,154] := {28} tii[20,155] := {82} tii[20,156] := {31} tii[20,157] := {18, 105} tii[20,158] := {103} tii[20,159] := {37, 202} tii[20,160] := {25} tii[20,161] := {52} tii[20,162] := {94, 293} tii[20,163] := {10, 207} tii[20,164] := {109} tii[20,165] := {42, 149} tii[20,166] := {53} tii[20,167] := {16, 177} tii[20,168] := {67, 242} tii[20,169] := {147} tii[20,170] := {5, 79} tii[20,171] := {8, 150} tii[20,172] := {64, 118} tii[20,173] := {92, 217} tii[20,174] := {46} tii[20,175] := {126, 280} tii[20,176] := {140} tii[20,177] := {80} tii[20,178] := {15, 108} tii[20,179] := {123, 244} tii[20,180] := {91, 152} tii[20,181] := {75} tii[20,182] := {51} tii[20,183] := {114} tii[20,184] := {73} tii[20,185] := {62, 168} tii[20,186] := {23, 234} tii[20,187] := {29} tii[20,188] := {142} tii[20,189] := {112} tii[20,190] := {35, 143} tii[20,191] := {97, 212} tii[20,192] := {21, 116} tii[20,193] := {125, 184} tii[20,194] := {72} tii[20,195] := {34, 141} tii[20,196] := {14} tii[20,197] := {160, 259} tii[20,198] := {176} tii[20,199] := {111} tii[20,200] := {9, 85} tii[20,201] := {158, 215} tii[20,202] := {124, 186} tii[20,203] := {208} tii[20,204] := {191, 243} tii[20,205] := {3} tii[20,206] := {2, 175} tii[20,207] := {30} tii[20,208] := {0, 117} tii[20,209] := {4} tii[20,210] := {1, 56} cell#56 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {46} tii[31,2] := {44} tii[31,3] := {47} tii[31,4] := {45} tii[31,5] := {48, 49} tii[31,6] := {39} tii[31,7] := {41} tii[31,8] := {40} tii[31,9] := {42, 43} tii[31,10] := {33} tii[31,11] := {31} tii[31,12] := {37, 38} tii[31,13] := {22} tii[31,14] := {27, 28} tii[31,15] := {20, 34} tii[31,16] := {29} tii[31,17] := {32} tii[31,18] := {30} tii[31,19] := {35, 36} tii[31,20] := {23} tii[31,21] := {21} tii[31,22] := {25, 26} tii[31,23] := {13} tii[31,24] := {18, 19} tii[31,25] := {11, 24} tii[31,26] := {14} tii[31,27] := {12} tii[31,28] := {16, 17} tii[31,29] := {6} tii[31,30] := {9, 10} tii[31,31] := {5, 15} tii[31,32] := {2} tii[31,33] := {3, 4} tii[31,34] := {1, 8} tii[31,35] := {0, 7} cell#57 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {102} tii[25,2] := {132} tii[25,3] := {143, 160} tii[25,4] := {155, 169} tii[25,5] := {76} tii[25,6] := {113} tii[25,7] := {46} tii[25,8] := {65} tii[25,9] := {126, 149} tii[25,10] := {47, 100} tii[25,11] := {144, 163} tii[25,12] := {133} tii[25,13] := {116} tii[25,14] := {106, 159} tii[25,15] := {90, 141} tii[25,16] := {130, 168} tii[25,17] := {81, 165} tii[25,18] := {51, 157} tii[25,19] := {110, 172} tii[25,20] := {127, 174} tii[25,21] := {49} tii[25,22] := {91} tii[25,23] := {25} tii[25,24] := {43} tii[25,25] := {105, 136} tii[25,26] := {26, 73} tii[25,27] := {129, 154} tii[25,28] := {19} tii[25,29] := {114} tii[25,30] := {95} tii[25,31] := {31} tii[25,32] := {80, 148} tii[25,33] := {63, 121} tii[25,34] := {20, 62} tii[25,35] := {109, 162} tii[25,36] := {57} tii[25,37] := {56, 158} tii[25,38] := {28, 146} tii[25,39] := {29, 87} tii[25,40] := {86, 167} tii[25,41] := {22, 108} tii[25,42] := {107, 171} tii[25,43] := {92} tii[25,44] := {67} tii[25,45] := {55, 135} tii[25,46] := {41, 98} tii[25,47] := {85, 153} tii[25,48] := {44} tii[25,49] := {32, 147} tii[25,50] := {14, 134} tii[25,51] := {23, 72} tii[25,52] := {60, 161} tii[25,53] := {13, 97} tii[25,54] := {83, 166} tii[25,55] := {17, 156} tii[25,56] := {6, 145} tii[25,57] := {34, 164} tii[25,58] := {3, 131} tii[25,59] := {58, 170} tii[25,60] := {70, 173} tii[25,61] := {74} tii[25,62] := {93} tii[25,63] := {75, 123} tii[25,64] := {37} tii[25,65] := {115} tii[25,66] := {54} tii[25,67] := {103, 142} tii[25,68] := {38, 88} tii[25,69] := {82} tii[25,70] := {125, 152} tii[25,71] := {52, 111} tii[25,72] := {40, 128} tii[25,73] := {8} tii[25,74] := {94} tii[25,75] := {16} tii[25,76] := {9, 36} tii[25,77] := {77, 124} tii[25,78] := {33} tii[25,79] := {96} tii[25,80] := {104, 140} tii[25,81] := {15, 61} tii[25,82] := {64, 122} tii[25,83] := {11, 84} tii[25,84] := {48, 138} tii[25,85] := {18} tii[25,86] := {79, 151} tii[25,87] := {7, 35} tii[25,88] := {39, 150} tii[25,89] := {4, 59} tii[25,90] := {1, 71} tii[25,91] := {66} tii[25,92] := {50, 101} tii[25,93] := {68} tii[25,94] := {78, 120} tii[25,95] := {42, 99} tii[25,96] := {27, 118} tii[25,97] := {24} tii[25,98] := {53, 139} tii[25,99] := {12, 45} tii[25,100] := {21, 137} tii[25,101] := {5, 69} tii[25,102] := {2, 89} tii[25,103] := {30, 119} tii[25,104] := {10, 117} tii[25,105] := {0, 112} cell#58 , |C| = 245 special orbit = [5, 4, 4, 1, 1] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[18,1] := {216, 217} tii[18,2] := {112, 113} tii[18,3] := {229, 230} tii[18,4] := {194, 195} tii[18,5] := {165, 166} tii[18,6] := {237, 238} tii[18,7] := {227, 228} tii[18,8] := {200} tii[18,9] := {223} tii[18,10] := {242, 243} tii[18,11] := {240, 241} tii[18,12] := {244} tii[18,13] := {67, 68} tii[18,14] := {156, 157} tii[18,15] := {41, 42} tii[18,16] := {82, 83} tii[18,17] := {92, 93} tii[18,18] := {169, 170} tii[18,19] := {35, 36} tii[18,20] := {180, 181} tii[18,21] := {96, 97} tii[18,22] := {134, 135} tii[18,23] := {120, 121} tii[18,24] := {110, 111} tii[18,25] := {201, 202} tii[18,26] := {192, 193} tii[18,27] := {150, 151} tii[18,28] := {80, 81} tii[18,29] := {154} tii[18,30] := {100} tii[18,31] := {183, 184} tii[18,32] := {187} tii[18,33] := {210, 211} tii[18,34] := {220} tii[18,35] := {65, 66} tii[18,36] := {122, 123} tii[18,37] := {59, 60} tii[18,38] := {203, 204} tii[18,39] := {126, 127} tii[18,40] := {162, 163} tii[18,41] := {53, 54} tii[18,42] := {148, 149} tii[18,43] := {138, 139} tii[18,44] := {88, 89} tii[18,45] := {33, 34} tii[18,46] := {218, 219} tii[18,47] := {179} tii[18,48] := {177, 178} tii[18,49] := {212, 213} tii[18,50] := {116, 117} tii[18,51] := {108, 109} tii[18,52] := {63, 64} tii[18,53] := {207} tii[18,54] := {205, 206} tii[18,55] := {146, 147} tii[18,56] := {129} tii[18,57] := {142, 143} tii[18,58] := {155} tii[18,59] := {225, 226} tii[18,60] := {131} tii[18,61] := {173, 174} tii[18,62] := {233} tii[18,63] := {188} tii[18,64] := {209} tii[18,65] := {175, 176} tii[18,66] := {136, 137} tii[18,67] := {231, 232} tii[18,68] := {198, 199} tii[18,69] := {158} tii[18,70] := {221, 222} tii[18,71] := {235, 236} tii[18,72] := {190, 191} tii[18,73] := {182} tii[18,74] := {239} tii[18,75] := {214, 215} tii[18,76] := {234} tii[18,77] := {24, 25} tii[18,78] := {20, 21} tii[18,79] := {45, 46} tii[18,80] := {8, 9} tii[18,81] := {16, 17} tii[18,82] := {69, 70} tii[18,83] := {26, 27} tii[18,84] := {105, 106} tii[18,85] := {94, 95} tii[18,86] := {31, 32} tii[18,87] := {132, 133} tii[18,88] := {49} tii[18,89] := {29, 30} tii[18,90] := {57, 58} tii[18,91] := {22, 23} tii[18,92] := {71, 72} tii[18,93] := {12, 13} tii[18,94] := {86, 87} tii[18,95] := {37, 38} tii[18,96] := {50, 51} tii[18,97] := {118, 119} tii[18,98] := {124, 125} tii[18,99] := {55, 56} tii[18,100] := {128} tii[18,101] := {114, 115} tii[18,102] := {4, 5} tii[18,103] := {73, 74} tii[18,104] := {75} tii[18,105] := {144, 145} tii[18,106] := {160, 161} tii[18,107] := {164} tii[18,108] := {103} tii[18,109] := {18, 19} tii[18,110] := {189} tii[18,111] := {52} tii[18,112] := {140, 141} tii[18,113] := {171, 172} tii[18,114] := {130} tii[18,115] := {208} tii[18,116] := {43, 44} tii[18,117] := {98, 99} tii[18,118] := {76, 77} tii[18,119] := {14, 15} tii[18,120] := {152, 153} tii[18,121] := {84, 85} tii[18,122] := {101, 102} tii[18,123] := {39, 40} tii[18,124] := {104} tii[18,125] := {185, 186} tii[18,126] := {79} tii[18,127] := {167, 168} tii[18,128] := {159} tii[18,129] := {90, 91} tii[18,130] := {196, 197} tii[18,131] := {107} tii[18,132] := {224} tii[18,133] := {2, 3} tii[18,134] := {10, 11} tii[18,135] := {0, 1} tii[18,136] := {47, 48} tii[18,137] := {6, 7} tii[18,138] := {28} tii[18,139] := {61, 62} tii[18,140] := {78} cell#59 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {142} tii[25,2] := {100} tii[25,3] := {86, 146} tii[25,4] := {125, 163} tii[25,5] := {164} tii[25,6] := {71} tii[25,7] := {153} tii[25,8] := {166} tii[25,9] := {58, 118} tii[25,10] := {154, 173} tii[25,11] := {91, 141} tii[25,12] := {98} tii[25,13] := {115} tii[25,14] := {35, 145} tii[25,15] := {99, 150} tii[25,16] := {63, 161} tii[25,17] := {57, 165} tii[25,18] := {44, 171} tii[25,19] := {93, 172} tii[25,20] := {113, 174} tii[25,21] := {155} tii[25,22] := {42} tii[25,23] := {136} tii[25,24] := {156} tii[25,25] := {34, 88} tii[25,26] := {137, 169} tii[25,27] := {62, 112} tii[25,28] := {108} tii[25,29] := {69} tii[25,30] := {84} tii[25,31] := {133} tii[25,32] := {18, 117} tii[25,33] := {70, 124} tii[25,34] := {109, 157} tii[25,35] := {37, 139} tii[25,36] := {104} tii[25,37] := {33, 143} tii[25,38] := {23, 158} tii[25,39] := {82, 135} tii[25,40] := {64, 159} tii[25,41] := {54, 152} tii[25,42] := {83, 170} tii[25,43] := {51} tii[25,44] := {73} tii[25,45] := {8, 105} tii[25,46] := {52, 106} tii[25,47] := {21, 128} tii[25,48] := {45} tii[25,49] := {17, 132} tii[25,50] := {10, 148} tii[25,51] := {30, 78} tii[25,52] := {38, 149} tii[25,53] := {15, 96} tii[25,54] := {55, 167} tii[25,55] := {11, 102} tii[25,56] := {5, 122} tii[25,57] := {29, 123} tii[25,58] := {1, 95} tii[25,59] := {41, 147} tii[25,60] := {22, 119} tii[25,61] := {114} tii[25,62] := {87} tii[25,63] := {59, 110} tii[25,64] := {130} tii[25,65] := {75} tii[25,66] := {144} tii[25,67] := {49, 94} tii[25,68] := {131, 168} tii[25,69] := {116} tii[25,70] := {60, 121} tii[25,71] := {101, 151} tii[25,72] := {76, 162} tii[25,73] := {80} tii[25,74] := {47} tii[25,75] := {103} tii[25,76] := {81, 134} tii[25,77] := {28, 65} tii[25,78] := {74} tii[25,79] := {85} tii[25,80] := {36, 90} tii[25,81] := {53, 107} tii[25,82] := {72, 126} tii[25,83] := {32, 129} tii[25,84] := {48, 140} tii[25,85] := {46} tii[25,86] := {20, 120} tii[25,87] := {31, 79} tii[25,88] := {27, 160} tii[25,89] := {16, 97} tii[25,90] := {7, 67} tii[25,91] := {25} tii[25,92] := {13, 39} tii[25,93] := {56} tii[25,94] := {19, 61} tii[25,95] := {43, 92} tii[25,96] := {26, 111} tii[25,97] := {24} tii[25,98] := {9, 89} tii[25,99] := {14, 50} tii[25,100] := {12, 138} tii[25,101] := {6, 68} tii[25,102] := {2, 40} tii[25,103] := {3, 77} tii[25,104] := {4, 127} tii[25,105] := {0, 66} cell#60 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {97} tii[19,2] := {112} tii[19,3] := {121} tii[19,4] := {82} tii[19,5] := {40} tii[19,6] := {102} tii[19,7] := {57} tii[19,8] := {115} tii[19,9] := {96} tii[19,10] := {80} tii[19,11] := {111} tii[19,12] := {92} tii[19,13] := {91} tii[19,14] := {120} tii[19,15] := {117} tii[19,16] := {109} tii[19,17] := {124} tii[19,18] := {125} tii[19,19] := {61} tii[19,20] := {22} tii[19,21] := {88} tii[19,22] := {37} tii[19,23] := {107} tii[19,24] := {81} tii[19,25] := {59} tii[19,26] := {15} tii[19,27] := {101} tii[19,28] := {73} tii[19,29] := {72} tii[19,30] := {30} tii[19,31] := {114} tii[19,32] := {31} tii[19,33] := {110} tii[19,34] := {46} tii[19,35] := {99} tii[19,36] := {47} tii[19,37] := {119} tii[19,38] := {66} tii[19,39] := {123} tii[19,40] := {60} tii[19,41] := {38} tii[19,42] := {87} tii[19,43] := {53} tii[19,44] := {52} tii[19,45] := {106} tii[19,46] := {21} tii[19,47] := {100} tii[19,48] := {86} tii[19,49] := {35} tii[19,50] := {34} tii[19,51] := {113} tii[19,52] := {51} tii[19,53] := {20} tii[19,54] := {118} tii[19,55] := {98} tii[19,56] := {83} tii[19,57] := {108} tii[19,58] := {65} tii[19,59] := {116} tii[19,60] := {122} tii[19,61] := {63} tii[19,62] := {78} tii[19,63] := {84} tii[19,64] := {32} tii[19,65] := {67} tii[19,66] := {95} tii[19,67] := {49} tii[19,68] := {50} tii[19,69] := {105} tii[19,70] := {68} tii[19,71] := {69} tii[19,72] := {85} tii[19,73] := {64} tii[19,74] := {5} tii[19,75] := {13} tii[19,76] := {45} tii[19,77] := {79} tii[19,78] := {14} tii[19,79] := {62} tii[19,80] := {25} tii[19,81] := {27} tii[19,82] := {94} tii[19,83] := {28} tii[19,84] := {77} tii[19,85] := {76} tii[19,86] := {43} tii[19,87] := {56} tii[19,88] := {90} tii[19,89] := {4} tii[19,90] := {104} tii[19,91] := {10} tii[19,92] := {11} tii[19,93] := {3} tii[19,94] := {24} tii[19,95] := {103} tii[19,96] := {16} tii[19,97] := {41} tii[19,98] := {58} tii[19,99] := {26} tii[19,100] := {39} tii[19,101] := {9} tii[19,102] := {75} tii[19,103] := {55} tii[19,104] := {54} tii[19,105] := {36} tii[19,106] := {71} tii[19,107] := {8} tii[19,108] := {6} tii[19,109] := {93} tii[19,110] := {19} tii[19,111] := {18} tii[19,112] := {29} tii[19,113] := {89} tii[19,114] := {33} tii[19,115] := {7} tii[19,116] := {2} tii[19,117] := {23} tii[19,118] := {74} tii[19,119] := {70} tii[19,120] := {42} tii[19,121] := {44} tii[19,122] := {17} tii[19,123] := {48} tii[19,124] := {1} tii[19,125] := {12} tii[19,126] := {0} cell#61 , |C| = 392 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 2, 2, 1],[]]+phi[[2, 2, 1, 1],[1]]+phi[[2, 1],[2, 1, 1]]+phi[[2],[2, 2, 1]] TII depth = 3 TII multiplicity polynomial = 56*X+140*X^2+14*X^4 TII subcells: tii[15,1] := {284, 285} tii[15,2] := {301} tii[15,3] := {60, 61, 343, 344} tii[15,4] := {245, 246} tii[15,5] := {162, 163} tii[15,6] := {263} tii[15,7] := {113, 369} tii[15,8] := {154, 386} tii[15,9] := {281, 282} tii[15,10] := {300} tii[15,11] := {239, 240} tii[15,12] := {183, 328} tii[15,13] := {266} tii[15,14] := {231, 363} tii[15,15] := {326} tii[15,16] := {293, 361} tii[15,17] := {39, 40, 365, 366} tii[15,18] := {200, 201} tii[15,19] := {224} tii[15,20] := {127, 128} tii[15,21] := {80, 381} tii[15,22] := {117, 390} tii[15,23] := {31, 32, 345, 346} tii[15,24] := {241, 242} tii[15,25] := {106, 107} tii[15,26] := {16, 17, 310, 311} tii[15,27] := {262} tii[15,28] := {196, 197} tii[15,29] := {147, 295} tii[15,30] := {69, 370} tii[15,31] := {27, 331} tii[15,32] := {227} tii[15,33] := {189, 336} tii[15,34] := {102, 387} tii[15,35] := {141, 142} tii[15,36] := {97, 380} tii[15,37] := {294} tii[15,38] := {65, 367} tii[15,39] := {170} tii[15,40] := {257, 335} tii[15,41] := {136, 389} tii[15,42] := {167, 391} tii[15,43] := {279, 280} tii[15,44] := {299} tii[15,45] := {237, 238} tii[15,46] := {182, 327} tii[15,47] := {265} tii[15,48] := {230, 362} tii[15,49] := {216, 217} tii[15,50] := {159, 350} tii[15,51] := {325} tii[15,52] := {118, 322} tii[15,53] := {292, 360} tii[15,54] := {253} tii[15,55] := {213, 376} tii[15,56] := {286} tii[15,57] := {249, 382} tii[15,58] := {349} tii[15,59] := {321, 375} tii[15,60] := {314, 384} tii[15,61] := {86, 87} tii[15,62] := {204, 205} tii[15,63] := {150} tii[15,64] := {192} tii[15,65] := {119, 120} tii[15,66] := {48, 49, 317, 318} tii[15,67] := {250, 251} tii[15,68] := {160, 161} tii[15,69] := {143, 144} tii[15,70] := {186} tii[15,71] := {98, 353} tii[15,72] := {29, 30, 277, 278} tii[15,73] := {214, 215} tii[15,74] := {234} tii[15,75] := {137, 379} tii[15,76] := {46, 303} tii[15,77] := {222} tii[15,78] := {126, 329} tii[15,79] := {180, 181} tii[15,80] := {272} tii[15,81] := {91, 306} tii[15,82] := {212} tii[15,83] := {176, 364} tii[15,84] := {209, 340} tii[15,85] := {18, 19, 315, 316} tii[15,86] := {88, 89} tii[15,87] := {36, 37, 312, 313} tii[15,88] := {206, 207} tii[15,89] := {75, 76} tii[15,90] := {8, 9, 275, 276} tii[15,91] := {123, 124} tii[15,92] := {43, 352} tii[15,93] := {151} tii[15,94] := {55, 332} tii[15,95] := {13, 302} tii[15,96] := {173, 174} tii[15,97] := {72, 378} tii[15,98] := {193} tii[15,99] := {68, 368} tii[15,100] := {198, 199} tii[15,101] := {92, 93} tii[15,102] := {185} tii[15,103] := {149, 296} tii[15,104] := {104, 105} tii[15,105] := {2, 3, 255, 256} tii[15,106] := {83, 357} tii[15,107] := {228} tii[15,108] := {41, 348} tii[15,109] := {233} tii[15,110] := {130} tii[15,111] := {101, 385} tii[15,112] := {131, 132} tii[15,113] := {111, 269} tii[15,114] := {191, 337} tii[15,115] := {5, 288} tii[15,116] := {129, 388} tii[15,117] := {194} tii[15,118] := {11, 319} tii[15,119] := {225, 309} tii[15,120] := {96, 351} tii[15,121] := {139, 140} tii[15,122] := {221} tii[15,123] := {146, 305} tii[15,124] := {64, 323} tii[15,125] := {271} tii[15,126] := {135, 377} tii[15,127] := {169} tii[15,128] := {203} tii[15,129] := {166, 383} tii[15,130] := {261, 339} tii[15,131] := {38, 298} tii[15,132] := {202, 372} tii[15,133] := {62, 63} tii[15,134] := {164, 165} tii[15,135] := {21, 22, 341, 342} tii[15,136] := {94, 95} tii[15,137] := {114} tii[15,138] := {133, 134} tii[15,139] := {35, 356} tii[15,140] := {155} tii[15,141] := {148} tii[15,142] := {6, 7, 289, 290} tii[15,143] := {66, 67} tii[15,144] := {112, 258} tii[15,145] := {157, 158} tii[15,146] := {56, 374} tii[15,147] := {190} tii[15,148] := {12, 320} tii[15,149] := {188} tii[15,150] := {99, 100} tii[15,151] := {79, 229} tii[15,152] := {153, 307} tii[15,153] := {24, 347} tii[15,154] := {156} tii[15,155] := {187, 274} tii[15,156] := {178, 179} tii[15,157] := {50, 51} tii[15,158] := {125, 324} tii[15,159] := {184} tii[15,160] := {47, 358} tii[15,161] := {110, 267} tii[15,162] := {211} tii[15,163] := {90, 291} tii[15,164] := {77, 78} tii[15,165] := {232} tii[15,166] := {175, 359} tii[15,167] := {248} tii[15,168] := {45, 354} tii[15,169] := {138} tii[15,170] := {223, 308} tii[15,171] := {208, 371} tii[15,172] := {59, 259} tii[15,173] := {210} tii[15,174] := {247, 355} tii[15,175] := {220} tii[15,176] := {145, 304} tii[15,177] := {270} tii[15,178] := {85, 297} tii[15,179] := {260, 338} tii[15,180] := {283, 373} tii[15,181] := {57, 58} tii[15,182] := {82} tii[15,183] := {121, 122} tii[15,184] := {14, 15, 243, 244} tii[15,185] := {115} tii[15,186] := {171, 172} tii[15,187] := {26, 268} tii[15,188] := {44, 235} tii[15,189] := {73, 74} tii[15,190] := {0, 1, 218, 219} tii[15,191] := {152} tii[15,192] := {71, 334} tii[15,193] := {108, 109} tii[15,194] := {4, 254} tii[15,195] := {70, 273} tii[15,196] := {10, 287} tii[15,197] := {177} tii[15,198] := {20, 252} tii[15,199] := {33, 34} tii[15,200] := {28, 333} tii[15,201] := {116} tii[15,202] := {52, 53} tii[15,203] := {25, 330} tii[15,204] := {81, 236} tii[15,205] := {103} tii[15,206] := {23, 264} tii[15,207] := {168} tii[15,208] := {84} tii[15,209] := {54, 195} tii[15,210] := {42, 226} cell#62 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {52} tii[35,2] := {36} tii[35,3] := {11, 51} tii[35,4] := {23, 54} tii[35,5] := {31, 55} tii[35,6] := {44} tii[35,7] := {28} tii[35,8] := {13, 41} tii[35,9] := {18, 47} tii[35,10] := {49} tii[35,11] := {45} tii[35,12] := {19} tii[35,13] := {38} tii[35,14] := {6, 32} tii[35,15] := {30, 43} tii[35,16] := {10, 39} tii[35,17] := {27} tii[35,18] := {20} tii[35,19] := {1, 40} tii[35,20] := {14, 25} tii[35,21] := {4, 46} tii[35,22] := {5, 48} tii[35,23] := {9, 50} tii[35,24] := {2, 42} tii[35,25] := {16, 53} tii[35,26] := {37} tii[35,27] := {29} tii[35,28] := {22, 35} tii[35,29] := {21} tii[35,30] := {15, 26} tii[35,31] := {8, 34} tii[35,32] := {12} tii[35,33] := {7, 17} tii[35,34] := {3, 24} tii[35,35] := {0, 33} cell#63 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {24} tii[30,2] := {31} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {12} tii[30,6] := {20} tii[30,7] := {23} tii[30,8] := {14} tii[30,9] := {4} tii[30,10] := {21} tii[30,11] := {8} tii[30,12] := {25} tii[30,13] := {19} tii[30,14] := {15} tii[30,15] := {26} tii[30,16] := {18} tii[30,17] := {10} tii[30,18] := {28} tii[30,19] := {29} tii[30,20] := {30} tii[30,21] := {27} tii[30,22] := {32} tii[30,23] := {2} tii[30,24] := {6} tii[30,25] := {7} tii[30,26] := {11} tii[30,27] := {3} tii[30,28] := {16} tii[30,29] := {9} tii[30,30] := {13} tii[30,31] := {5} tii[30,32] := {1} tii[30,33] := {17} tii[30,34] := {22} tii[30,35] := {0} cell#64 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {24} tii[30,2] := {31} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {17} tii[30,7] := {21} tii[30,8] := {15} tii[30,9] := {6} tii[30,10] := {22} tii[30,11] := {9} tii[30,12] := {25} tii[30,13] := {20} tii[30,14] := {16} tii[30,15] := {26} tii[30,16] := {19} tii[30,17] := {12} tii[30,18] := {28} tii[30,19] := {29} tii[30,20] := {30} tii[30,21] := {27} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {4} tii[30,25] := {5} tii[30,26] := {8} tii[30,27] := {2} tii[30,28] := {13} tii[30,29] := {11} tii[30,30] := {14} tii[30,31] := {7} tii[30,32] := {3} tii[30,33] := {18} tii[30,34] := {23} tii[30,35] := {0} cell#65 , |C| = 175 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[29,1] := {168} tii[29,2] := {130, 173} tii[29,3] := {141, 174} tii[29,4] := {52} tii[29,5] := {35, 105} tii[29,6] := {144} tii[29,7] := {99, 152} tii[29,8] := {66, 135} tii[29,9] := {93, 149} tii[29,10] := {74} tii[29,11] := {76} tii[29,12] := {155} tii[29,13] := {19, 122} tii[29,14] := {133} tii[29,15] := {80, 161} tii[29,16] := {79, 108} tii[29,17] := {45, 147} tii[29,18] := {102, 129} tii[29,19] := {72, 159} tii[29,20] := {94} tii[29,21] := {163} tii[29,22] := {114} tii[29,23] := {34, 138} tii[29,24] := {156} tii[29,25] := {131} tii[29,26] := {38, 140} tii[29,27] := {98, 166} tii[29,28] := {65, 157} tii[29,29] := {146} tii[29,30] := {62, 154} tii[29,31] := {92, 165} tii[29,32] := {53, 150} tii[29,33] := {116, 171} tii[29,34] := {77, 160} tii[29,35] := {85, 164} tii[29,36] := {100, 167} tii[29,37] := {112, 170} tii[29,38] := {106, 169} tii[29,39] := {127, 172} tii[29,40] := {20} tii[29,41] := {2, 46} tii[29,42] := {7, 64} tii[29,43] := {36} tii[29,44] := {54} tii[29,45] := {22} tii[29,46] := {117} tii[29,47] := {11, 67} tii[29,48] := {58, 86} tii[29,49] := {12, 31} tii[29,50] := {18, 84} tii[29,51] := {83, 113} tii[29,52] := {75} tii[29,53] := {24, 87} tii[29,54] := {132} tii[29,55] := {96} tii[29,56] := {39, 107} tii[29,57] := {33, 103} tii[29,58] := {118} tii[29,59] := {14, 68} tii[29,60] := {63, 128} tii[29,61] := {57, 123} tii[29,62] := {48, 120} tii[29,63] := {82, 142} tii[29,64] := {55} tii[29,65] := {40} tii[29,66] := {3, 88} tii[29,67] := {25, 50} tii[29,68] := {8, 104} tii[29,69] := {95} tii[29,70] := {115} tii[29,71] := {145} tii[29,72] := {59} tii[29,73] := {9, 109} tii[29,74] := {21, 124} tii[29,75] := {134} tii[29,76] := {42, 73} tii[29,77] := {16, 121} tii[29,78] := {4, 89} tii[29,79] := {44, 143} tii[29,80] := {97} tii[29,81] := {37, 139} tii[29,82] := {60, 91} tii[29,83] := {29, 136} tii[29,84] := {119} tii[29,85] := {61, 153} tii[29,86] := {23, 125} tii[29,87] := {32, 137} tii[29,88] := {13, 110} tii[29,89] := {56, 151} tii[29,90] := {27, 126} tii[29,91] := {47, 148} tii[29,92] := {81, 162} tii[29,93] := {69, 158} tii[29,94] := {10} tii[29,95] := {5, 17} tii[29,96] := {0, 30} tii[29,97] := {41} tii[29,98] := {26, 51} tii[29,99] := {78} tii[29,100] := {6, 49} tii[29,101] := {43, 70} tii[29,102] := {101} tii[29,103] := {28, 90} tii[29,104] := {1, 71} tii[29,105] := {15, 111} cell#66 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {111} tii[28,2] := {120, 158} tii[28,3] := {159, 176} tii[28,4] := {174, 183} tii[28,5] := {83} tii[28,6] := {43} tii[28,7] := {97, 140} tii[28,8] := {33, 87} tii[28,9] := {141, 166} tii[28,10] := {64, 109} tii[28,11] := {163, 178} tii[28,12] := {110} tii[28,13] := {71, 157} tii[28,14] := {93} tii[28,15] := {113} tii[28,16] := {27, 135} tii[28,17] := {121, 175} tii[28,18] := {94, 136} tii[28,19] := {51, 151} tii[28,20] := {149, 182} tii[28,21] := {96, 170} tii[28,22] := {72, 165} tii[28,23] := {142, 181} tii[28,24] := {104, 173} tii[28,25] := {55, 172} tii[28,26] := {164, 186} tii[28,27] := {153, 185} tii[28,28] := {137, 184} tii[28,29] := {169, 187} tii[28,30] := {179, 188} tii[28,31] := {69} tii[28,32] := {59, 115} tii[28,33] := {91, 133} tii[28,34] := {84} tii[28,35] := {21} tii[28,36] := {60} tii[28,37] := {74, 123} tii[28,38] := {15, 61} tii[28,39] := {35, 80} tii[28,40] := {105, 139} tii[28,41] := {38, 82} tii[28,42] := {41} tii[28,43] := {98, 144} tii[28,44] := {57} tii[28,45] := {4, 86} tii[28,46] := {42, 90} tii[28,47] := {130, 156} tii[28,48] := {75, 125} tii[28,49] := {19, 107} tii[28,50] := {14, 112} tii[28,51] := {146, 168} tii[28,52] := {7, 128} tii[28,53] := {39, 129} tii[28,54] := {54, 145} tii[28,55] := {56} tii[28,56] := {34} tii[28,57] := {48, 99} tii[28,58] := {17, 53} tii[28,59] := {78, 119} tii[28,60] := {67} tii[28,61] := {85} tii[28,62] := {23} tii[28,63] := {73, 122} tii[28,64] := {11, 114} tii[28,65] := {68, 117} tii[28,66] := {10, 40} tii[28,67] := {103, 138} tii[28,68] := {49, 100} tii[28,69] := {30, 132} tii[28,70] := {58} tii[28,71] := {26, 134} tii[28,72] := {18, 63} tii[28,73] := {126, 154} tii[28,74] := {13, 147} tii[28,75] := {44, 92} tii[28,76] := {52, 148} tii[28,77] := {24, 108} tii[28,78] := {70, 160} tii[28,79] := {47, 143} tii[28,80] := {77, 155} tii[28,81] := {28, 124} tii[28,82] := {46, 152} tii[28,83] := {12, 116} tii[28,84] := {101, 167} tii[28,85] := {79, 162} tii[28,86] := {31, 161} tii[28,87] := {95, 171} tii[28,88] := {16, 150} tii[28,89] := {127, 177} tii[28,90] := {118, 180} tii[28,91] := {45} tii[28,92] := {25, 66} tii[28,93] := {36, 89} tii[28,94] := {8} tii[28,95] := {2, 20} tii[28,96] := {32} tii[28,97] := {50, 102} tii[28,98] := {6, 37} tii[28,99] := {22, 65} tii[28,100] := {9, 81} tii[28,101] := {0, 62} tii[28,102] := {1, 106} tii[28,103] := {29, 76} tii[28,104] := {3, 88} tii[28,105] := {5, 131} cell#67 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {156} tii[28,2] := {102, 180} tii[28,3] := {135, 186} tii[28,4] := {149, 188} tii[28,5] := {148} tii[28,6] := {114} tii[28,7] := {78, 177} tii[28,8] := {71, 145} tii[28,9] := {116, 185} tii[28,10] := {90, 155} tii[28,11] := {134, 187} tii[28,12] := {132} tii[28,13] := {68, 169} tii[28,14] := {113} tii[28,15] := {93} tii[28,16] := {28, 144} tii[28,17] := {106, 181} tii[28,18] := {72, 111} tii[28,19] := {42, 154} tii[28,20] := {122, 184} tii[28,21] := {45, 157} tii[28,22] := {27, 143} tii[28,23] := {82, 174} tii[28,24] := {39, 153} tii[28,25] := {16, 128} tii[28,26] := {101, 179} tii[28,27] := {57, 164} tii[28,28] := {38, 152} tii[28,29] := {77, 172} tii[28,30] := {53, 161} tii[28,31] := {123} tii[28,32] := {80, 150} tii[28,33] := {99, 162} tii[28,34] := {142} tii[28,35] := {92} tii[28,36] := {124} tii[28,37] := {56, 163} tii[28,38] := {48, 127} tii[28,39] := {107, 137} tii[28,40] := {76, 171} tii[28,41] := {65, 141} tii[28,42] := {67} tii[28,43] := {79, 173} tii[28,44] := {46} tii[28,45] := {30, 105} tii[28,46] := {31, 62} tii[28,47] := {97, 178} tii[28,48] := {58, 165} tii[28,49] := {44, 121} tii[28,50] := {14, 81} tii[28,51] := {117, 183} tii[28,52] := {7, 60} tii[28,53] := {25, 100} tii[28,54] := {11, 75} tii[28,55] := {133} tii[28,56] := {115} tii[28,57] := {35, 159} tii[28,58] := {95, 131} tii[28,59] := {54, 168} tii[28,60] := {91} tii[28,61] := {69} tii[28,62] := {94} tii[28,63] := {55, 170} tii[28,64] := {15, 126} tii[28,65] := {50, 87} tii[28,66] := {73, 112} tii[28,67] := {74, 176} tii[28,68] := {36, 160} tii[28,69] := {26, 140} tii[28,70] := {49} tii[28,71] := {5, 104} tii[28,72] := {52, 130} tii[28,73] := {96, 182} tii[28,74] := {1, 84} tii[28,75] := {34, 66} tii[28,76] := {12, 120} tii[28,77] := {20, 41} tii[28,78] := {4, 98} tii[28,79] := {47, 158} tii[28,80] := {63, 167} tii[28,81] := {32, 146} tii[28,82] := {13, 125} tii[28,83] := {17, 129} tii[28,84] := {86, 175} tii[28,85] := {24, 139} tii[28,86] := {6, 108} tii[28,87] := {10, 119} tii[28,88] := {2, 89} tii[28,89] := {61, 166} tii[28,90] := {22, 138} tii[28,91] := {103} tii[28,92] := {83, 118} tii[28,93] := {59, 136} tii[28,94] := {70} tii[28,95] := {51, 88} tii[28,96] := {29} tii[28,97] := {37, 151} tii[28,98] := {33, 110} tii[28,99] := {18, 43} tii[28,100] := {9, 23} tii[28,101] := {19, 85} tii[28,102] := {3, 40} tii[28,103] := {21, 147} tii[28,104] := {8, 109} tii[28,105] := {0, 64} cell#68 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {247} tii[20,2] := {262} tii[20,3] := {50, 305} tii[20,4] := {216} tii[20,5] := {136} tii[20,6] := {237} tii[20,7] := {91, 312} tii[20,8] := {130, 314} tii[20,9] := {101, 271} tii[20,10] := {246} tii[20,11] := {204} tii[20,12] := {261} tii[20,13] := {152, 233} tii[20,14] := {153, 297} tii[20,15] := {195, 255} tii[20,16] := {196, 309} tii[20,17] := {270} tii[20,18] := {283} tii[20,19] := {257} tii[20,20] := {217, 296} tii[20,21] := {276, 277} tii[20,22] := {254, 308} tii[20,23] := {295} tii[20,24] := {292, 311} tii[20,25] := {74} tii[20,26] := {171} tii[20,27] := {121} tii[20,28] := {161} tii[20,29] := {27, 291} tii[20,30] := {84} tii[20,31] := {104} tii[20,32] := {87} tii[20,33] := {185} tii[20,34] := {60, 306} tii[20,35] := {3, 258} tii[20,36] := {144} tii[20,37] := {126} tii[20,38] := {100, 313} tii[20,39] := {10, 278} tii[20,40] := {180} tii[20,41] := {114} tii[20,42] := {49, 272} tii[20,43] := {220} tii[20,44] := {150} tii[20,45] := {26, 249} tii[20,46] := {135} tii[20,47] := {88, 169} tii[20,48] := {89, 298} tii[20,49] := {178} tii[20,50] := {193} tii[20,51] := {38, 224} tii[20,52] := {39, 268} tii[20,53] := {127, 197} tii[20,54] := {212} tii[20,55] := {128, 310} tii[20,56] := {209} tii[20,57] := {168} tii[20,58] := {118, 282} tii[20,59] := {190, 191} tii[20,60] := {85, 265} tii[20,61] := {240} tii[20,62] := {158, 302} tii[20,63] := {186, 290} tii[20,64] := {57} tii[20,65] := {12, 279} tii[20,66] := {154} tii[20,67] := {58} tii[20,68] := {110} tii[20,69] := {23, 294} tii[20,70] := {98} tii[20,71] := {147} tii[20,72] := {83} tii[20,73] := {73, 245} tii[20,74] := {31, 293} tii[20,75] := {184} tii[20,76] := {119, 203} tii[20,77] := {116} tii[20,78] := {170} tii[20,79] := {52} tii[20,80] := {48, 218} tii[20,81] := {120, 280} tii[20,82] := {143} tii[20,83] := {15, 275} tii[20,84] := {159, 228} tii[20,85] := {156} tii[20,86] := {47, 303} tii[20,87] := {79} tii[20,88] := {64, 188} tii[20,89] := {65, 241} tii[20,90] := {179} tii[20,91] := {160, 300} tii[20,92] := {90, 172} tii[20,93] := {76} tii[20,94] := {176} tii[20,95] := {151, 260} tii[20,96] := {202} tii[20,97] := {70, 307} tii[20,98] := {69, 139} tii[20,99] := {129, 201} tii[20,100] := {115, 238} tii[20,101] := {107} tii[20,102] := {210} tii[20,103] := {225, 226} tii[20,104] := {194, 287} tii[20,105] := {165, 166} tii[20,106] := {221, 269} tii[20,107] := {113} tii[20,108] := {72, 248} tii[20,109] := {219} tii[20,110] := {149} tii[20,111] := {177} tii[20,112] := {93, 223} tii[20,113] := {94, 267} tii[20,114] := {192} tii[20,115] := {211} tii[20,116] := {232} tii[20,117] := {134} tii[20,118] := {208} tii[20,119] := {183, 281} tii[20,120] := {123, 206} tii[20,121] := {124, 285} tii[20,122] := {252, 253} tii[20,123] := {239} tii[20,124] := {175} tii[20,125] := {148, 264} tii[20,126] := {227, 301} tii[20,127] := {229, 230} tii[20,128] := {250, 289} tii[20,129] := {236} tii[20,130] := {182, 284} tii[20,131] := {266} tii[20,132] := {274, 304} tii[20,133] := {30} tii[20,134] := {45} tii[20,135] := {53} tii[20,136] := {2, 234} tii[20,137] := {77} tii[20,138] := {33} tii[20,139] := {108} tii[20,140] := {7, 256} tii[20,141] := {71} tii[20,142] := {103} tii[20,143] := {8, 205} tii[20,144] := {97} tii[20,145] := {18, 231} tii[20,146] := {17, 174} tii[20,147] := {141} tii[20,148] := {32, 200} tii[20,149] := {13, 273} tii[20,150] := {61} tii[20,151] := {29} tii[20,152] := {5, 251} tii[20,153] := {25, 288} tii[20,154] := {37} tii[20,155] := {82} tii[20,156] := {55} tii[20,157] := {59, 137} tii[20,158] := {117} tii[20,159] := {11, 222} tii[20,160] := {51} tii[20,161] := {66} tii[20,162] := {42, 299} tii[20,163] := {1, 235} tii[20,164] := {112} tii[20,165] := {99, 167} tii[20,166] := {78} tii[20,167] := {20, 189} tii[20,168] := {21, 244} tii[20,169] := {157} tii[20,170] := {41, 105} tii[20,171] := {9, 162} tii[20,172] := {132, 133} tii[20,173] := {36, 214} tii[20,174] := {75} tii[20,175] := {68, 286} tii[20,176] := {146} tii[20,177] := {106} tii[20,178] := {67, 138} tii[20,179] := {62, 243} tii[20,180] := {163, 164} tii[20,181] := {35} tii[20,182] := {19} tii[20,183] := {56} tii[20,184] := {86} tii[20,185] := {28, 187} tii[20,186] := {4, 259} tii[20,187] := {40} tii[20,188] := {81} tii[20,189] := {125} tii[20,190] := {43, 155} tii[20,191] := {44, 215} tii[20,192] := {22, 131} tii[20,193] := {63, 181} tii[20,194] := {102} tii[20,195] := {95, 173} tii[20,196] := {34} tii[20,197] := {96, 263} tii[20,198] := {111} tii[20,199] := {140} tii[20,200] := {46, 109} tii[20,201] := {92, 213} tii[20,202] := {198, 199} tii[20,203] := {145} tii[20,204] := {122, 242} tii[20,205] := {14} tii[20,206] := {0, 207} tii[20,207] := {54} tii[20,208] := {6, 142} tii[20,209] := {16} tii[20,210] := {24, 80} cell#69 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {135} tii[28,2] := {86, 164} tii[28,3] := {119, 178} tii[28,4] := {138, 184} tii[28,5] := {114} tii[28,6] := {71} tii[28,7] := {60, 153} tii[28,8] := {36, 108} tii[28,9] := {97, 172} tii[28,10] := {56, 133} tii[28,11] := {124, 180} tii[28,12] := {134} tii[28,13] := {34, 163} tii[28,14] := {115} tii[28,15] := {105} tii[28,16] := {10, 142} tii[28,17] := {72, 177} tii[28,18] := {121, 122} tii[28,19] := {23, 158} tii[28,20] := {104, 183} tii[28,21] := {59, 171} tii[28,22] := {44, 165} tii[28,23] := {96, 182} tii[28,24] := {66, 175} tii[28,25] := {65, 161} tii[28,26] := {123, 186} tii[28,27] := {118, 185} tii[28,28] := {106, 181} tii[28,29] := {139, 187} tii[28,30] := {150, 188} tii[28,31] := {95} tii[28,32] := {62, 128} tii[28,33] := {83, 148} tii[28,34] := {116} tii[28,35] := {47} tii[28,36] := {98} tii[28,37] := {45, 143} tii[28,38] := {16, 88} tii[28,39] := {76, 113} tii[28,40] := {67, 159} tii[28,41] := {32, 112} tii[28,42] := {70} tii[28,43] := {63, 156} tii[28,44] := {58} tii[28,45] := {4, 107} tii[28,46] := {77, 78} tii[28,47] := {84, 168} tii[28,48] := {40, 145} tii[28,49] := {14, 132} tii[28,50] := {15, 125} tii[28,51] := {103, 174} tii[28,52] := {29, 117} tii[28,53] := {30, 149} tii[28,54] := {49, 152} tii[28,55] := {94} tii[28,56] := {73} tii[28,57] := {25, 127} tii[28,58] := {50, 91} tii[28,59] := {43, 147} tii[28,60] := {93} tii[28,61] := {85} tii[28,62] := {48} tii[28,63] := {37, 141} tii[28,64] := {2, 126} tii[28,65] := {101, 102} tii[28,66] := {28, 69} tii[28,67] := {57, 157} tii[28,68] := {19, 129} tii[28,69] := {8, 146} tii[28,70] := {61} tii[28,71] := {9, 140} tii[28,72] := {18, 90} tii[28,73] := {80, 166} tii[28,74] := {20, 136} tii[28,75] := {81, 82} tii[28,76] := {21, 160} tii[28,77] := {55, 100} tii[28,78] := {38, 162} tii[28,79] := {17, 155} tii[28,80] := {33, 167} tii[28,81] := {6, 144} tii[28,82] := {24, 154} tii[28,83] := {3, 130} tii[28,84] := {52, 173} tii[28,85] := {42, 169} tii[28,86] := {41, 151} tii[28,87] := {64, 170} tii[28,88] := {22, 137} tii[28,89] := {79, 179} tii[28,90] := {87, 176} tii[28,91] := {74} tii[28,92] := {51, 92} tii[28,93] := {39, 111} tii[28,94] := {27} tii[28,95] := {12, 46} tii[28,96] := {35} tii[28,97] := {26, 131} tii[28,98] := {5, 68} tii[28,99] := {53, 54} tii[28,100] := {31, 75} tii[28,101] := {1, 89} tii[28,102] := {13, 99} tii[28,103] := {11, 110} tii[28,104] := {0, 109} tii[28,105] := {7, 120} cell#70 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {420} tii[26,2] := {371} tii[26,3] := {239, 390} tii[26,4] := {224, 309} tii[26,5] := {425} tii[26,6] := {227, 310} tii[26,7] := {413} tii[26,8] := {337} tii[26,9] := {376} tii[26,10] := {175, 358} tii[26,11] := {232, 314, 315, 387} tii[26,12] := {302, 366, 367, 411} tii[26,13] := {426} tii[26,14] := {97, 193} tii[26,15] := {372} tii[26,16] := {424} tii[26,17] := {295} tii[26,18] := {111, 389} tii[26,19] := {419} tii[26,20] := {102, 198, 199, 316} tii[26,21] := {410, 423} tii[26,22] := {182, 278, 279, 368} tii[26,23] := {386} tii[26,24] := {176, 409} tii[26,25] := {357} tii[26,26] := {19, 80, 311, 379} tii[26,27] := {320, 382} tii[26,28] := {69, 149, 365, 402} tii[26,29] := {203, 415} tii[26,30] := {147, 253, 401, 422} tii[26,31] := {160} tii[26,32] := {164} tii[26,33] := {396} tii[26,34] := {343} tii[26,35] := {172, 266} tii[26,36] := {249, 330} tii[26,37] := {226} tii[26,38] := {158, 254} tii[26,39] := {412} tii[26,40] := {161, 256} tii[26,41] := {289} tii[26,42] := {397} tii[26,43] := {100} tii[26,44] := {125, 192} tii[26,45] := {342} tii[26,46] := {398} tii[26,47] := {338} tii[26,48] := {296} tii[26,49] := {166, 263, 264, 356} tii[26,50] := {157, 167} tii[26,51] := {108, 202} tii[26,52] := {377} tii[26,53] := {247, 327, 328, 394} tii[26,54] := {128, 204, 205, 248} tii[26,55] := {185, 282} tii[26,56] := {163} tii[26,57] := {99, 194} tii[26,58] := {407} tii[26,59] := {341} tii[26,60] := {235} tii[26,61] := {75, 133} tii[26,62] := {297} tii[26,63] := {388} tii[26,64] := {103, 200, 201, 317} tii[26,65] := {58, 262} tii[26,66] := {95, 115, 116, 214} tii[26,67] := {299} tii[26,68] := {360, 403} tii[26,69] := {122, 326} tii[26,70] := {183, 280, 281, 369} tii[26,71] := {107, 313} tii[26,72] := {319} tii[26,73] := {55, 137, 260, 348} tii[26,74] := {275, 353} tii[26,75] := {37, 85, 231, 306} tii[26,76] := {181, 364} tii[26,77] := {123, 218, 332, 381} tii[26,78] := {155, 285, 354, 405} tii[26,79] := {287} tii[26,80] := {186, 255} tii[26,81] := {421} tii[26,82] := {49} tii[26,83] := {336} tii[26,84] := {223, 233} tii[26,85] := {238} tii[26,86] := {414} tii[26,87] := {373} tii[26,88] := {57, 136} tii[26,89] := {189, 268, 269, 303} tii[26,90] := {400} tii[26,91] := {121, 217} tii[26,92] := {418} tii[26,93] := {290} tii[26,94] := {98} tii[26,95] := {48, 131} tii[26,96] := {294} tii[26,97] := {408} tii[26,98] := {168} tii[26,99] := {339} tii[26,100] := {187, 257} tii[26,101] := {399} tii[26,102] := {240} tii[26,103] := {34, 78} tii[26,104] := {52, 134, 135, 265} tii[26,105] := {22, 197} tii[26,106] := {392, 416} tii[26,107] := {378} tii[26,108] := {243} tii[26,109] := {225, 241, 242, 324} tii[26,110] := {47, 63, 64, 148} tii[26,111] := {70, 277} tii[26,112] := {120, 215, 216, 329} tii[26,113] := {391} tii[26,114] := {293} tii[26,115] := {54, 258} tii[26,116] := {21, 81, 196, 304} tii[26,117] := {267} tii[26,118] := {188, 270, 271, 361} tii[26,119] := {362, 406} tii[26,120] := {13, 42, 165, 250} tii[26,121] := {119, 323} tii[26,122] := {212, 307} tii[26,123] := {71, 150, 283, 350} tii[26,124] := {346} tii[26,125] := {333, 395} tii[26,126] := {93, 221, 308, 384} tii[26,127] := {162} tii[26,128] := {72, 132} tii[26,129] := {340} tii[26,130] := {234} tii[26,131] := {6, 261} tii[26,132] := {94, 113, 114, 213} tii[26,133] := {298} tii[26,134] := {31, 325} tii[26,135] := {318} tii[26,136] := {169} tii[26,137] := {20, 312} tii[26,138] := {5, 40, 259, 347} tii[26,139] := {73, 141, 142, 272} tii[26,140] := {274, 351} tii[26,141] := {68, 363} tii[26,142] := {244} tii[26,143] := {2, 16, 230, 305} tii[26,144] := {32, 88, 331, 380} tii[26,145] := {219, 334} tii[26,146] := {46, 154, 352, 404} tii[26,147] := {53, 355} tii[26,148] := {11, 41, 288, 349} tii[26,149] := {118, 393} tii[26,150] := {92, 222, 383, 417} tii[26,151] := {101} tii[26,152] := {59} tii[26,153] := {25, 90} tii[26,154] := {229} tii[26,155] := {74, 130} tii[26,156] := {292} tii[26,157] := {96, 104} tii[26,158] := {375} tii[26,159] := {109} tii[26,160] := {345} tii[26,161] := {77, 139, 140, 184} tii[26,162] := {62, 152} tii[26,163] := {237} tii[26,164] := {50, 56} tii[26,165] := {117, 211} tii[26,166] := {38, 86, 87, 124} tii[26,167] := {301} tii[26,168] := {15, 43, 138, 156} tii[26,169] := {228} tii[26,170] := {126, 195} tii[26,171] := {60} tii[26,172] := {291} tii[26,173] := {374} tii[26,174] := {159, 177, 178, 276} tii[26,175] := {26, 91} tii[26,176] := {344} tii[26,177] := {171} tii[26,178] := {236} tii[26,179] := {36, 79} tii[26,180] := {359} tii[26,181] := {127, 206, 207, 321} tii[26,182] := {65, 146} tii[26,183] := {322, 385} tii[26,184] := {51, 66, 67, 151} tii[26,185] := {300} tii[26,186] := {246} tii[26,187] := {284, 370} tii[26,188] := {23, 33, 112, 191} tii[26,189] := {170} tii[26,190] := {76, 144, 145, 273} tii[26,191] := {28, 209} tii[26,192] := {245} tii[26,193] := {14, 44, 174, 252} tii[26,194] := {220, 335} tii[26,195] := {24} tii[26,196] := {8, 45} tii[26,197] := {106} tii[26,198] := {12, 39} tii[26,199] := {27, 84} tii[26,200] := {180} tii[26,201] := {18, 29, 30, 89} tii[26,202] := {7, 10, 61, 129} tii[26,203] := {105} tii[26,204] := {35, 82, 83, 210} tii[26,205] := {9, 143} tii[26,206] := {179} tii[26,207] := {3, 17, 110, 190} tii[26,208] := {153, 286} tii[26,209] := {1, 208} tii[26,210] := {0, 4, 173, 251} cell#71 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {250} tii[20,2] := {305} tii[20,3] := {147, 301} tii[20,4] := {220} tii[20,5] := {135} tii[20,6] := {293} tii[20,7] := {223, 312} tii[20,8] := {258, 314} tii[20,9] := {77, 264} tii[20,10] := {186} tii[20,11] := {120} tii[20,12] := {276} tii[20,13] := {30, 225} tii[20,14] := {152, 295} tii[20,15] := {59, 245} tii[20,16] := {201, 308} tii[20,17] := {206} tii[20,18] := {288} tii[20,19] := {174} tii[20,20] := {207, 260} tii[20,21] := {140, 204} tii[20,22] := {244, 283} tii[20,23] := {302} tii[20,24] := {289, 310} tii[20,25] := {184} tii[20,26] := {170} tii[20,27] := {253} tii[20,28] := {279} tii[20,29] := {112, 285} tii[20,30] := {148} tii[20,31] := {100} tii[20,32] := {79} tii[20,33] := {192} tii[20,34] := {189, 306} tii[20,35] := {53, 254} tii[20,36] := {224} tii[20,37] := {128} tii[20,38] := {233, 313} tii[20,39] := {91, 272} tii[20,40] := {259} tii[20,41] := {185} tii[20,42] := {78, 265} tii[20,43] := {226} tii[20,44] := {151} tii[20,45] := {55, 241} tii[20,46] := {70} tii[20,47] := {12, 155} tii[20,48] := {153, 296} tii[20,49] := {252} tii[20,50] := {199} tii[20,51] := {42, 211} tii[20,52] := {93, 263} tii[20,53] := {27, 181} tii[20,54] := {278} tii[20,55] := {202, 309} tii[20,56] := {274} tii[20,57] := {86} tii[20,58] := {173, 286} tii[20,59] := {57, 110} tii[20,60] := {142, 269} tii[20,61] := {294} tii[20,62] := {214, 303} tii[20,63] := {249, 311} tii[20,64] := {111} tii[20,65] := {80, 275} tii[20,66] := {156} tii[20,67] := {52} tii[20,68] := {188} tii[20,69] := {129, 291} tii[20,70] := {90} tii[20,71] := {232} tii[20,72] := {149} tii[20,73] := {51, 237} tii[20,74] := {115, 287} tii[20,75] := {190} tii[20,76] := {16, 191} tii[20,77] := {117} tii[20,78] := {85} tii[20,79] := {43} tii[20,80] := {31, 208} tii[20,81] := {119, 280} tii[20,82] := {222} tii[20,83] := {97, 268} tii[20,84] := {35, 216} tii[20,85] := {163} tii[20,86] := {166, 299} tii[20,87] := {72} tii[20,88] := {22, 176} tii[20,89] := {60, 235} tii[20,90] := {257} tii[20,91] := {168, 298} tii[20,92] := {8, 157} tii[20,93] := {69} tii[20,94] := {251} tii[20,95] := {138, 266} tii[20,96] := {103} tii[20,97] := {197, 307} tii[20,98] := {3, 125} tii[20,99] := {19, 183} tii[20,100] := {104, 243} tii[20,101] := {101} tii[20,102] := {277} tii[20,103] := {73, 137} tii[20,104] := {179, 290} tii[20,105] := {29, 169} tii[20,106] := {218, 304} tii[20,107] := {113} tii[20,108] := {54, 240} tii[20,109] := {154} tii[20,110] := {83} tii[20,111] := {187} tii[20,112] := {41, 210} tii[20,113] := {92, 262} tii[20,114] := {126} tii[20,115] := {231} tii[20,116] := {139} tii[20,117] := {56} tii[20,118] := {221} tii[20,119] := {172, 239} tii[20,120] := {21, 194} tii[20,121] := {123, 281} tii[20,122] := {105, 171} tii[20,123] := {256} tii[20,124] := {89} tii[20,125] := {141, 212} tii[20,126] := {213, 271} tii[20,127] := {74, 145} tii[20,128] := {248, 292} tii[20,129] := {238} tii[20,130] := {177, 234} tii[20,131] := {270} tii[20,132] := {273, 300} tii[20,133] := {114} tii[20,134] := {165} tii[20,135] := {150} tii[20,136] := {32, 227} tii[20,137] := {68} tii[20,138] := {134} tii[20,139] := {102} tii[20,140] := {61, 247} tii[20,141] := {200} tii[20,142] := {99} tii[20,143] := {17, 193} tii[20,144] := {230} tii[20,145] := {36, 219} tii[20,146] := {10, 162} tii[20,147] := {136} tii[20,148] := {49, 203} tii[20,149] := {82, 267} tii[20,150] := {116} tii[20,151] := {25} tii[20,152] := {67, 242} tii[20,153] := {131, 284} tii[20,154] := {98} tii[20,155] := {167} tii[20,156] := {46} tii[20,157] := {4, 121} tii[20,158] := {118} tii[20,159] := {34, 209} tii[20,160] := {44} tii[20,161] := {64} tii[20,162] := {161, 297} tii[20,163] := {40, 228} tii[20,164] := {198} tii[20,165] := {14, 146} tii[20,166] := {71} tii[20,167] := {24, 178} tii[20,168] := {62, 236} tii[20,169] := {164} tii[20,170] := {2, 88} tii[20,171] := {13, 144} tii[20,172] := {20, 133} tii[20,173] := {76, 217} tii[20,174] := {26} tii[20,175] := {124, 282} tii[20,176] := {229} tii[20,177] := {45} tii[20,178] := {7, 122} tii[20,179] := {108, 246} tii[20,180] := {38, 95} tii[20,181] := {81} tii[20,182] := {66} tii[20,183] := {130} tii[20,184] := {84} tii[20,185] := {18, 175} tii[20,186] := {65, 255} tii[20,187] := {39} tii[20,188] := {160} tii[20,189] := {127} tii[20,190] := {11, 143} tii[20,191] := {37, 205} tii[20,192] := {6, 106} tii[20,193] := {50, 182} tii[20,194] := {33} tii[20,195] := {9, 158} tii[20,196] := {28} tii[20,197] := {87, 261} tii[20,198] := {196} tii[20,199] := {58} tii[20,200] := {1, 94} tii[20,201] := {75, 215} tii[20,202] := {48, 109} tii[20,203] := {159} tii[20,204] := {107, 180} tii[20,205] := {96} tii[20,206] := {23, 195} tii[20,207] := {47} tii[20,208] := {5, 132} tii[20,209] := {15} tii[20,210] := {0, 63} cell#72 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {49} tii[31,2] := {48} tii[31,3] := {47} tii[31,4] := {44} tii[31,5] := {40, 45} tii[31,6] := {46} tii[31,7] := {43} tii[31,8] := {39} tii[31,9] := {34, 41} tii[31,10] := {38} tii[31,11] := {33} tii[31,12] := {27, 36} tii[31,13] := {25} tii[31,14] := {19, 30} tii[31,15] := {13, 28} tii[31,16] := {42} tii[31,17] := {37} tii[31,18] := {32} tii[31,19] := {26, 35} tii[31,20] := {31} tii[31,21] := {24} tii[31,22] := {18, 29} tii[31,23] := {17} tii[31,24] := {12, 22} tii[31,25] := {6, 20} tii[31,26] := {23} tii[31,27] := {16} tii[31,28] := {11, 21} tii[31,29] := {10} tii[31,30] := {5, 15} tii[31,31] := {3, 14} tii[31,32] := {4} tii[31,33] := {2, 8} tii[31,34] := {1, 7} tii[31,35] := {0, 9} cell#73 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {132} tii[25,2] := {154} tii[25,3] := {134, 171} tii[25,4] := {149, 174} tii[25,5] := {110} tii[25,6] := {141} tii[25,7] := {96} tii[25,8] := {113} tii[25,9] := {112, 164} tii[25,10] := {98, 137} tii[25,11] := {136, 172} tii[25,12] := {125} tii[25,13] := {103} tii[25,14] := {90, 156} tii[25,15] := {87, 131} tii[25,16] := {116, 167} tii[25,17] := {64, 161} tii[25,18] := {51, 152} tii[25,19] := {94, 169} tii[25,20] := {108, 173} tii[25,21] := {85} tii[25,22] := {124} tii[25,23] := {70} tii[25,24] := {89} tii[25,25] := {88, 155} tii[25,26] := {72, 115} tii[25,27] := {114, 166} tii[25,28] := {48} tii[25,29] := {101} tii[25,30] := {78} tii[25,31] := {63} tii[25,32] := {62, 143} tii[25,33] := {60, 106} tii[25,34] := {50, 93} tii[25,35] := {92, 159} tii[25,36] := {44} tii[25,37] := {43, 151} tii[25,38] := {30, 139} tii[25,39] := {31, 69} tii[25,40] := {68, 162} tii[25,41] := {17, 84} tii[25,42] := {83, 170} tii[25,43] := {77} tii[25,44] := {54} tii[25,45] := {41, 127} tii[25,46] := {39, 80} tii[25,47] := {66, 147} tii[25,48] := {34} tii[25,49] := {20, 138} tii[25,50] := {14, 121} tii[25,51] := {19, 56} tii[25,52] := {46, 153} tii[25,53] := {13, 76} tii[25,54] := {58, 163} tii[25,55] := {11, 128} tii[25,56] := {6, 105} tii[25,57] := {23, 148} tii[25,58] := {3, 82} tii[25,59] := {37, 160} tii[25,60] := {25, 168} tii[25,61] := {118} tii[25,62] := {135} tii[25,63] := {120, 150} tii[25,64] := {73} tii[25,65] := {142} tii[25,66] := {91} tii[25,67] := {133, 158} tii[25,68] := {75, 117} tii[25,69] := {65} tii[25,70] := {119, 165} tii[25,71] := {52, 95} tii[25,72] := {33, 109} tii[25,73] := {27} tii[25,74] := {126} tii[25,75] := {42} tii[25,76] := {29, 67} tii[25,77] := {111, 146} tii[25,78] := {21} tii[25,79] := {79} tii[25,80] := {97, 157} tii[25,81] := {15, 47} tii[25,82] := {61, 107} tii[25,83] := {9, 59} tii[25,84] := {45, 123} tii[25,85] := {12} tii[25,86] := {74, 145} tii[25,87] := {7, 24} tii[25,88] := {32, 140} tii[25,89] := {4, 38} tii[25,90] := {1, 26} tii[25,91] := {102} tii[25,92] := {86, 130} tii[25,93] := {55} tii[25,94] := {71, 144} tii[25,95] := {40, 81} tii[25,96] := {22, 100} tii[25,97] := {18} tii[25,98] := {49, 129} tii[25,99] := {10, 35} tii[25,100] := {16, 122} tii[25,101] := {5, 53} tii[25,102] := {2, 36} tii[25,103] := {28, 104} tii[25,104] := {8, 99} tii[25,105] := {0, 57} cell#74 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {255} tii[20,2] := {304} tii[20,3] := {83, 264} tii[20,4] := {228} tii[20,5] := {128} tii[20,6] := {293} tii[20,7] := {162, 297} tii[20,8] := {208, 309} tii[20,9] := {157, 211} tii[20,10] := {256} tii[20,11] := {202} tii[20,12] := {305} tii[20,13] := {84, 141} tii[20,14] := {230, 267} tii[20,15] := {135, 188} tii[20,16] := {261, 289} tii[20,17] := {265} tii[20,18] := {307} tii[20,19] := {244} tii[20,20] := {266, 296} tii[20,21] := {218, 263} tii[20,22] := {288, 306} tii[20,23] := {313} tii[20,24] := {308, 314} tii[20,25] := {121} tii[20,26] := {165} tii[20,27] := {198} tii[20,28] := {237} tii[20,29] := {50, 240} tii[20,30] := {159} tii[20,31] := {92} tii[20,32] := {91} tii[20,33] := {201} tii[20,34] := {127, 284} tii[20,35] := {14, 180} tii[20,36] := {231} tii[20,37] := {139} tii[20,38] := {175, 299} tii[20,39] := {37, 223} tii[20,40] := {262} tii[20,41] := {196} tii[20,42] := {82, 212} tii[20,43] := {232} tii[20,44] := {161} tii[20,45] := {51, 179} tii[20,46] := {129} tii[20,47] := {25, 72} tii[20,48] := {163, 268} tii[20,49] := {259} tii[20,50] := {207} tii[20,51] := {40, 146} tii[20,52] := {98, 222} tii[20,53] := {65, 113} tii[20,54] := {281} tii[20,55] := {209, 290} tii[20,56] := {277} tii[20,57] := {144} tii[20,58] := {181, 285} tii[20,59] := {112, 176} tii[20,60] := {148, 271} tii[20,61] := {294} tii[20,62] := {224, 300} tii[20,63] := {254, 310} tii[20,64] := {120} tii[20,65] := {31, 214} tii[20,66] := {164} tii[20,67] := {57} tii[20,68] := {197} tii[20,69] := {67, 250} tii[20,70] := {100} tii[20,71] := {236} tii[20,72] := {158} tii[20,73] := {119, 177} tii[20,74] := {56, 241} tii[20,75] := {200} tii[20,76] := {52, 105} tii[20,77] := {123} tii[20,78] := {166} tii[20,79] := {30} tii[20,80] := {85, 140} tii[20,81] := {199, 242} tii[20,82] := {229} tii[20,83] := {32, 217} tii[20,84] := {99, 150} tii[20,85] := {170} tii[20,86] := {97, 273} tii[20,87] := {66} tii[20,88] := {71, 108} tii[20,89] := {138, 187} tii[20,90] := {260} tii[20,91] := {238, 274} tii[20,92] := {27, 73} tii[20,93] := {54} tii[20,94] := {257} tii[20,95] := {215, 269} tii[20,96] := {182} tii[20,97] := {130, 287} tii[20,98] := {20, 45} tii[20,99] := {68, 114} tii[20,100] := {185, 248} tii[20,101] := {96} tii[20,102] := {279} tii[20,103] := {149, 210} tii[20,104] := {251, 291} tii[20,105] := {80, 155} tii[20,106] := {276, 303} tii[20,107] := {195} tii[20,108] := {122, 178} tii[20,109] := {233} tii[20,110] := {160} tii[20,111] := {258} tii[20,112] := {104, 145} tii[20,113] := {173, 221} tii[20,114] := {206} tii[20,115] := {280} tii[20,116] := {216} tii[20,117] := {124} tii[20,118] := {278} tii[20,119] := {243, 286} tii[20,120] := {70, 109} tii[20,121] := {204, 246} tii[20,122] := {186, 239} tii[20,123] := {295} tii[20,124] := {171} tii[20,125] := {220, 272} tii[20,126] := {275, 301} tii[20,127] := {153, 227} tii[20,128] := {292, 311} tii[20,129] := {283} tii[20,130] := {245, 282} tii[20,131] := {298} tii[20,132] := {302, 312} tii[20,133] := {59} tii[20,134] := {102} tii[20,135] := {90} tii[20,136] := {3, 142} tii[20,137] := {58} tii[20,138] := {60} tii[20,139] := {101} tii[20,140] := {18, 189} tii[20,141] := {137} tii[20,142] := {88} tii[20,143] := {12, 107} tii[20,144] := {168} tii[20,145] := {39, 152} tii[20,146] := {7, 76} tii[20,147] := {134} tii[20,148] := {49, 193} tii[20,149] := {29, 213} tii[20,150] := {126} tii[20,151] := {13} tii[20,152] := {15, 183} tii[20,153] := {64, 249} tii[20,154] := {93} tii[20,155] := {174} tii[20,156] := {36} tii[20,157] := {11, 43} tii[20,158] := {125} tii[20,159] := {28, 143} tii[20,160] := {26} tii[20,161] := {62} tii[20,162] := {94, 270} tii[20,163] := {4, 147} tii[20,164] := {205} tii[20,165] := {38, 77} tii[20,166] := {63} tii[20,167] := {21, 111} tii[20,168] := {69, 190} tii[20,169] := {172} tii[20,170] := {6, 23} tii[20,171] := {9, 78} tii[20,172] := {48, 117} tii[20,173] := {81, 226} tii[20,174] := {53} tii[20,175] := {131, 247} tii[20,176] := {235} tii[20,177] := {95} tii[20,178] := {19, 44} tii[20,179] := {115, 252} tii[20,180] := {79, 156} tii[20,181] := {89} tii[20,182] := {61} tii[20,183] := {136} tii[20,184] := {87} tii[20,185] := {55, 106} tii[20,186] := {16, 184} tii[20,187] := {34} tii[20,188] := {167} tii[20,189] := {133} tii[20,190] := {42, 75} tii[20,191] := {103, 151} tii[20,192] := {22, 46} tii[20,193] := {118, 192} tii[20,194] := {86} tii[20,195] := {41, 74} tii[20,196] := {17} tii[20,197] := {169, 219} tii[20,198] := {203} tii[20,199] := {132} tii[20,200] := {8, 24} tii[20,201] := {154, 225} tii[20,202] := {116, 194} tii[20,203] := {234} tii[20,204] := {191, 253} tii[20,205] := {33} tii[20,206] := {0, 110} tii[20,207] := {35} tii[20,208] := {2, 47} tii[20,209] := {5} tii[20,210] := {1, 10} cell#75 , |C| = 175 special orbit = [5, 4, 4, 1, 1] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2],[2, 1]]+phi[[1],[3, 3]] TII depth = 4 TII multiplicity polynomial = 105*X+35*X^2 TII subcells: tii[18,1] := {172} tii[18,2] := {67} tii[18,3] := {167} tii[18,4] := {133} tii[18,5] := {100} tii[18,6] := {170} tii[18,7] := {155} tii[18,8] := {102, 137} tii[18,9] := {126, 152} tii[18,10] := {174} tii[18,11] := {171} tii[18,12] := {166, 173} tii[18,13] := {89} tii[18,14] := {149} tii[18,15] := {66} tii[18,16] := {47} tii[18,17] := {110} tii[18,18] := {114} tii[18,19] := {18} tii[18,20] := {160} tii[18,21] := {113} tii[18,22] := {136} tii[18,23] := {130} tii[18,24] := {57} tii[18,25] := {168} tii[18,26] := {123} tii[18,27] := {147} tii[18,28] := {38} tii[18,29] := {58, 97} tii[18,30] := {23, 55} tii[18,31] := {161} tii[18,32] := {85, 120} tii[18,33] := {142} tii[18,34] := {124, 154} tii[18,35] := {45} tii[18,36] := {88} tii[18,37] := {32} tii[18,38] := {148} tii[18,39] := {91} tii[18,40] := {116} tii[18,41] := {28} tii[18,42] := {109} tii[18,43] := {78} tii[18,44] := {50} tii[18,45] := {16} tii[18,46] := {159} tii[18,47] := {80, 118} tii[18,48] := {131} tii[18,49] := {141} tii[18,50] := {69} tii[18,51] := {60} tii[18,52] := {34} tii[18,53] := {105, 138} tii[18,54] := {150} tii[18,55] := {96} tii[18,56] := {40, 77} tii[18,57] := {90} tii[18,58] := {59, 103} tii[18,59] := {156} tii[18,60] := {42, 84} tii[18,61] := {115} tii[18,62] := {143, 163} tii[18,63] := {86, 127} tii[18,64] := {108, 146} tii[18,65] := {121} tii[18,66] := {82} tii[18,67] := {164} tii[18,68] := {140} tii[18,69] := {61, 99} tii[18,70] := {158} tii[18,71] := {165} tii[18,72] := {122} tii[18,73] := {83, 119} tii[18,74] := {157, 169} tii[18,75] := {144} tii[18,76] := {145, 162} tii[18,77] := {51} tii[18,78] := {46} tii[18,79] := {71} tii[18,80] := {30} tii[18,81] := {8} tii[18,82] := {92} tii[18,83] := {54} tii[18,84] := {117} tii[18,85] := {112} tii[18,86] := {10} tii[18,87] := {135} tii[18,88] := {4, 21} tii[18,89] := {15} tii[18,90] := {31} tii[18,91] := {48} tii[18,92] := {93} tii[18,93] := {6} tii[18,94] := {49} tii[18,95] := {19} tii[18,96] := {74} tii[18,97] := {75} tii[18,98] := {132} tii[18,99] := {22} tii[18,100] := {37, 81} tii[18,101] := {68} tii[18,102] := {2} tii[18,103] := {94} tii[18,104] := {11, 36} tii[18,105] := {95} tii[18,106] := {151} tii[18,107] := {64, 106} tii[18,108] := {24, 63} tii[18,109] := {9} tii[18,110] := {87, 129} tii[18,111] := {5, 27} tii[18,112] := {79} tii[18,113] := {104} tii[18,114] := {41, 76} tii[18,115] := {107, 139} tii[18,116] := {29} tii[18,117] := {70} tii[18,118] := {53} tii[18,119] := {7} tii[18,120] := {111} tii[18,121] := {39} tii[18,122] := {72} tii[18,123] := {20} tii[18,124] := {25, 56} tii[18,125] := {134} tii[18,126] := {12, 44} tii[18,127] := {101} tii[18,128] := {62, 98} tii[18,129] := {52} tii[18,130] := {125} tii[18,131] := {26, 65} tii[18,132] := {128, 153} tii[18,133] := {17} tii[18,134] := {35} tii[18,135] := {0} tii[18,136] := {73} tii[18,137] := {3} tii[18,138] := {1, 14} tii[18,139] := {33} tii[18,140] := {13, 43} cell#76 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {166} tii[17,2] := {181, 182} tii[17,3] := {214} tii[17,4] := {125, 222} tii[17,5] := {233, 234} tii[17,6] := {241, 242} tii[17,7] := {177, 240} tii[17,8] := {208, 244} tii[17,9] := {25} tii[17,10] := {137} tii[17,11] := {152, 153} tii[17,12] := {92} tii[17,13] := {57, 58} tii[17,14] := {87, 88} tii[17,15] := {165} tii[17,16] := {126, 180} tii[17,17] := {147} tii[17,18] := {47, 107} tii[17,19] := {200, 201} tii[17,20] := {170, 171} tii[17,21] := {76, 143} tii[17,22] := {225, 226} tii[17,23] := {151, 199} tii[17,24] := {189, 229} tii[17,25] := {128, 193} tii[17,26] := {42} tii[17,27] := {120} tii[17,28] := {83, 84} tii[17,29] := {115, 116} tii[17,30] := {53} tii[17,31] := {192} tii[17,32] := {139} tii[17,33] := {81} tii[17,34] := {220, 221} tii[17,35] := {175} tii[17,36] := {27, 138} tii[17,37] := {98, 204} tii[17,38] := {96, 97} tii[17,39] := {113} tii[17,40] := {235, 236} tii[17,41] := {195, 196} tii[17,42] := {50, 174} tii[17,43] := {131, 132} tii[17,44] := {122, 123} tii[17,45] := {202, 203} tii[17,46] := {124, 219} tii[17,47] := {185, 186} tii[17,48] := {158, 159} tii[17,49] := {160, 237} tii[17,50] := {99, 215} tii[17,51] := {227, 228} tii[17,52] := {211, 212} tii[17,53] := {198} tii[17,54] := {46, 167} tii[17,55] := {217, 218} tii[17,56] := {75, 197} tii[17,57] := {150, 232} tii[17,58] := {68, 176} tii[17,59] := {223, 224} tii[17,60] := {188, 243} tii[17,61] := {127, 231} tii[17,62] := {100, 207} tii[17,63] := {163, 238} tii[17,64] := {154, 239} tii[17,65] := {14} tii[17,66] := {66} tii[17,67] := {34, 35} tii[17,68] := {6} tii[17,69] := {62, 63} tii[17,70] := {10, 11} tii[17,71] := {18, 56} tii[17,72] := {91} tii[17,73] := {12, 33} tii[17,74] := {111, 112} tii[17,75] := {41, 86} tii[17,76] := {64, 110} tii[17,77] := {32} tii[17,78] := {13} tii[17,79] := {109} tii[17,80] := {55} tii[17,81] := {70, 71} tii[17,82] := {20, 21} tii[17,83] := {85} tii[17,84] := {102, 103} tii[17,85] := {119} tii[17,86] := {94, 95} tii[17,87] := {28, 82} tii[17,88] := {178, 179} tii[17,89] := {43} tii[17,90] := {39, 40} tii[17,91] := {141, 142} tii[17,92] := {129, 130} tii[17,93] := {209, 210} tii[17,94] := {155, 156} tii[17,95] := {17, 54} tii[17,96] := {51, 114} tii[17,97] := {67} tii[17,98] := {190, 191} tii[17,99] := {78, 140} tii[17,100] := {117, 118} tii[17,101] := {69, 121} tii[17,102] := {30, 79} tii[17,103] := {183, 184} tii[17,104] := {101, 157} tii[17,105] := {164, 213} tii[17,106] := {105, 168} tii[17,107] := {24} tii[17,108] := {37, 38} tii[17,109] := {65} tii[17,110] := {148} tii[17,111] := {15, 108} tii[17,112] := {60, 61} tii[17,113] := {93} tii[17,114] := {172, 173} tii[17,115] := {31, 144} tii[17,116] := {7, 80} tii[17,117] := {52, 169} tii[17,118] := {145, 146} tii[17,119] := {45, 149} tii[17,120] := {205, 206} tii[17,121] := {16, 106} tii[17,122] := {72, 73} tii[17,123] := {74, 187} tii[17,124] := {161, 162} tii[17,125] := {77, 194} tii[17,126] := {135, 230} tii[17,127] := {29, 136} tii[17,128] := {104, 216} tii[17,129] := {1} tii[17,130] := {3, 4} tii[17,131] := {0, 9} tii[17,132] := {26} tii[17,133] := {22, 23} tii[17,134] := {44} tii[17,135] := {5, 19} tii[17,136] := {89, 90} tii[17,137] := {48, 49} tii[17,138] := {8, 36} tii[17,139] := {133, 134} tii[17,140] := {2, 59} cell#77 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {172} tii[25,2] := {151} tii[25,3] := {104, 171} tii[25,4] := {125, 174} tii[25,5] := {169} tii[25,6] := {128} tii[25,7] := {157} tii[25,8] := {140} tii[25,9] := {77, 162} tii[25,10] := {117, 156} tii[25,11] := {98, 170} tii[25,12] := {115} tii[25,13] := {91} tii[25,14] := {52, 155} tii[25,15] := {67, 112} tii[25,16] := {72, 166} tii[25,17] := {43, 132} tii[25,18] := {26, 109} tii[25,19] := {64, 148} tii[25,20] := {39, 124} tii[25,21] := {173} tii[25,22] := {100} tii[25,23] := {168} tii[25,24] := {154} tii[25,25] := {50, 141} tii[25,26] := {136, 165} tii[25,27] := {69, 158} tii[25,28] := {152} tii[25,29] := {90} tii[25,30] := {65} tii[25,31] := {131} tii[25,32] := {31, 134} tii[25,33] := {44, 84} tii[25,34] := {108, 146} tii[25,35] := {47, 150} tii[25,36] := {105} tii[25,37] := {24, 106} tii[25,38] := {12, 83} tii[25,39] := {82, 126} tii[25,40] := {41, 127} tii[25,41] := {58, 113} tii[25,42] := {21, 97} tii[25,43] := {101} tii[25,44] := {76} tii[25,45] := {15, 142} tii[25,46] := {55, 95} tii[25,47] := {28, 159} tii[25,48] := {51} tii[25,49] := {11, 133} tii[25,50] := {4, 110} tii[25,51] := {34, 70} tii[25,52] := {23, 149} tii[25,53] := {19, 60} tii[25,54] := {9, 123} tii[25,55] := {16, 143} tii[25,56] := {7, 120} tii[25,57] := {29, 160} tii[25,58] := {2, 96} tii[25,59] := {22, 147} tii[25,60] := {30, 161} tii[25,61] := {167} tii[25,62] := {153} tii[25,63] := {135, 164} tii[25,64] := {139} tii[25,65] := {130} tii[25,66] := {116} tii[25,67] := {107, 145} tii[25,68] := {93, 138} tii[25,69] := {92} tii[25,70] := {81, 163} tii[25,71] := {68, 114} tii[25,72] := {46, 88} tii[25,73] := {129} tii[25,74] := {102} tii[25,75] := {103} tii[25,76] := {80, 122} tii[25,77] := {79, 121} tii[25,78] := {78} tii[25,79] := {66} tii[25,80] := {56, 144} tii[25,81] := {57, 99} tii[25,82] := {45, 89} tii[25,83] := {37, 87} tii[25,84] := {27, 61} tii[25,85] := {53} tii[25,86] := {35, 137} tii[25,87] := {36, 73} tii[25,88] := {14, 86} tii[25,89] := {20, 62} tii[25,90] := {10, 74} tii[25,91] := {75} tii[25,92] := {54, 94} tii[25,93] := {42} tii[25,94] := {33, 118} tii[25,95] := {25, 63} tii[25,96] := {13, 38} tii[25,97] := {32} tii[25,98] := {17, 111} tii[25,99] := {18, 48} tii[25,100] := {5, 59} tii[25,101] := {8, 40} tii[25,102] := {3, 49} tii[25,103] := {6, 119} tii[25,104] := {1, 85} tii[25,105] := {0, 71} cell#78 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {114} tii[19,2] := {123} tii[19,3] := {125} tii[19,4] := {102} tii[19,5] := {80} tii[19,6] := {117} tii[19,7] := {94} tii[19,8] := {124} tii[19,9] := {88} tii[19,10] := {74} tii[19,11] := {109} tii[19,12] := {86} tii[19,13] := {58} tii[19,14] := {120} tii[19,15] := {103} tii[19,16] := {92} tii[19,17] := {115} tii[19,18] := {122} tii[19,19] := {87} tii[19,20] := {64} tii[19,21] := {108} tii[19,22] := {77} tii[19,23] := {119} tii[19,24] := {71} tii[19,25] := {55} tii[19,26] := {46} tii[19,27] := {96} tii[19,28] := {69} tii[19,29] := {40} tii[19,30] := {61} tii[19,31] := {111} tii[19,32] := {32} tii[19,33] := {89} tii[19,34] := {20} tii[19,35] := {76} tii[19,36] := {45} tii[19,37] := {105} tii[19,38] := {35} tii[19,39] := {116} tii[19,40] := {54} tii[19,41] := {38} tii[19,42] := {82} tii[19,43] := {51} tii[19,44] := {26} tii[19,45] := {99} tii[19,46] := {25} tii[19,47] := {72} tii[19,48] := {59} tii[19,49] := {36} tii[19,50] := {13} tii[19,51] := {93} tii[19,52] := {29} tii[19,53] := {7} tii[19,54] := {107} tii[19,55] := {83} tii[19,56] := {68} tii[19,57] := {100} tii[19,58] := {52} tii[19,59] := {113} tii[19,60] := {121} tii[19,61] := {95} tii[19,62] := {106} tii[19,63] := {104} tii[19,64] := {65} tii[19,65] := {91} tii[19,66] := {112} tii[19,67] := {79} tii[19,68] := {47} tii[19,69] := {118} tii[19,70] := {34} tii[19,71] := {63} tii[19,72] := {50} tii[19,73] := {90} tii[19,74] := {31} tii[19,75] := {43} tii[19,76] := {75} tii[19,77] := {101} tii[19,78] := {18} tii[19,79] := {56} tii[19,80] := {66} tii[19,81] := {9} tii[19,82] := {110} tii[19,83] := {30} tii[19,84] := {70} tii[19,85] := {41} tii[19,86] := {22} tii[19,87] := {28} tii[19,88] := {62} tii[19,89] := {8} tii[19,90] := {98} tii[19,91] := {4} tii[19,92] := {16} tii[19,93] := {2} tii[19,94] := {11} tii[19,95] := {78} tii[19,96] := {17} tii[19,97] := {73} tii[19,98] := {85} tii[19,99] := {57} tii[19,100] := {39} tii[19,101] := {48} tii[19,102] := {97} tii[19,103] := {53} tii[19,104] := {27} tii[19,105] := {14} tii[19,106] := {44} tii[19,107] := {12} tii[19,108] := {33} tii[19,109] := {84} tii[19,110] := {23} tii[19,111] := {6} tii[19,112] := {10} tii[19,113] := {60} tii[19,114] := {15} tii[19,115] := {3} tii[19,116] := {1} tii[19,117] := {24} tii[19,118] := {67} tii[19,119] := {42} tii[19,120] := {37} tii[19,121] := {81} tii[19,122] := {49} tii[19,123] := {21} tii[19,124] := {19} tii[19,125] := {5} tii[19,126] := {0} cell#79 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {214} tii[17,2] := {143, 222} tii[17,3] := {234} tii[17,4] := {85, 181} tii[17,5] := {203, 242} tii[17,6] := {219, 244} tii[17,7] := {131, 224} tii[17,8] := {155, 233} tii[17,9] := {53} tii[17,10] := {192} tii[17,11] := {113, 202} tii[17,12] := {142} tii[17,13] := {56, 100} tii[17,14] := {93, 135} tii[17,15] := {215} tii[17,16] := {86, 195} tii[17,17] := {193} tii[17,18] := {21, 112} tii[17,19] := {158, 236} tii[17,20] := {173, 209} tii[17,21] := {46, 151} tii[17,22] := {179, 240} tii[17,23] := {115, 217} tii[17,24] := {138, 228} tii[17,25] := {89, 199} tii[17,26] := {79} tii[17,27] := {169} tii[17,28] := {82, 130} tii[17,29] := {121, 162} tii[17,30] := {108} tii[17,31] := {229} tii[17,32] := {194} tii[17,33] := {140} tii[17,34] := {182, 241} tii[17,35] := {216} tii[17,36] := {9, 83} tii[17,37] := {61, 170} tii[17,38] := {57, 157} tii[17,39] := {176} tii[17,40] := {201, 243} tii[17,41] := {198, 227} tii[17,42] := {27, 122} tii[17,43] := {94, 186} tii[17,44] := {81, 180} tii[17,45] := {172, 235} tii[17,46] := {87, 197} tii[17,47] := {147, 225} tii[17,48] := {120, 208} tii[17,49] := {107, 213} tii[17,50] := {65, 175} tii[17,51] := {191, 239} tii[17,52] := {165, 231} tii[17,53] := {221} tii[17,54] := {20, 99} tii[17,55] := {205, 230} tii[17,56] := {45, 134} tii[17,57] := {116, 204} tii[17,58] := {34, 128} tii[17,59] := {183, 238} tii[17,60] := {139, 220} tii[17,61] := {90, 184} tii[17,62] := {66, 160} tii[17,63] := {105, 200} tii[17,64] := {103, 207} tii[17,65] := {33} tii[17,66] := {114} tii[17,67] := {37, 73} tii[17,68] := {23} tii[17,69] := {69, 104} tii[17,70] := {12, 32} tii[17,71] := {22, 59} tii[17,72] := {144} tii[17,73] := {15, 43} tii[17,74] := {117, 166} tii[17,75] := {47, 96} tii[17,76] := {72, 127} tii[17,77] := {78} tii[17,78] := {38} tii[17,79] := {168} tii[17,80] := {109} tii[17,81] := {36, 129} tii[17,82] := {24, 52} tii[17,83] := {148} tii[17,84] := {68, 161} tii[17,85] := {171} tii[17,86] := {54, 156} tii[17,87] := {10, 84} tii[17,88] := {145, 223} tii[17,89] := {80} tii[17,90] := {40, 75} tii[17,91] := {146, 190} tii[17,92] := {91, 185} tii[17,93] := {167, 232} tii[17,94] := {118, 206} tii[17,95] := {6, 64} tii[17,96] := {28, 123} tii[17,97] := {119} tii[17,98] := {136, 218} tii[17,99] := {50, 154} tii[17,100] := {124, 164} tii[17,101] := {35, 141} tii[17,102] := {14, 88} tii[17,103] := {133, 226} tii[17,104] := {67, 177} tii[17,105] := {106, 211} tii[17,106] := {71, 178} tii[17,107] := {60} tii[17,108] := {39, 76} tii[17,109] := {110} tii[17,110] := {196} tii[17,111] := {4, 58} tii[17,112] := {62, 102} tii[17,113] := {149} tii[17,114] := {174, 212} tii[17,115] := {16, 95} tii[17,116] := {1, 42} tii[17,117] := {31, 126} tii[17,118] := {152, 188} tii[17,119] := {19, 111} tii[17,120] := {159, 237} tii[17,121] := {5, 63} tii[17,122] := {41, 132} tii[17,123] := {44, 150} tii[17,124] := {125, 210} tii[17,125] := {49, 153} tii[17,126] := {77, 189} tii[17,127] := {13, 74} tii[17,128] := {70, 163} tii[17,129] := {11} tii[17,130] := {7, 18} tii[17,131] := {2, 17} tii[17,132] := {55} tii[17,133] := {26, 51} tii[17,134] := {92} tii[17,135] := {8, 30} tii[17,136] := {98, 137} tii[17,137] := {25, 101} tii[17,138] := {3, 48} tii[17,139] := {97, 187} tii[17,140] := {0, 29} cell#80 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {376} tii[15,2] := {410, 411} tii[15,3] := {90, 478} tii[15,4] := {317} tii[15,5] := {231} tii[15,6] := {349, 350} tii[15,7] := {155, 156, 531, 532} tii[15,8] := {223, 224, 546, 547} tii[15,9] := {374} tii[15,10] := {408, 409} tii[15,11] := {337} tii[15,12] := {258, 259, 455, 456} tii[15,13] := {385, 386} tii[15,14] := {333, 334, 507, 508} tii[15,15] := {451, 452} tii[15,16] := {430, 431, 511, 512} tii[15,17] := {58, 497} tii[15,18] := {255} tii[15,19] := {295, 296} tii[15,20] := {178} tii[15,21] := {110, 111, 539, 540} tii[15,22] := {170, 171, 549, 550} tii[15,23] := {34, 448} tii[15,24] := {315} tii[15,25] := {132} tii[15,26] := {16, 428} tii[15,27] := {347, 348} tii[15,28] := {283} tii[15,29] := {200, 201, 401, 402} tii[15,30] := {73, 74, 516, 517} tii[15,31] := {28, 29, 461, 462} tii[15,32] := {328, 329} tii[15,33] := {274, 275, 465, 466} tii[15,34] := {124, 125, 541, 542} tii[15,35] := {176} tii[15,36] := {108, 109, 486, 538} tii[15,37] := {398, 399} tii[15,38] := {68, 69, 443, 530} tii[15,39] := {214, 215} tii[15,40] := {377, 378, 469, 470} tii[15,41] := {168, 169, 522, 551} tii[15,42] := {209, 210, 544, 552} tii[15,43] := {343} tii[15,44] := {294, 407} tii[15,45] := {314} tii[15,46] := {149, 257, 438, 439} tii[15,47] := {354, 355} tii[15,48] := {217, 332, 489, 490} tii[15,49] := {254} tii[15,50] := {107, 202, 390, 482} tii[15,51] := {344, 453} tii[15,52] := {67, 141, 340, 449} tii[15,53] := {318, 423, 432, 513} tii[15,54] := {299, 300} tii[15,55] := {167, 276, 444, 523} tii[15,56] := {250, 351} tii[15,57] := {208, 323, 492, 536} tii[15,58] := {400, 483} tii[15,59] := {379, 450, 471, 524} tii[15,60] := {319, 406, 496, 537} tii[15,61] := {129} tii[15,62] := {285} tii[15,63] := {205, 206} tii[15,64] := {279, 280} tii[15,65] := {142} tii[15,66] := {59, 429} tii[15,67] := {320} tii[15,68] := {199} tii[15,69] := {179} tii[15,70] := {239, 240} tii[15,71] := {112, 113, 500, 501} tii[15,72] := {32, 389} tii[15,73] := {273} tii[15,74] := {309, 310} tii[15,75] := {172, 173, 533, 534} tii[15,76] := {50, 51, 435, 436} tii[15,77] := {292, 293} tii[15,78] := {153, 154, 457, 458} tii[15,79] := {230} tii[15,80] := {365, 366} tii[15,81] := {103, 104, 419, 420} tii[15,82] := {271, 272} tii[15,83] := {221, 222, 509, 510} tii[15,84] := {264, 265, 472, 473} tii[15,85] := {17, 397} tii[15,86] := {98} tii[15,87] := {56, 437} tii[15,88] := {260} tii[15,89] := {93} tii[15,90] := {6, 373} tii[15,91] := {148} tii[15,92] := {45, 46, 484, 485} tii[15,93] := {185, 186} tii[15,94] := {79, 80, 480, 481} tii[15,95] := {14, 15, 413, 414} tii[15,96] := {216} tii[15,97] := {86, 87, 520, 521} tii[15,98] := {248, 249} tii[15,99] := {70, 71, 440, 515} tii[15,100] := {284} tii[15,101] := {131} tii[15,102] := {237, 238} tii[15,103] := {203, 204, 403, 404} tii[15,104] := {130} tii[15,105] := {4, 316} tii[15,106] := {119, 120, 505, 506} tii[15,107] := {330, 331} tii[15,108] := {41, 42, 394, 498} tii[15,109] := {307, 308} tii[15,110] := {163, 164} tii[15,111] := {121, 122, 491, 543} tii[15,112] := {180} tii[15,113] := {145, 146, 360, 361} tii[15,114] := {277, 278, 467, 468} tii[15,115] := {9, 10, 358, 359} tii[15,116] := {157, 158, 525, 548} tii[15,117] := {281, 282} tii[15,118] := {19, 20, 311, 412} tii[15,119] := {324, 325, 424, 425} tii[15,120] := {44, 106, 391, 499} tii[15,121] := {147} tii[15,122] := {290, 291} tii[15,123] := {196, 197, 415, 416} tii[15,124] := {24, 66, 341, 479} tii[15,125] := {363, 364} tii[15,126] := {85, 166, 445, 535} tii[15,127] := {189, 190} tii[15,128] := {139, 241} tii[15,129] := {116, 211, 493, 545} tii[15,130] := {382, 383, 475, 476} tii[15,131] := {12, 57, 288, 434} tii[15,132] := {160, 242, 526, 527} tii[15,133] := {65} tii[15,134] := {207} tii[15,135] := {33, 477} tii[15,136] := {105} tii[15,137] := {135, 136} tii[15,138] := {165} tii[15,139] := {52, 53, 503, 504} tii[15,140] := {191, 192} tii[15,141] := {183, 184} tii[15,142] := {11, 375} tii[15,143] := {91} tii[15,144] := {151, 152, 345, 346} tii[15,145] := {229} tii[15,146] := {81, 82, 518, 519} tii[15,147] := {246, 247} tii[15,148] := {21, 22, 417, 418} tii[15,149] := {269, 270} tii[15,150] := {133} tii[15,151] := {101, 102, 301, 302} tii[15,152] := {219, 220, 421, 422} tii[15,153] := {37, 38, 367, 460} tii[15,154] := {225, 226} tii[15,155] := {262, 263, 370, 371} tii[15,156] := {198} tii[15,157] := {61} tii[15,158] := {72, 150, 339, 454} tii[15,159] := {235, 236} tii[15,160] := {54, 55, 487, 488} tii[15,161] := {143, 144, 356, 357} tii[15,162] := {243, 244} tii[15,163] := {43, 100, 286, 433} tii[15,164] := {94} tii[15,165] := {305, 306} tii[15,166] := {123, 218, 395, 514} tii[15,167] := {193, 297} tii[15,168] := {47, 48, 396, 502} tii[15,169] := {174, 175} tii[15,170] := {321, 322, 426, 427} tii[15,171] := {159, 266, 446, 529} tii[15,172] := {27, 89, 233, 380} tii[15,173] := {140, 268} tii[15,174] := {212, 298, 494, 495} tii[15,175] := {182, 289} tii[15,176] := {99, 195, 392, 393} tii[15,177] := {245, 362} tii[15,178] := {49, 128, 287, 405} tii[15,179] := {261, 372, 381, 474} tii[15,180] := {267, 352, 447, 528} tii[15,181] := {88} tii[15,182] := {117, 118} tii[15,183] := {177} tii[15,184] := {23, 338} tii[15,185] := {161, 162} tii[15,186] := {232} tii[15,187] := {39, 40, 387, 388} tii[15,188] := {62, 63, 335, 336} tii[15,189] := {92} tii[15,190] := {0, 256} tii[15,191] := {187, 188} tii[15,192] := {83, 84, 463, 464} tii[15,193] := {134} tii[15,194] := {2, 3, 303, 304} tii[15,195] := {75, 76, 368, 369} tii[15,196] := {7, 8, 251, 353} tii[15,197] := {227, 228} tii[15,198] := {1, 18, 194, 327} tii[15,199] := {36} tii[15,200] := {30, 31, 441, 442} tii[15,201] := {137, 138} tii[15,202] := {64} tii[15,203] := {25, 26, 342, 459} tii[15,204] := {114, 115, 312, 313} tii[15,205] := {126, 127} tii[15,206] := {5, 35, 234, 384} tii[15,207] := {97, 213} tii[15,208] := {95, 96} tii[15,209] := {77, 78, 252, 253} tii[15,210] := {13, 60, 181, 326} cell#81 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {91} tii[19,2] := {112} tii[19,3] := {120} tii[19,4] := {73} tii[19,5] := {44} tii[19,6] := {100} tii[19,7] := {61} tii[19,8] := {114} tii[19,9] := {90} tii[19,10] := {83} tii[19,11] := {111} tii[19,12] := {97} tii[19,13] := {96} tii[19,14] := {119} tii[19,15] := {118} tii[19,16] := {116} tii[19,17] := {124} tii[19,18] := {125} tii[19,19] := {52} tii[19,20] := {24} tii[19,21] := {86} tii[19,22] := {39} tii[19,23] := {103} tii[19,24] := {72} tii[19,25] := {62} tii[19,26] := {10} tii[19,27] := {99} tii[19,28] := {78} tii[19,29] := {77} tii[19,30] := {22} tii[19,31] := {113} tii[19,32] := {23} tii[19,33] := {110} tii[19,34] := {36} tii[19,35] := {105} tii[19,36] := {37} tii[19,37] := {121} tii[19,38] := {54} tii[19,39] := {123} tii[19,40] := {63} tii[19,41] := {50} tii[19,42] := {93} tii[19,43] := {69} tii[19,44] := {68} tii[19,45] := {108} tii[19,46] := {32} tii[19,47] := {106} tii[19,48] := {98} tii[19,49] := {49} tii[19,50] := {48} tii[19,51] := {117} tii[19,52] := {67} tii[19,53] := {31} tii[19,54] := {122} tii[19,55] := {92} tii[19,56] := {84} tii[19,57] := {109} tii[19,58] := {66} tii[19,59] := {115} tii[19,60] := {104} tii[19,61] := {65} tii[19,62] := {82} tii[19,63] := {74} tii[19,64] := {25} tii[19,65] := {55} tii[19,66] := {89} tii[19,67] := {41} tii[19,68] := {43} tii[19,69] := {102} tii[19,70] := {58} tii[19,71] := {59} tii[19,72] := {76} tii[19,73] := {53} tii[19,74] := {2} tii[19,75] := {8} tii[19,76] := {35} tii[19,77] := {71} tii[19,78] := {9} tii[19,79] := {64} tii[19,80] := {28} tii[19,81] := {19} tii[19,82] := {88} tii[19,83] := {20} tii[19,84] := {81} tii[19,85] := {80} tii[19,86] := {34} tii[19,87] := {60} tii[19,88] := {95} tii[19,89] := {6} tii[19,90] := {101} tii[19,91] := {14} tii[19,92] := {15} tii[19,93] := {4} tii[19,94] := {27} tii[19,95] := {107} tii[19,96] := {11} tii[19,97] := {33} tii[19,98] := {51} tii[19,99] := {18} tii[19,100] := {42} tii[19,101] := {12} tii[19,102] := {70} tii[19,103] := {57} tii[19,104] := {56} tii[19,105] := {38} tii[19,106] := {75} tii[19,107] := {17} tii[19,108] := {3} tii[19,109] := {87} tii[19,110] := {30} tii[19,111] := {29} tii[19,112] := {21} tii[19,113] := {94} tii[19,114] := {46} tii[19,115] := {16} tii[19,116] := {5} tii[19,117] := {26} tii[19,118] := {79} tii[19,119] := {85} tii[19,120] := {45} tii[19,121] := {47} tii[19,122] := {13} tii[19,123] := {40} tii[19,124] := {0} tii[19,125] := {7} tii[19,126] := {1} cell#82 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {79} tii[9,2] := {97} tii[9,3] := {104} tii[9,4] := {67} tii[9,5] := {55} tii[9,6] := {20} tii[9,7] := {87} tii[9,8] := {32} tii[9,9] := {99} tii[9,10] := {65} tii[9,11] := {50} tii[9,12] := {82} tii[9,13] := {96} tii[9,14] := {103} tii[9,15] := {88} tii[9,16] := {73} tii[9,17] := {100} tii[9,18] := {102} tii[9,19] := {68} tii[9,20] := {28} tii[9,21] := {43} tii[9,22] := {78} tii[9,23] := {94} tii[9,24] := {62} tii[9,25] := {13} tii[9,26] := {42} tii[9,27] := {38} tii[9,28] := {22} tii[9,29] := {56} tii[9,30] := {51} tii[9,31] := {89} tii[9,32] := {10} tii[9,33] := {52} tii[9,34] := {5} tii[9,35] := {69} tii[9,36] := {101} tii[9,37] := {37} tii[9,38] := {70} tii[9,39] := {75} tii[9,40] := {17} tii[9,41] := {95} tii[9,42] := {25} tii[9,43] := {64} tii[9,44] := {86} tii[9,45] := {49} tii[9,46] := {81} tii[9,47] := {90} tii[9,48] := {46} tii[9,49] := {29} tii[9,50] := {44} tii[9,51] := {39} tii[9,52] := {15} tii[9,53] := {77} tii[9,54] := {57} tii[9,55] := {26} tii[9,56] := {9} tii[9,57] := {93} tii[9,58] := {63} tii[9,59] := {35} tii[9,60] := {83} tii[9,61] := {76} tii[9,62] := {30} tii[9,63] := {12} tii[9,64] := {74} tii[9,65] := {61} tii[9,66] := {45} tii[9,67] := {92} tii[9,68] := {98} tii[9,69] := {41} tii[9,70] := {71} tii[9,71] := {60} tii[9,72] := {91} tii[9,73] := {85} tii[9,74] := {72} tii[9,75] := {24} tii[9,76] := {36} tii[9,77] := {14} tii[9,78] := {48} tii[9,79] := {40} tii[9,80] := {6} tii[9,81] := {18} tii[9,82] := {11} tii[9,83] := {3} tii[9,84] := {58} tii[9,85] := {84} tii[9,86] := {53} tii[9,87] := {16} tii[9,88] := {1} tii[9,89] := {23} tii[9,90] := {21} tii[9,91] := {7} tii[9,92] := {27} tii[9,93] := {33} tii[9,94] := {66} tii[9,95] := {2} tii[9,96] := {31} tii[9,97] := {59} tii[9,98] := {80} tii[9,99] := {34} tii[9,100] := {19} tii[9,101] := {4} tii[9,102] := {54} tii[9,103] := {47} tii[9,104] := {8} tii[9,105] := {0} cell#83 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {79} tii[9,2] := {97} tii[9,3] := {104} tii[9,4] := {67} tii[9,5] := {55} tii[9,6] := {20} tii[9,7] := {87} tii[9,8] := {32} tii[9,9] := {99} tii[9,10] := {65} tii[9,11] := {50} tii[9,12] := {82} tii[9,13] := {96} tii[9,14] := {103} tii[9,15] := {88} tii[9,16] := {73} tii[9,17] := {100} tii[9,18] := {102} tii[9,19] := {68} tii[9,20] := {28} tii[9,21] := {43} tii[9,22] := {78} tii[9,23] := {94} tii[9,24] := {62} tii[9,25] := {13} tii[9,26] := {42} tii[9,27] := {38} tii[9,28] := {22} tii[9,29] := {56} tii[9,30] := {51} tii[9,31] := {89} tii[9,32] := {10} tii[9,33] := {52} tii[9,34] := {5} tii[9,35] := {69} tii[9,36] := {101} tii[9,37] := {37} tii[9,38] := {70} tii[9,39] := {75} tii[9,40] := {17} tii[9,41] := {95} tii[9,42] := {25} tii[9,43] := {64} tii[9,44] := {86} tii[9,45] := {49} tii[9,46] := {81} tii[9,47] := {90} tii[9,48] := {46} tii[9,49] := {29} tii[9,50] := {44} tii[9,51] := {39} tii[9,52] := {15} tii[9,53] := {77} tii[9,54] := {57} tii[9,55] := {26} tii[9,56] := {9} tii[9,57] := {93} tii[9,58] := {63} tii[9,59] := {35} tii[9,60] := {83} tii[9,61] := {76} tii[9,62] := {30} tii[9,63] := {12} tii[9,64] := {74} tii[9,65] := {61} tii[9,66] := {45} tii[9,67] := {92} tii[9,68] := {98} tii[9,69] := {41} tii[9,70] := {71} tii[9,71] := {60} tii[9,72] := {91} tii[9,73] := {85} tii[9,74] := {72} tii[9,75] := {24} tii[9,76] := {36} tii[9,77] := {14} tii[9,78] := {48} tii[9,79] := {40} tii[9,80] := {6} tii[9,81] := {18} tii[9,82] := {11} tii[9,83] := {3} tii[9,84] := {58} tii[9,85] := {84} tii[9,86] := {53} tii[9,87] := {16} tii[9,88] := {1} tii[9,89] := {23} tii[9,90] := {21} tii[9,91] := {7} tii[9,92] := {27} tii[9,93] := {33} tii[9,94] := {66} tii[9,95] := {2} tii[9,96] := {31} tii[9,97] := {59} tii[9,98] := {80} tii[9,99] := {34} tii[9,100] := {19} tii[9,101] := {4} tii[9,102] := {54} tii[9,103] := {47} tii[9,104] := {8} tii[9,105] := {0} cell#84 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {202} tii[20,2] := {227} tii[20,3] := {63, 288} tii[20,4] := {236} tii[20,5] := {154} tii[20,6] := {255} tii[20,7] := {105, 306} tii[20,8] := {148, 313} tii[20,9] := {118, 287} tii[20,10] := {266} tii[20,11] := {224} tii[20,12] := {277} tii[20,13] := {169, 252} tii[20,14] := {170, 305} tii[20,15] := {216, 273} tii[20,16] := {217, 312} tii[20,17] := {286} tii[20,18] := {295} tii[20,19] := {274} tii[20,20] := {237, 304} tii[20,21] := {290, 291} tii[20,22] := {272, 311} tii[20,23] := {303} tii[20,24] := {302, 314} tii[20,25] := {26} tii[20,26] := {107} tii[20,27] := {67} tii[20,28] := {97} tii[20,29] := {39, 264} tii[20,30] := {46} tii[20,31] := {120} tii[20,32] := {48} tii[20,33] := {137} tii[20,34] := {75, 292} tii[20,35] := {9, 207} tii[20,36] := {94} tii[20,37] := {85} tii[20,38] := {116, 307} tii[20,39] := {19, 233} tii[20,40] := {128} tii[20,41] := {70} tii[20,42] := {62, 235} tii[20,43] := {171} tii[20,44] := {100} tii[20,45] := {38, 204} tii[20,46] := {153} tii[20,47] := {102, 188} tii[20,48] := {103, 275} tii[20,49] := {125} tii[20,50] := {143} tii[20,51] := {51, 175} tii[20,52] := {52, 231} tii[20,53] := {145, 218} tii[20,54] := {162} tii[20,55] := {146, 299} tii[20,56] := {159} tii[20,57] := {187} tii[20,58] := {133, 254} tii[20,59] := {212, 213} tii[20,60] := {99, 228} tii[20,61] := {195} tii[20,62] := {179, 282} tii[20,63] := {206, 262} tii[20,64] := {71} tii[20,65] := {21, 242} tii[20,66] := {172} tii[20,67] := {73} tii[20,68] := {126} tii[20,69] := {35, 263} tii[20,70] := {114} tii[20,71] := {163} tii[20,72] := {98} tii[20,73] := {88, 265} tii[20,74] := {42, 268} tii[20,75] := {205} tii[20,76] := {134, 223} tii[20,77] := {132} tii[20,78] := {189} tii[20,79] := {65} tii[20,80] := {61, 239} tii[20,81] := {135, 293} tii[20,82] := {160} tii[20,83] := {23, 244} tii[20,84] := {180, 248} tii[20,85] := {178} tii[20,86] := {60, 284} tii[20,87] := {92} tii[20,88] := {78, 210} tii[20,89] := {79, 260} tii[20,90] := {196} tii[20,91] := {181, 308} tii[20,92] := {104, 190} tii[20,93] := {90} tii[20,94] := {193} tii[20,95] := {168, 276} tii[20,96] := {222} tii[20,97] := {83, 298} tii[20,98] := {82, 157} tii[20,99] := {147, 221} tii[20,100] := {131, 257} tii[20,101] := {123} tii[20,102] := {229} tii[20,103] := {245, 246} tii[20,104] := {215, 300} tii[20,105] := {184, 185} tii[20,106] := {241, 285} tii[20,107] := {130} tii[20,108] := {87, 267} tii[20,109] := {240} tii[20,110] := {167} tii[20,111] := {194} tii[20,112] := {108, 243} tii[20,113] := {109, 283} tii[20,114] := {214} tii[20,115] := {230} tii[20,116] := {251} tii[20,117] := {152} tii[20,118] := {226} tii[20,119] := {203, 294} tii[20,120] := {139, 225} tii[20,121] := {140, 297} tii[20,122] := {270, 271} tii[20,123] := {258} tii[20,124] := {192} tii[20,125] := {166, 280} tii[20,126] := {247, 309} tii[20,127] := {249, 250} tii[20,128] := {269, 301} tii[20,129] := {253} tii[20,130] := {201, 296} tii[20,131] := {281} tii[20,132] := {289, 310} tii[20,133] := {4} tii[20,134] := {12} tii[20,135] := {13} tii[20,136] := {2, 174} tii[20,137] := {27} tii[20,138] := {5} tii[20,139] := {58} tii[20,140] := {7, 200} tii[20,141] := {25} tii[20,142] := {47} tii[20,143] := {8, 138} tii[20,144] := {44} tii[20,145] := {17, 165} tii[20,146] := {16, 112} tii[20,147] := {84} tii[20,148] := {29, 129} tii[20,149] := {22, 238} tii[20,150] := {28} tii[20,151] := {41} tii[20,152] := {11, 209} tii[20,153] := {37, 259} tii[20,154] := {14} tii[20,155] := {45} tii[20,156] := {66} tii[20,157] := {74, 155} tii[20,158] := {72} tii[20,159] := {20, 173} tii[20,160] := {64} tii[20,161] := {31} tii[20,162] := {55, 278} tii[20,163] := {3, 176} tii[20,164] := {68} tii[20,165] := {115, 186} tii[20,166] := {91} tii[20,167] := {32, 141} tii[20,168] := {33, 199} tii[20,169] := {113} tii[20,170] := {54, 121} tii[20,171] := {18, 117} tii[20,172] := {150, 151} tii[20,173] := {50, 164} tii[20,174] := {89} tii[20,175] := {81, 256} tii[20,176] := {95} tii[20,177] := {122} tii[20,178] := {80, 156} tii[20,179] := {76, 197} tii[20,180] := {182, 183} tii[20,181] := {49} tii[20,182] := {30} tii[20,183] := {69} tii[20,184] := {101} tii[20,185] := {40, 208} tii[20,186] := {10, 211} tii[20,187] := {53} tii[20,188] := {96} tii[20,189] := {144} tii[20,190] := {56, 177} tii[20,191] := {57, 234} tii[20,192] := {34, 149} tii[20,193] := {77, 198} tii[20,194] := {119} tii[20,195] := {110, 191} tii[20,196] := {43} tii[20,197] := {111, 279} tii[20,198] := {127} tii[20,199] := {158} tii[20,200] := {59, 124} tii[20,201] := {106, 232} tii[20,202] := {219, 220} tii[20,203] := {161} tii[20,204] := {136, 261} tii[20,205] := {1} tii[20,206] := {0, 142} tii[20,207] := {15} tii[20,208] := {6, 86} tii[20,209] := {24} tii[20,210] := {36, 93} cell#85 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {187} tii[17,2] := {130, 207} tii[17,3] := {219} tii[17,4] := {78, 227} tii[17,5] := {196, 239} tii[17,6] := {212, 243} tii[17,7] := {127, 241} tii[17,8] := {155, 244} tii[17,9] := {47} tii[17,10] := {165} tii[17,11] := {103, 189} tii[17,12] := {120} tii[17,13] := {53, 93} tii[17,14] := {80, 124} tii[17,15] := {186} tii[17,16] := {79, 199} tii[17,17] := {166} tii[17,18] := {25, 136} tii[17,19] := {153, 220} tii[17,20] := {151, 192} tii[17,21] := {45, 162} tii[17,22] := {177, 233} tii[17,23] := {101, 213} tii[17,24] := {132, 229} tii[17,25] := {84, 200} tii[17,26] := {68} tii[17,27] := {145} tii[17,28] := {74, 119} tii[17,29] := {104, 148} tii[17,30] := {90} tii[17,31] := {204} tii[17,32] := {169} tii[17,33] := {116} tii[17,34] := {176, 231} tii[17,35] := {188} tii[17,36] := {14, 160} tii[17,37] := {55, 214} tii[17,38] := {61, 143} tii[17,39] := {146} tii[17,40] := {197, 240} tii[17,41] := {175, 210} tii[17,42] := {27, 183} tii[17,43] := {86, 171} tii[17,44] := {75, 167} tii[17,45] := {154, 221} tii[17,46] := {76, 226} tii[17,47] := {135, 209} tii[17,48] := {105, 191} tii[17,49] := {106, 237} tii[17,50] := {60, 215} tii[17,51] := {178, 234} tii[17,52] := {157, 225} tii[17,53] := {205} tii[17,54] := {24, 181} tii[17,55] := {195, 223} tii[17,56] := {44, 202} tii[17,57] := {100, 235} tii[17,58] := {36, 198} tii[17,59] := {179, 232} tii[17,60] := {131, 242} tii[17,61] := {83, 228} tii[17,62] := {58, 216} tii[17,63] := {107, 238} tii[17,64] := {109, 236} tii[17,65] := {30} tii[17,66] := {94} tii[17,67] := {35, 70} tii[17,68] := {17} tii[17,69] := {57, 98} tii[17,70] := {10, 32} tii[17,71] := {22, 87} tii[17,72] := {117} tii[17,73] := {11, 65} tii[17,74] := {99, 149} tii[17,75] := {39, 115} tii[17,76] := {56, 140} tii[17,77] := {67} tii[17,78] := {31} tii[17,79] := {144} tii[17,80] := {91} tii[17,81] := {41, 118} tii[17,82] := {19, 51} tii[17,83] := {122} tii[17,84] := {64, 147} tii[17,85] := {142} tii[17,86] := {54, 141} tii[17,87] := {15, 112} tii[17,88] := {128, 206} tii[17,89] := {69} tii[17,90] := {34, 71} tii[17,91] := {126, 172} tii[17,92] := {81, 170} tii[17,93] := {156, 224} tii[17,94] := {110, 190} tii[17,95] := {7, 88} tii[17,96] := {28, 139} tii[17,97] := {97} tii[17,98] := {133, 211} tii[17,99] := {43, 164} tii[17,100] := {102, 150} tii[17,101] := {37, 159} tii[17,102] := {13, 113} tii[17,103] := {134, 208} tii[17,104] := {59, 182} tii[17,105] := {108, 218} tii[17,106] := {63, 184} tii[17,107] := {48} tii[17,108] := {33, 73} tii[17,109] := {92} tii[17,110] := {168} tii[17,111] := {8, 137} tii[17,112] := {52, 96} tii[17,113] := {123} tii[17,114] := {152, 193} tii[17,115] := {16, 163} tii[17,116] := {2, 114} tii[17,117] := {26, 185} tii[17,118] := {129, 174} tii[17,119] := {21, 180} tii[17,120] := {158, 222} tii[17,121] := {6, 138} tii[17,122] := {40, 121} tii[17,123] := {38, 201} tii[17,124] := {111, 194} tii[17,125] := {42, 203} tii[17,126] := {82, 230} tii[17,127] := {12, 161} tii[17,128] := {62, 217} tii[17,129] := {9} tii[17,130] := {4, 18} tii[17,131] := {1, 29} tii[17,132] := {49} tii[17,133] := {20, 50} tii[17,134] := {72} tii[17,135] := {5, 46} tii[17,136] := {77, 125} tii[17,137] := {23, 95} tii[17,138] := {3, 66} tii[17,139] := {85, 173} tii[17,140] := {0, 89} cell#86 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {166} tii[25,2] := {145} tii[25,3] := {167, 168} tii[25,4] := {173, 174} tii[25,5] := {150} tii[25,6] := {120} tii[25,7] := {128} tii[25,8] := {119} tii[25,9] := {153, 154} tii[25,10] := {134, 135} tii[25,11] := {169, 170} tii[25,12] := {88} tii[25,13] := {69} tii[25,14] := {132, 133} tii[25,15] := {95, 96} tii[25,16] := {161, 162} tii[25,17] := {103, 152} tii[25,18] := {80, 146} tii[25,19] := {140, 171} tii[25,20] := {164, 172} tii[25,21] := {127} tii[25,22] := {87} tii[25,23] := {98} tii[25,24] := {85} tii[25,25] := {130, 131} tii[25,26] := {105, 106} tii[25,27] := {159, 160} tii[25,28] := {71} tii[25,29] := {60} tii[25,30] := {43} tii[25,31] := {59} tii[25,32] := {101, 102} tii[25,33] := {64, 65} tii[25,34] := {76, 77} tii[25,35] := {138, 139} tii[25,36] := {36} tii[25,37] := {74, 129} tii[25,38] := {53, 121} tii[25,39] := {54, 55} tii[25,40] := {115, 163} tii[25,41] := {32, 75} tii[25,42] := {142, 165} tii[25,43] := {35} tii[25,44] := {24} tii[25,45] := {72, 73} tii[25,46] := {38, 39} tii[25,47] := {113, 114} tii[25,48] := {11} tii[25,49] := {47, 100} tii[25,50] := {29, 89} tii[25,51] := {21, 22} tii[25,52] := {83, 141} tii[25,53] := {10, 37} tii[25,54] := {116, 149} tii[25,55] := {27, 90} tii[25,56] := {13, 70} tii[25,57] := {56, 125} tii[25,58] := {5, 45} tii[25,59] := {84, 143} tii[25,60] := {117, 118} tii[25,61] := {151} tii[25,62] := {144} tii[25,63] := {155, 156} tii[25,64] := {99} tii[25,65] := {126} tii[25,66] := {86} tii[25,67] := {147, 148} tii[25,68] := {107, 108} tii[25,69] := {61} tii[25,70] := {157, 158} tii[25,71] := {81, 82} tii[25,72] := {57, 104} tii[25,73] := {46} tii[25,74] := {97} tii[25,75] := {34} tii[25,76] := {49, 50} tii[25,77] := {123, 124} tii[25,78] := {18} tii[25,79] := {44} tii[25,80] := {136, 137} tii[25,81] := {30, 31} tii[25,82] := {66, 67} tii[25,83] := {16, 48} tii[25,84] := {42, 92} tii[25,85] := {7} tii[25,86] := {111, 112} tii[25,87] := {14, 15} tii[25,88] := {58, 122} tii[25,89] := {6, 28} tii[25,90] := {1, 19} tii[25,91] := {68} tii[25,92] := {93, 94} tii[25,93] := {25} tii[25,94] := {109, 110} tii[25,95] := {40, 41} tii[25,96] := {23, 63} tii[25,97] := {4} tii[25,98] := {78, 79} tii[25,99] := {8, 9} tii[25,100] := {33, 91} tii[25,101] := {3, 20} tii[25,102] := {0, 12} tii[25,103] := {51, 52} tii[25,104] := {17, 62} tii[25,105] := {2, 26} cell#87 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {172} tii[25,2] := {162} tii[25,3] := {154, 173} tii[25,4] := {170, 174} tii[25,5] := {166} tii[25,6] := {147} tii[25,7] := {153} tii[25,8] := {135} tii[25,9] := {134, 168} tii[25,10] := {110, 150} tii[25,11] := {159, 171} tii[25,12] := {122} tii[25,13] := {96} tii[25,14] := {105, 157} tii[25,15] := {69, 116} tii[25,16] := {142, 165} tii[25,17] := {77, 149} tii[25,18] := {57, 126} tii[25,19] := {114, 161} tii[25,20] := {144, 145} tii[25,21] := {152} tii[25,22] := {121} tii[25,23] := {132} tii[25,24] := {106} tii[25,25] := {104, 156} tii[25,26] := {80, 127} tii[25,27] := {141, 164} tii[25,28] := {103} tii[25,29] := {94} tii[25,30] := {66} tii[25,31] := {78} tii[25,32] := {76, 136} tii[25,33] := {46, 88} tii[25,34] := {55, 101} tii[25,35] := {113, 151} tii[25,36] := {54} tii[25,37] := {52, 124} tii[25,38] := {36, 99} tii[25,39] := {37, 74} tii[25,40] := {87, 146} tii[25,41] := {20, 62} tii[25,42] := {117, 118} tii[25,43] := {65} tii[25,44] := {44} tii[25,45] := {51, 108} tii[25,46] := {26, 60} tii[25,47] := {86, 129} tii[25,48] := {25} tii[25,49] := {32, 97} tii[25,50] := {18, 70} tii[25,51] := {13, 42} tii[25,52] := {59, 120} tii[25,53] := {7, 29} tii[25,54] := {90, 91} tii[25,55] := {16, 109} tii[25,56] := {8, 85} tii[25,57] := {38, 130} tii[25,58] := {4, 61} tii[25,59] := {63, 119} tii[25,60] := {93, 131} tii[25,61] := {167} tii[25,62] := {155} tii[25,63] := {137, 163} tii[25,64] := {133} tii[25,65] := {148} tii[25,66] := {107} tii[25,67] := {125, 160} tii[25,68] := {81, 128} tii[25,69] := {79} tii[25,70] := {138, 169} tii[25,71] := {58, 102} tii[25,72] := {39, 89} tii[25,73] := {75} tii[25,74] := {123} tii[25,75] := {53} tii[25,76] := {34, 73} tii[25,77] := {98, 143} tii[25,78] := {33} tii[25,79] := {67} tii[25,80] := {111, 158} tii[25,81] := {19, 50} tii[25,82] := {47, 92} tii[25,83] := {10, 41} tii[25,84] := {28, 72} tii[25,85] := {17} tii[25,86] := {83, 140} tii[25,87] := {9, 30} tii[25,88] := {40, 100} tii[25,89] := {5, 22} tii[25,90] := {1, 31} tii[25,91] := {95} tii[25,92] := {68, 115} tii[25,93] := {45} tii[25,94] := {82, 139} tii[25,95] := {27, 64} tii[25,96] := {14, 49} tii[25,97] := {12} tii[25,98] := {56, 112} tii[25,99] := {6, 23} tii[25,100] := {21, 71} tii[25,101] := {3, 15} tii[25,102] := {0, 24} tii[25,103] := {35, 84} tii[25,104] := {11, 48} tii[25,105] := {2, 43} cell#88 , |C| = 140 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {119} tii[23,2] := {92} tii[23,3] := {86} tii[23,4] := {131} tii[23,5] := {70} tii[23,6] := {123} tii[23,7] := {62} tii[23,8] := {132} tii[23,9] := {124, 138} tii[23,10] := {90} tii[23,11] := {44} tii[23,12] := {104} tii[23,13] := {91, 121} tii[23,14] := {60} tii[23,15] := {50, 88} tii[23,16] := {135} tii[23,17] := {48} tii[23,18] := {129} tii[23,19] := {43} tii[23,20] := {136} tii[23,21] := {130, 139} tii[23,22] := {117} tii[23,23] := {68} tii[23,24] := {25} tii[23,25] := {82} tii[23,26] := {126} tii[23,27] := {69, 106} tii[23,28] := {118, 137} tii[23,29] := {114} tii[23,30] := {40} tii[23,31] := {30, 65} tii[23,32] := {102, 128} tii[23,33] := {84, 134} tii[23,34] := {79} tii[23,35] := {12} tii[23,36] := {95} tii[23,37] := {80, 115} tii[23,38] := {75} tii[23,39] := {23} tii[23,40] := {16, 46} tii[23,41] := {57, 97} tii[23,42] := {41, 111} tii[23,43] := {36} tii[23,44] := {21, 55} tii[23,45] := {11, 74} tii[23,46] := {8} tii[23,47] := {103} tii[23,48] := {20} tii[23,49] := {85} tii[23,50] := {38} tii[23,51] := {63} tii[23,52] := {15} tii[23,53] := {109} tii[23,54] := {31} tii[23,55] := {72} tii[23,56] := {120} tii[23,57] := {53} tii[23,58] := {110, 133} tii[23,59] := {39} tii[23,60] := {105} tii[23,61] := {64} tii[23,62] := {93, 122} tii[23,63] := {73, 108} tii[23,64] := {100} tii[23,65] := {5} tii[23,66] := {51} tii[23,67] := {113} tii[23,68] := {17} tii[23,69] := {101, 127} tii[23,70] := {35} tii[23,71] := {96} tii[23,72] := {22} tii[23,73] := {83} tii[23,74] := {81, 116} tii[23,75] := {45} tii[23,76] := {71, 107} tii[23,77] := {61, 125} tii[23,78] := {52, 89} tii[23,79] := {76} tii[23,80] := {10} tii[23,81] := {58, 98} tii[23,82] := {28} tii[23,83] := {42, 112} tii[23,84] := {34, 67} tii[23,85] := {26, 99} tii[23,86] := {1} tii[23,87] := {32} tii[23,88] := {6} tii[23,89] := {19} tii[23,90] := {9} tii[23,91] := {59} tii[23,92] := {27} tii[23,93] := {49, 87} tii[23,94] := {33, 66} tii[23,95] := {54} tii[23,96] := {2} tii[23,97] := {37, 77} tii[23,98] := {14} tii[23,99] := {18, 47} tii[23,100] := {24, 94} tii[23,101] := {13, 78} tii[23,102] := {0} tii[23,103] := {4} tii[23,104] := {7, 29} tii[23,105] := {3, 56} cell#89 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {100} tii[19,2] := {118} tii[19,3] := {123} tii[19,4] := {88} tii[19,5] := {62} tii[19,6] := {110} tii[19,7] := {84} tii[19,8] := {119} tii[19,9] := {75} tii[19,10] := {61} tii[19,11] := {102} tii[19,12] := {83} tii[19,13] := {50} tii[19,14] := {114} tii[19,15] := {111} tii[19,16] := {106} tii[19,17] := {120} tii[19,18] := {124} tii[19,19] := {74} tii[19,20] := {46} tii[19,21] := {101} tii[19,22] := {67} tii[19,23] := {113} tii[19,24] := {59} tii[19,25] := {45} tii[19,26] := {31} tii[19,27] := {90} tii[19,28] := {66} tii[19,29] := {34} tii[19,30] := {53} tii[19,31] := {108} tii[19,32] := {21} tii[19,33] := {103} tii[19,34] := {15} tii[19,35] := {94} tii[19,36] := {40} tii[19,37] := {115} tii[19,38] := {57} tii[19,39] := {121} tii[19,40] := {44} tii[19,41] := {30} tii[19,42] := {78} tii[19,43] := {52} tii[19,44] := {22} tii[19,45] := {98} tii[19,46] := {20} tii[19,47] := {91} tii[19,48] := {81} tii[19,49] := {39} tii[19,50] := {14} tii[19,51] := {109} tii[19,52] := {56} tii[19,53] := {9} tii[19,54] := {117} tii[19,55] := {104} tii[19,56] := {95} tii[19,57] := {116} tii[19,58] := {86} tii[19,59] := {122} tii[19,60] := {125} tii[19,61] := {77} tii[19,62] := {97} tii[19,63] := {89} tii[19,64] := {47} tii[19,65] := {79} tii[19,66] := {107} tii[19,67] := {68} tii[19,68] := {33} tii[19,69] := {112} tii[19,70] := {25} tii[19,71] := {55} tii[19,72] := {72} tii[19,73] := {76} tii[19,74] := {19} tii[19,75] := {38} tii[19,76] := {63} tii[19,77] := {96} tii[19,78] := {11} tii[19,79] := {48} tii[19,80] := {51} tii[19,81] := {7} tii[19,82] := {105} tii[19,83] := {26} tii[19,84] := {69} tii[19,85] := {37} tii[19,86] := {41} tii[19,87] := {28} tii[19,88] := {87} tii[19,89] := {6} tii[19,90] := {93} tii[19,91] := {3} tii[19,92] := {16} tii[19,93] := {1} tii[19,94] := {29} tii[19,95] := {99} tii[19,96] := {43} tii[19,97] := {60} tii[19,98] := {82} tii[19,99] := {49} tii[19,100] := {32} tii[19,101] := {35} tii[19,102] := {92} tii[19,103] := {54} tii[19,104] := {24} tii[19,105] := {17} tii[19,106] := {71} tii[19,107] := {12} tii[19,108] := {23} tii[19,109] := {80} tii[19,110] := {27} tii[19,111] := {8} tii[19,112] := {10} tii[19,113] := {85} tii[19,114] := {42} tii[19,115] := {5} tii[19,116] := {2} tii[19,117] := {58} tii[19,118] := {65} tii[19,119] := {70} tii[19,120] := {73} tii[19,121] := {64} tii[19,122] := {36} tii[19,123] := {18} tii[19,124] := {13} tii[19,125] := {4} tii[19,126] := {0} cell#90 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {107} tii[19,2] := {121} tii[19,3] := {124} tii[19,4] := {95} tii[19,5] := {65} tii[19,6] := {113} tii[19,7] := {78} tii[19,8] := {122} tii[19,9] := {89} tii[19,10] := {74} tii[19,11] := {108} tii[19,12] := {88} tii[19,13] := {58} tii[19,14] := {118} tii[19,15] := {96} tii[19,16] := {85} tii[19,17] := {109} tii[19,18] := {119} tii[19,19] := {79} tii[19,20] := {45} tii[19,21] := {102} tii[19,22] := {59} tii[19,23] := {115} tii[19,24] := {73} tii[19,25] := {56} tii[19,26] := {29} tii[19,27] := {98} tii[19,28] := {71} tii[19,29] := {40} tii[19,30] := {42} tii[19,31] := {111} tii[19,32] := {22} tii[19,33] := {81} tii[19,34] := {11} tii[19,35] := {67} tii[19,36] := {37} tii[19,37] := {101} tii[19,38] := {19} tii[19,39] := {112} tii[19,40] := {80} tii[19,41] := {64} tii[19,42] := {103} tii[19,43] := {76} tii[19,44] := {49} tii[19,45] := {116} tii[19,46] := {46} tii[19,47] := {97} tii[19,48] := {86} tii[19,49] := {60} tii[19,50] := {32} tii[19,51] := {110} tii[19,52] := {53} tii[19,53] := {18} tii[19,54] := {120} tii[19,55] := {104} tii[19,56] := {92} tii[19,57] := {117} tii[19,58] := {77} tii[19,59] := {123} tii[19,60] := {125} tii[19,61] := {83} tii[19,62] := {94} tii[19,63] := {99} tii[19,64] := {47} tii[19,65] := {84} tii[19,66] := {106} tii[19,67] := {62} tii[19,68] := {39} tii[19,69] := {114} tii[19,70] := {24} tii[19,71] := {55} tii[19,72] := {35} tii[19,73] := {82} tii[19,74] := {14} tii[19,75] := {26} tii[19,76] := {66} tii[19,77] := {93} tii[19,78] := {10} tii[19,79] := {57} tii[19,80] := {50} tii[19,81] := {4} tii[19,82] := {105} tii[19,83] := {21} tii[19,84] := {72} tii[19,85] := {41} tii[19,86] := {9} tii[19,87] := {25} tii[19,88] := {52} tii[19,89] := {15} tii[19,90] := {100} tii[19,91] := {7} tii[19,92] := {27} tii[19,93] := {2} tii[19,94] := {20} tii[19,95] := {69} tii[19,96] := {28} tii[19,97] := {63} tii[19,98] := {75} tii[19,99] := {48} tii[19,100] := {38} tii[19,101] := {31} tii[19,102] := {90} tii[19,103] := {54} tii[19,104] := {23} tii[19,105] := {12} tii[19,106] := {34} tii[19,107] := {30} tii[19,108] := {16} tii[19,109] := {87} tii[19,110] := {43} tii[19,111] := {17} tii[19,112] := {5} tii[19,113] := {51} tii[19,114] := {36} tii[19,115] := {8} tii[19,116] := {3} tii[19,117] := {44} tii[19,118] := {91} tii[19,119] := {70} tii[19,120] := {61} tii[19,121] := {68} tii[19,122] := {33} tii[19,123] := {13} tii[19,124] := {6} tii[19,125] := {1} tii[19,126] := {0} cell#91 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {405} tii[15,2] := {287, 452} tii[15,3] := {218, 479} tii[15,4] := {358} tii[15,5] := {263} tii[15,6] := {232, 484} tii[15,7] := {130, 337, 427, 530} tii[15,8] := {189, 390, 467, 543} tii[15,9] := {404} tii[15,10] := {184, 511} tii[15,11] := {360} tii[15,12] := {77, 333, 428, 480} tii[15,13] := {327, 419} tii[15,14] := {114, 389, 466, 513} tii[15,15] := {226, 529} tii[15,16] := {194, 292, 517, 544} tii[15,17] := {168, 499} tii[15,18] := {304} tii[15,19] := {183, 454} tii[15,20] := {209} tii[15,21] := {92, 282, 447, 538} tii[15,22] := {142, 341, 488, 548} tii[15,23] := {125, 471} tii[15,24] := {357} tii[15,25] := {161} tii[15,26] := {91, 437} tii[15,27] := {136, 483} tii[15,28] := {306} tii[15,29] := {52, 279, 384, 450} tii[15,30] := {64, 227, 406, 522} tii[15,31] := {59, 141, 403, 478} tii[15,32] := {273, 372} tii[15,33] := {80, 340, 431, 490} tii[15,34] := {104, 290, 461, 539} tii[15,35] := {204} tii[15,36] := {42, 280, 365, 534} tii[15,37] := {176, 508} tii[15,38] := {23, 219, 331, 519} tii[15,39] := {171, 268} tii[15,40] := {148, 239, 494, 532} tii[15,41] := {73, 339, 422, 545} tii[15,42] := {100, 386, 444, 551} tii[15,43] := {395} tii[15,44] := {99, 502} tii[15,45] := {347} tii[15,46] := {33, 307, 408, 473} tii[15,47] := {302, 398} tii[15,48] := {55, 373, 458, 505} tii[15,49] := {297} tii[15,50] := {20, 256, 363, 496} tii[15,51] := {132, 521} tii[15,52] := {10, 221, 303, 468} tii[15,53] := {109, 191, 507, 540} tii[15,54] := {251, 349} tii[15,55] := {36, 321, 417, 520} tii[15,56] := {206, 393} tii[15,57] := {54, 352, 453, 536} tii[15,58] := {158, 537} tii[15,59] := {127, 215, 528, 549} tii[15,60] := {97, 248, 510, 552} tii[15,61] := {153} tii[15,62] := {315} tii[15,63] := {174, 259} tii[15,64] := {236, 319} tii[15,65] := {198} tii[15,66] := {169, 446} tii[15,67] := {368} tii[15,68] := {253} tii[15,69] := {210} tii[15,70] := {149, 311} tii[15,71] := {93, 283, 383, 509} tii[15,72] := {129, 407} tii[15,73] := {317} tii[15,74] := {196, 374} tii[15,75] := {143, 342, 433, 531} tii[15,76] := {87, 188, 381, 462} tii[15,77] := {175, 362} tii[15,78] := {65, 335, 336, 481} tii[15,79] := {257} tii[15,80] := {237, 416} tii[15,81] := {38, 276, 295, 457} tii[15,82] := {222, 322} tii[15,83] := {106, 388, 391, 514} tii[15,84] := {137, 344, 430, 492} tii[15,85] := {90, 436} tii[15,86] := {249} tii[15,87] := {173, 448} tii[15,88] := {314} tii[15,89] := {119} tii[15,90] := {63, 396} tii[15,91] := {202} tii[15,92] := {41, 177, 361, 500} tii[15,93] := {110, 367} tii[15,94] := {123, 235, 426, 489} tii[15,95] := {37, 103, 355, 441} tii[15,96] := {266} tii[15,97] := {71, 238, 420, 524} tii[15,98] := {152, 421} tii[15,99] := {26, 224, 310, 518} tii[15,100] := {309} tii[15,101] := {156} tii[15,102] := {131, 410} tii[15,103] := {53, 281, 385, 451} tii[15,104] := {157} tii[15,105] := {43, 348} tii[15,106] := {89, 288, 392, 512} tii[15,107] := {277, 376} tii[15,108] := {13, 170, 278, 497} tii[15,109] := {190, 460} tii[15,110] := {126, 214} tii[15,111] := {47, 289, 377, 535} tii[15,112] := {213} tii[15,113] := {31, 243, 330, 415} tii[15,114] := {81, 343, 432, 491} tii[15,115] := {24, 74, 305, 399} tii[15,116] := {68, 338, 402, 546} tii[15,117] := {231, 325} tii[15,118] := {17, 101, 260, 435} tii[15,119] := {112, 293, 465, 516} tii[15,120] := {15, 254, 258, 501} tii[15,121] := {197} tii[15,122] := {96, 449} tii[15,123] := {51, 294, 382, 456} tii[15,124] := {7, 200, 223, 476} tii[15,125] := {145, 487} tii[15,126] := {28, 318, 323, 525} tii[15,127] := {154, 246} tii[15,128] := {118, 296} tii[15,129] := {45, 354, 369, 541} tii[15,130] := {151, 241, 495, 533} tii[15,131] := {3, 159, 180, 443} tii[15,132] := {58, 326, 413, 550} tii[15,133] := {199} tii[15,134] := {262} tii[15,135] := {128, 472} tii[15,136] := {155} tii[15,137] := {76, 312} tii[15,138] := {212} tii[15,139] := {88, 187, 445, 504} tii[15,140] := {113, 375} tii[15,141] := {95, 364} tii[15,142] := {66, 397} tii[15,143] := {116} tii[15,144] := {34, 225, 334, 411} tii[15,145] := {255} tii[15,146] := {61, 233, 425, 523} tii[15,147] := {144, 418} tii[15,148] := {39, 107, 359, 442} tii[15,149] := {220, 320} tii[15,150] := {164} tii[15,151] := {18, 193, 275, 370} tii[15,152] := {56, 291, 387, 463} tii[15,153] := {30, 138, 313, 470} tii[15,154] := {181, 270} tii[15,155] := {79, 240, 429, 493} tii[15,156] := {245} tii[15,157] := {82} tii[15,158] := {11, 205, 308, 474} tii[15,159] := {67, 409} tii[15,160] := {40, 186, 380, 503} tii[15,161] := {32, 242, 329, 414} tii[15,162] := {201, 299} tii[15,163] := {4, 172, 250, 440} tii[15,164] := {122} tii[15,165] := {105, 459} tii[15,166] := {21, 269, 371, 506} tii[15,167] := {160, 346} tii[15,168] := {16, 179, 284, 498} tii[15,169] := {135, 216} tii[15,170] := {111, 192, 464, 515} tii[15,171] := {35, 301, 412, 527} tii[15,172] := {2, 134, 207, 400} tii[15,173] := {120, 300} tii[15,174] := {46, 272, 455, 542} tii[15,175] := {44, 438} tii[15,176] := {19, 274, 356, 439} tii[15,177] := {72, 477} tii[15,178] := {6, 178, 261, 434} tii[15,179] := {78, 147, 482, 526} tii[15,180] := {70, 217, 485, 547} tii[15,181] := {115} tii[15,182] := {86, 166} tii[15,183] := {203} tii[15,184] := {94, 366} tii[15,185] := {124, 211} tii[15,186] := {267} tii[15,187] := {60, 146, 332, 423} tii[15,188] := {49, 185, 286, 379} tii[15,189] := {117} tii[15,190] := {27, 298} tii[15,191] := {108, 264} tii[15,192] := {62, 234, 345, 486} tii[15,193] := {165} tii[15,194] := {14, 48, 252, 350} tii[15,195] := {29, 230, 244, 424} tii[15,196] := {9, 69, 208, 394} tii[15,197] := {182, 271} tii[15,198] := {5, 84, 162, 353} tii[15,199] := {57} tii[15,200] := {25, 140, 328, 475} tii[15,201] := {75, 316} tii[15,202] := {85} tii[15,203] := {8, 133, 228, 469} tii[15,204] := {22, 195, 285, 378} tii[15,205] := {98, 167} tii[15,206] := {1, 121, 139, 401} tii[15,207] := {83, 247} tii[15,208] := {50, 265} tii[15,209] := {12, 150, 229, 324} tii[15,210] := {0, 102, 163, 351} cell#92 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {24} tii[30,2] := {31} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {17} tii[30,7] := {21} tii[30,8] := {15} tii[30,9] := {6} tii[30,10] := {22} tii[30,11] := {9} tii[30,12] := {25} tii[30,13] := {20} tii[30,14] := {16} tii[30,15] := {26} tii[30,16] := {19} tii[30,17] := {12} tii[30,18] := {28} tii[30,19] := {29} tii[30,20] := {30} tii[30,21] := {27} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {4} tii[30,25] := {5} tii[30,26] := {8} tii[30,27] := {2} tii[30,28] := {13} tii[30,29] := {11} tii[30,30] := {14} tii[30,31] := {7} tii[30,32] := {3} tii[30,33] := {18} tii[30,34] := {23} tii[30,35] := {0} cell#93 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {93} tii[28,2] := {39, 142} tii[28,3] := {75, 163} tii[28,4] := {92, 173} tii[28,5] := {114} tii[28,6] := {84} tii[28,7] := {19, 155} tii[28,8] := {72, 118} tii[28,9] := {50, 171} tii[28,10] := {102, 133} tii[28,11] := {68, 180} tii[28,12] := {134} tii[28,13] := {37, 166} tii[28,14] := {122} tii[28,15] := {136} tii[28,16] := {28, 151} tii[28,17] := {74, 178} tii[28,18] := {123, 152} tii[28,19] := {55, 161} tii[28,20] := {90, 183} tii[28,21] := {59, 174} tii[28,22] := {70, 170} tii[28,23] := {97, 182} tii[28,24] := {101, 177} tii[28,25] := {60, 176} tii[28,26] := {111, 186} tii[28,27] := {115, 185} tii[28,28] := {128, 184} tii[28,29] := {129, 187} tii[28,30] := {144, 188} tii[28,31] := {45} tii[28,32] := {13, 86} tii[28,33] := {26, 106} tii[28,34] := {69} tii[28,35] := {61} tii[28,36] := {49} tii[28,37] := {9, 107} tii[28,38] := {48, 98} tii[28,39] := {31, 66} tii[28,40] := {18, 124} tii[28,41] := {78, 113} tii[28,42] := {82} tii[28,43] := {23, 125} tii[28,44] := {95} tii[28,45] := {29, 117} tii[28,46] := {83, 120} tii[28,47] := {36, 140} tii[28,48] := {11, 108} tii[28,49] := {56, 131} tii[28,50] := {47, 135} tii[28,51] := {54, 153} tii[28,52] := {40, 146} tii[28,53] := {80, 147} tii[28,54] := {91, 157} tii[28,55] := {94} tii[28,56] := {73} tii[28,57] := {1, 126} tii[28,58] := {51, 88} tii[28,59] := {6, 141} tii[28,60] := {104} tii[28,61] := {116} tii[28,62] := {63} tii[28,63] := {7, 143} tii[28,64] := {12, 137} tii[28,65] := {105, 139} tii[28,66] := {43, 81} tii[28,67] := {17, 154} tii[28,68] := {2, 127} tii[28,69] := {34, 149} tii[28,70] := {96} tii[28,71] := {27, 150} tii[28,72] := {52, 100} tii[28,73] := {33, 164} tii[28,74] := {20, 158} tii[28,75] := {85, 121} tii[28,76] := {57, 159} tii[28,77] := {64, 132} tii[28,78] := {67, 167} tii[28,79] := {21, 156} tii[28,80] := {35, 165} tii[28,81] := {10, 145} tii[28,82] := {46, 162} tii[28,83] := {15, 138} tii[28,84] := {53, 172} tii[28,85] := {79, 169} tii[28,86] := {38, 168} tii[28,87] := {89, 175} tii[28,88] := {22, 160} tii[28,89] := {76, 179} tii[28,90] := {110, 181} tii[28,91] := {30} tii[28,92] := {14, 44} tii[28,93] := {5, 65} tii[28,94] := {41} tii[28,95] := {25, 58} tii[28,96] := {71} tii[28,97] := {3, 87} tii[28,98] := {32, 77} tii[28,99] := {62, 103} tii[28,100] := {42, 112} tii[28,101] := {16, 99} tii[28,102] := {24, 130} tii[28,103] := {0, 109} tii[28,104] := {4, 119} tii[28,105] := {8, 148} cell#94 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {87} tii[19,2] := {106} tii[19,3] := {116} tii[19,4] := {67} tii[19,5] := {22} tii[19,6] := {93} tii[19,7] := {39} tii[19,8] := {108} tii[19,9] := {86} tii[19,10] := {65} tii[19,11] := {105} tii[19,12] := {81} tii[19,13] := {80} tii[19,14] := {115} tii[19,15] := {112} tii[19,16] := {102} tii[19,17] := {120} tii[19,18] := {122} tii[19,19] := {42} tii[19,20] := {9} tii[19,21] := {75} tii[19,22] := {20} tii[19,23] := {99} tii[19,24] := {66} tii[19,25] := {41} tii[19,26] := {7} tii[19,27] := {92} tii[19,28] := {58} tii[19,29] := {57} tii[19,30] := {15} tii[19,31] := {107} tii[19,32] := {17} tii[19,33] := {103} tii[19,34] := {30} tii[19,35] := {91} tii[19,36] := {31} tii[19,37] := {113} tii[19,38] := {49} tii[19,39] := {118} tii[19,40] := {85} tii[19,41] := {64} tii[19,42] := {104} tii[19,43] := {79} tii[19,44] := {78} tii[19,45] := {114} tii[19,46] := {55} tii[19,47] := {111} tii[19,48] := {101} tii[19,49] := {74} tii[19,50] := {73} tii[19,51] := {119} tii[19,52] := {90} tii[19,53] := {89} tii[19,54] := {121} tii[19,55] := {117} tii[19,56] := {110} tii[19,57] := {123} tii[19,58] := {109} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {44} tii[19,62] := {62} tii[19,63] := {69} tii[19,64] := {18} tii[19,65] := {50} tii[19,66] := {84} tii[19,67] := {33} tii[19,68] := {35} tii[19,69] := {98} tii[19,70] := {53} tii[19,71] := {54} tii[19,72] := {72} tii[19,73] := {45} tii[19,74] := {1} tii[19,75] := {5} tii[19,76] := {27} tii[19,77] := {63} tii[19,78] := {6} tii[19,79] := {43} tii[19,80] := {10} tii[19,81] := {12} tii[19,82] := {83} tii[19,83] := {13} tii[19,84] := {61} tii[19,85] := {60} tii[19,86] := {25} tii[19,87] := {38} tii[19,88] := {77} tii[19,89] := {16} tii[19,90] := {97} tii[19,91] := {28} tii[19,92] := {29} tii[19,93] := {46} tii[19,94] := {47} tii[19,95] := {95} tii[19,96] := {68} tii[19,97] := {23} tii[19,98] := {40} tii[19,99] := {11} tii[19,100] := {21} tii[19,101] := {3} tii[19,102] := {59} tii[19,103] := {37} tii[19,104] := {36} tii[19,105] := {19} tii[19,106] := {56} tii[19,107] := {34} tii[19,108] := {2} tii[19,109] := {82} tii[19,110] := {52} tii[19,111] := {51} tii[19,112] := {14} tii[19,113] := {76} tii[19,114] := {71} tii[19,115] := {70} tii[19,116] := {48} tii[19,117] := {88} tii[19,118] := {96} tii[19,119] := {94} tii[19,120] := {100} tii[19,121] := {26} tii[19,122] := {8} tii[19,123] := {32} tii[19,124] := {0} tii[19,125] := {4} tii[19,126] := {24} cell#95 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {199} tii[17,2] := {143, 211} tii[17,3] := {230} tii[17,4] := {86, 219} tii[17,5] := {209, 241} tii[17,6] := {222, 244} tii[17,7] := {142, 239} tii[17,8] := {163, 243} tii[17,9] := {51} tii[17,10] := {177} tii[17,11] := {114, 192} tii[17,12] := {129} tii[17,13] := {53, 94} tii[17,14] := {81, 124} tii[17,15] := {198} tii[17,16] := {87, 181} tii[17,17] := {179} tii[17,18] := {26, 101} tii[17,19] := {168, 224} tii[17,20] := {158, 195} tii[17,21] := {46, 135} tii[17,22] := {187, 237} tii[17,23] := {116, 200} tii[17,24] := {141, 221} tii[17,25] := {90, 184} tii[17,26] := {74} tii[17,27] := {156} tii[17,28] := {76, 122} tii[17,29] := {107, 150} tii[17,30] := {98} tii[17,31] := {216} tii[17,32] := {180} tii[17,33] := {126} tii[17,34] := {190, 235} tii[17,35] := {201} tii[17,36] := {13, 128} tii[17,37] := {63, 202} tii[17,38] := {62, 148} tii[17,39] := {160} tii[17,40] := {206, 242} tii[17,41] := {183, 214} tii[17,42] := {28, 162} tii[17,43] := {92, 173} tii[17,44] := {85, 171} tii[17,45] := {169, 225} tii[17,46] := {88, 217} tii[17,47] := {146, 213} tii[17,48] := {119, 194} tii[17,49] := {113, 233} tii[17,50] := {64, 204} tii[17,51] := {189, 238} tii[17,52] := {165, 229} tii[17,53] := {218} tii[17,54] := {25, 154} tii[17,55] := {203, 228} tii[17,56] := {45, 186} tii[17,57] := {115, 231} tii[17,58] := {40, 178} tii[17,59] := {191, 236} tii[17,60] := {140, 240} tii[17,61] := {89, 220} tii[17,62] := {65, 205} tii[17,63] := {110, 234} tii[17,64] := {117, 232} tii[17,65] := {32} tii[17,66] := {103} tii[17,67] := {33, 70} tii[17,68] := {20} tii[17,69] := {58, 97} tii[17,70] := {10, 31} tii[17,71] := {19, 54} tii[17,72] := {130} tii[17,73] := {11, 37} tii[17,74] := {105, 152} tii[17,75] := {38, 82} tii[17,76] := {60, 111} tii[17,77] := {73} tii[17,78] := {34} tii[17,79] := {155} tii[17,80] := {99} tii[17,81] := {42, 121} tii[17,82] := {21, 50} tii[17,83] := {133} tii[17,84] := {67, 149} tii[17,85] := {157} tii[17,86] := {61, 147} tii[17,87] := {14, 77} tii[17,88] := {144, 210} tii[17,89] := {75} tii[17,90] := {36, 71} tii[17,91] := {132, 176} tii[17,92] := {91, 172} tii[17,93] := {167, 227} tii[17,94] := {118, 193} tii[17,95] := {8, 57} tii[17,96] := {29, 108} tii[17,97] := {106} tii[17,98] := {139, 215} tii[17,99] := {48, 138} tii[17,100] := {109, 151} tii[17,101] := {41, 127} tii[17,102] := {16, 78} tii[17,103] := {145, 212} tii[17,104] := {66, 161} tii[17,105] := {112, 208} tii[17,106] := {69, 164} tii[17,107] := {55} tii[17,108] := {35, 72} tii[17,109] := {100} tii[17,110] := {182} tii[17,111] := {6, 102} tii[17,112] := {56, 96} tii[17,113] := {134} tii[17,114] := {159, 197} tii[17,115] := {17, 136} tii[17,116] := {2, 79} tii[17,117] := {30, 166} tii[17,118] := {137, 175} tii[17,119] := {24, 153} tii[17,120] := {170, 226} tii[17,121] := {7, 104} tii[17,122] := {43, 123} tii[17,123] := {44, 185} tii[17,124] := {120, 196} tii[17,125] := {47, 188} tii[17,126] := {84, 223} tii[17,127] := {15, 131} tii[17,128] := {68, 207} tii[17,129] := {9} tii[17,130] := {4, 18} tii[17,131] := {1, 12} tii[17,132] := {52} tii[17,133] := {22, 49} tii[17,134] := {80} tii[17,135] := {5, 23} tii[17,136] := {83, 125} tii[17,137] := {27, 95} tii[17,138] := {3, 39} tii[17,139] := {93, 174} tii[17,140] := {0, 59} cell#96 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {90} tii[19,2] := {111} tii[19,3] := {119} tii[19,4] := {76} tii[19,5] := {45} tii[19,6] := {101} tii[19,7] := {65} tii[19,8] := {113} tii[19,9] := {89} tii[19,10] := {77} tii[19,11] := {112} tii[19,12] := {97} tii[19,13] := {70} tii[19,14] := {120} tii[19,15] := {117} tii[19,16] := {110} tii[19,17] := {123} tii[19,18] := {125} tii[19,19] := {58} tii[19,20] := {27} tii[19,21] := {91} tii[19,22] := {48} tii[19,23] := {106} tii[19,24] := {75} tii[19,25] := {59} tii[19,26] := {15} tii[19,27] := {102} tii[19,28] := {82} tii[19,29] := {53} tii[19,30] := {31} tii[19,31] := {114} tii[19,32] := {26} tii[19,33] := {109} tii[19,34] := {20} tii[19,35] := {99} tii[19,36] := {50} tii[19,37] := {118} tii[19,38] := {57} tii[19,39] := {124} tii[19,40] := {71} tii[19,41] := {55} tii[19,42] := {98} tii[19,43] := {72} tii[19,44] := {40} tii[19,45] := {108} tii[19,46] := {37} tii[19,47] := {103} tii[19,48] := {95} tii[19,49] := {56} tii[19,50] := {25} tii[19,51] := {115} tii[19,52] := {69} tii[19,53] := {13} tii[19,54] := {121} tii[19,55] := {92} tii[19,56] := {80} tii[19,57] := {107} tii[19,58] := {68} tii[19,59] := {116} tii[19,60] := {122} tii[19,61] := {62} tii[19,62] := {83} tii[19,63] := {78} tii[19,64] := {28} tii[19,65] := {63} tii[19,66] := {96} tii[19,67] := {49} tii[19,68] := {43} tii[19,69] := {104} tii[19,70] := {36} tii[19,71] := {67} tii[19,72] := {74} tii[19,73] := {61} tii[19,74] := {7} tii[19,75] := {18} tii[19,76] := {46} tii[19,77] := {81} tii[19,78] := {14} tii[19,79] := {60} tii[19,80] := {30} tii[19,81] := {9} tii[19,82] := {93} tii[19,83] := {32} tii[19,84] := {84} tii[19,85] := {54} tii[19,86] := {41} tii[19,87] := {38} tii[19,88] := {88} tii[19,89] := {10} tii[19,90] := {105} tii[19,91] := {5} tii[19,92] := {24} tii[19,93] := {1} tii[19,94] := {34} tii[19,95] := {100} tii[19,96] := {19} tii[19,97] := {44} tii[19,98] := {64} tii[19,99] := {29} tii[19,100] := {42} tii[19,101] := {16} tii[19,102] := {79} tii[19,103] := {66} tii[19,104] := {35} tii[19,105] := {22} tii[19,106] := {73} tii[19,107] := {21} tii[19,108] := {8} tii[19,109] := {94} tii[19,110] := {39} tii[19,111] := {12} tii[19,112] := {11} tii[19,113] := {87} tii[19,114] := {52} tii[19,115] := {6} tii[19,116] := {2} tii[19,117] := {33} tii[19,118] := {86} tii[19,119] := {85} tii[19,120] := {51} tii[19,121] := {47} tii[19,122] := {17} tii[19,123] := {23} tii[19,124] := {3} tii[19,125] := {4} tii[19,126] := {0} cell#97 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {355} tii[15,2] := {223, 394} tii[15,3] := {160, 455} tii[15,4] := {409} tii[15,5] := {337} tii[15,6] := {168, 440} tii[15,7] := {240, 241, 389, 507} tii[15,8] := {321, 322, 430, 531} tii[15,9] := {453} tii[15,10] := {222, 479} tii[15,11] := {431} tii[15,12] := {137, 278, 357, 505} tii[15,13] := {464, 465} tii[15,14] := {200, 325, 428, 529} tii[15,15] := {274, 503} tii[15,16] := {312, 313, 492, 532} tii[15,17] := {113, 474} tii[15,18] := {354} tii[15,19] := {122, 393} tii[15,20] := {279} tii[15,21] := {186, 187, 411, 522} tii[15,22] := {257, 258, 449, 537} tii[15,23] := {76, 502} tii[15,24] := {407} tii[15,25] := {221} tii[15,26] := {44, 490} tii[15,27] := {166, 439} tii[15,28] := {385} tii[15,29] := {91, 220, 297, 476} tii[15,30] := {135, 136, 358, 536} tii[15,31] := {60, 61, 509, 510} tii[15,32] := {420, 421} tii[15,33] := {148, 263, 377, 512} tii[15,34] := {198, 199, 404, 546} tii[15,35] := {273} tii[15,36] := {94, 185, 410, 545} tii[15,37] := {215, 475} tii[15,38] := {66, 132, 445, 540} tii[15,39] := {310, 311} tii[15,40] := {248, 249, 457, 515} tii[15,41] := {151, 256, 446, 550} tii[15,42] := {208, 303, 480, 552} tii[15,43] := {454} tii[15,44] := {121, 414} tii[15,45] := {432} tii[15,46] := {54, 242, 277, 506} tii[15,47] := {466, 467} tii[15,48] := {106, 293, 341, 530} tii[15,49] := {386} tii[15,50] := {29, 219, 296, 526} tii[15,51] := {162, 458} tii[15,52] := {17, 161, 344, 519} tii[15,53] := {194, 195, 434, 500} tii[15,54] := {422, 423} tii[15,55] := {70, 286, 345, 544} tii[15,56] := {380, 461} tii[15,57] := {109, 338, 395, 548} tii[15,58] := {217, 494} tii[15,59] := {252, 253, 472, 521} tii[15,60] := {202, 307, 435, 534} tii[15,61] := {88} tii[15,62] := {243} tii[15,63] := {90, 177} tii[15,64] := {147, 234} tii[15,65] := {131} tii[15,66] := {114, 408} tii[15,67] := {302} tii[15,68] := {184} tii[15,69] := {280} tii[15,70] := {81, 232} tii[15,71] := {188, 189, 336, 477} tii[15,72] := {75, 359} tii[15,73] := {255} tii[15,74] := {127, 291} tii[15,75] := {259, 260, 382, 513} tii[15,76] := {100, 101, 309, 405} tii[15,77] := {118, 288} tii[15,78] := {138, 239, 282, 437} tii[15,79] := {333} tii[15,80] := {174, 347} tii[15,81] := {105, 182, 227, 398} tii[15,82] := {371, 372} tii[15,83] := {201, 320, 331, 487} tii[15,84] := {268, 269, 362, 452} tii[15,85] := {45, 491} tii[15,86] := {180} tii[15,87] := {112, 412} tii[15,88] := {360} tii[15,89] := {167} tii[15,90] := {24, 471} tii[15,91] := {237} tii[15,92] := {92, 93, 300, 527} tii[15,93] := {49, 289} tii[15,94] := {141, 142, 368, 450} tii[15,95] := {33, 34, 498, 499} tii[15,96] := {318} tii[15,97] := {149, 150, 350, 542} tii[15,98] := {85, 348} tii[15,99] := {56, 134, 356, 541} tii[15,100] := {387} tii[15,101] := {218} tii[15,102] := {80, 343} tii[15,103] := {95, 225, 299, 478} tii[15,104] := {216} tii[15,105] := {12, 433} tii[15,106] := {192, 193, 340, 483} tii[15,107] := {424, 425} tii[15,108] := {37, 89, 399, 535} tii[15,109] := {126, 402} tii[15,110] := {250, 251} tii[15,111] := {108, 197, 400, 549} tii[15,112] := {285} tii[15,113] := {67, 171, 236, 444} tii[15,114] := {152, 272, 379, 514} tii[15,115] := {19, 20, 468, 469} tii[15,116] := {157, 244, 441, 551} tii[15,117] := {383, 384} tii[15,118] := {9, 31, 429, 497} tii[15,119] := {209, 210, 415, 488} tii[15,120] := {30, 119, 335, 525} tii[15,121] := {275} tii[15,122] := {117, 392} tii[15,123] := {104, 226, 295, 481} tii[15,124] := {18, 77, 375, 518} tii[15,125] := {173, 447} tii[15,126] := {71, 175, 376, 543} tii[15,127] := {314, 315} tii[15,128] := {261, 365} tii[15,129] := {110, 224, 419, 547} tii[15,130] := {266, 267, 460, 516} tii[15,131] := {11, 50, 324, 495} tii[15,132] := {159, 283, 364, 538} tii[15,133] := {130} tii[15,134] := {301} tii[15,135] := {74, 438} tii[15,136] := {183} tii[15,137] := {26, 231} tii[15,138] := {254} tii[15,139] := {98, 99, 396, 473} tii[15,140] := {53, 290} tii[15,141] := {48, 287} tii[15,142] := {25, 456} tii[15,143] := {163} tii[15,144] := {55, 169, 238, 436} tii[15,145] := {332} tii[15,146] := {143, 144, 367, 501} tii[15,147] := {84, 346} tii[15,148] := {38, 39, 484, 485} tii[15,149] := {369, 370} tii[15,150] := {228} tii[15,151] := {36, 123, 181, 397} tii[15,152] := {107, 212, 319, 486} tii[15,153] := {21, 59, 448, 508} tii[15,154] := {326, 327} tii[15,155] := {155, 156, 361, 451} tii[15,156] := {334} tii[15,157] := {116} tii[15,158] := {15, 165, 276, 504} tii[15,159] := {78, 342} tii[15,160] := {102, 103, 308, 523} tii[15,161] := {63, 170, 235, 442} tii[15,162] := {373, 374} tii[15,163] := {6, 115, 316, 493} tii[15,164] := {172} tii[15,165] := {124, 401} tii[15,166] := {40, 230, 317, 533} tii[15,167] := {323, 418} tii[15,168] := {42, 96, 403, 528} tii[15,169] := {264, 265} tii[15,170] := {204, 205, 413, 489} tii[15,171] := {73, 281, 366, 539} tii[15,172] := {2, 82, 262, 459} tii[15,173] := {270, 363} tii[15,174] := {111, 305, 339, 524} tii[15,175] := {47, 298} tii[15,176] := {35, 191, 214, 482} tii[15,177] := {83, 378} tii[15,178] := {10, 120, 292, 496} tii[15,179] := {153, 154, 390, 470} tii[15,180] := {158, 245, 391, 517} tii[15,181] := {57} tii[15,182] := {32, 87} tii[15,183] := {133} tii[15,184] := {46, 304} tii[15,185] := {62, 129} tii[15,186] := {196} tii[15,187] := {68, 69, 247, 353} tii[15,188] := {41, 97, 203, 294} tii[15,189] := {164} tii[15,190] := {5, 388} tii[15,191] := {52, 179} tii[15,192] := {145, 146, 284, 443} tii[15,193] := {229} tii[15,194] := {7, 8, 426, 427} tii[15,195] := {72, 140, 176, 352} tii[15,196] := {3, 16, 381, 463} tii[15,197] := {328, 329} tii[15,198] := {0, 13, 330, 417} tii[15,199] := {79} tii[15,200] := {64, 65, 246, 511} tii[15,201] := {28, 233} tii[15,202] := {125} tii[15,203] := {23, 58, 349, 520} tii[15,204] := {43, 128, 190, 406} tii[15,205] := {206, 207} tii[15,206] := {4, 27, 271, 462} tii[15,207] := {213, 306} tii[15,208] := {14, 178} tii[15,209] := {22, 86, 139, 351} tii[15,210] := {1, 51, 211, 416} cell#98 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {56} tii[19,2] := {89} tii[19,3] := {103} tii[19,4] := {76} tii[19,5] := {42} tii[19,6] := {101} tii[19,7] := {61} tii[19,8] := {113} tii[19,9] := {91} tii[19,10] := {82} tii[19,11] := {112} tii[19,12] := {97} tii[19,13] := {96} tii[19,14] := {120} tii[19,15] := {119} tii[19,16] := {115} tii[19,17] := {123} tii[19,18] := {125} tii[19,19] := {64} tii[19,20] := {35} tii[19,21] := {94} tii[19,22] := {52} tii[19,23] := {109} tii[19,24] := {83} tii[19,25] := {73} tii[19,26] := {17} tii[19,27] := {106} tii[19,28] := {88} tii[19,29] := {87} tii[19,30] := {32} tii[19,31] := {117} tii[19,32] := {34} tii[19,33] := {116} tii[19,34] := {49} tii[19,35] := {111} tii[19,36] := {50} tii[19,37] := {122} tii[19,38] := {68} tii[19,39] := {124} tii[19,40] := {63} tii[19,41] := {53} tii[19,42] := {93} tii[19,43] := {70} tii[19,44] := {69} tii[19,45] := {108} tii[19,46] := {33} tii[19,47] := {105} tii[19,48] := {99} tii[19,49] := {48} tii[19,50] := {47} tii[19,51] := {118} tii[19,52] := {67} tii[19,53] := {30} tii[19,54] := {121} tii[19,55] := {92} tii[19,56] := {84} tii[19,57] := {110} tii[19,58] := {66} tii[19,59] := {114} tii[19,60] := {104} tii[19,61] := {19} tii[19,62] := {36} tii[19,63] := {37} tii[19,64] := {21} tii[19,65] := {20} tii[19,66] := {55} tii[19,67] := {40} tii[19,68] := {41} tii[19,69] := {74} tii[19,70] := {58} tii[19,71] := {59} tii[19,72] := {77} tii[19,73] := {57} tii[19,74] := {5} tii[19,75] := {14} tii[19,76] := {38} tii[19,77] := {75} tii[19,78] := {16} tii[19,79] := {65} tii[19,80] := {24} tii[19,81] := {28} tii[19,82] := {90} tii[19,83] := {29} tii[19,84] := {81} tii[19,85] := {80} tii[19,86] := {46} tii[19,87] := {60} tii[19,88] := {95} tii[19,89] := {4} tii[19,90] := {102} tii[19,91] := {10} tii[19,92] := {11} tii[19,93] := {2} tii[19,94] := {23} tii[19,95] := {107} tii[19,96] := {8} tii[19,97] := {43} tii[19,98] := {62} tii[19,99] := {25} tii[19,100] := {54} tii[19,101] := {18} tii[19,102] := {79} tii[19,103] := {72} tii[19,104] := {71} tii[19,105] := {51} tii[19,106] := {86} tii[19,107] := {15} tii[19,108] := {6} tii[19,109] := {98} tii[19,110] := {27} tii[19,111] := {26} tii[19,112] := {31} tii[19,113] := {100} tii[19,114] := {45} tii[19,115] := {12} tii[19,116] := {3} tii[19,117] := {22} tii[19,118] := {78} tii[19,119] := {85} tii[19,120] := {44} tii[19,121] := {7} tii[19,122] := {9} tii[19,123] := {39} tii[19,124] := {1} tii[19,125] := {13} tii[19,126] := {0} cell#99 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {63} tii[9,2] := {83} tii[9,3] := {96} tii[9,4] := {75} tii[9,5] := {64} tii[9,6] := {24} tii[9,7] := {92} tii[9,8] := {39} tii[9,9] := {101} tii[9,10] := {74} tii[9,11] := {58} tii[9,12] := {89} tii[9,13] := {99} tii[9,14] := {104} tii[9,15] := {93} tii[9,16] := {81} tii[9,17] := {102} tii[9,18] := {103} tii[9,19] := {51} tii[9,20] := {18} tii[9,21] := {30} tii[9,22] := {61} tii[9,23] := {77} tii[9,24] := {46} tii[9,25] := {17} tii[9,26] := {50} tii[9,27] := {25} tii[9,28] := {29} tii[9,29] := {40} tii[9,30] := {35} tii[9,31] := {73} tii[9,32] := {13} tii[9,33] := {60} tii[9,34] := {7} tii[9,35] := {53} tii[9,36] := {88} tii[9,37] := {45} tii[9,38] := {76} tii[9,39] := {59} tii[9,40] := {22} tii[9,41] := {78} tii[9,42] := {32} tii[9,43] := {72} tii[9,44] := {70} tii[9,45] := {57} tii[9,46] := {87} tii[9,47] := {94} tii[9,48] := {55} tii[9,49] := {34} tii[9,50] := {52} tii[9,51] := {47} tii[9,52] := {20} tii[9,53] := {85} tii[9,54] := {65} tii[9,55] := {33} tii[9,56] := {12} tii[9,57] := {98} tii[9,58] := {71} tii[9,59] := {44} tii[9,60] := {90} tii[9,61] := {84} tii[9,62] := {36} tii[9,63] := {15} tii[9,64] := {82} tii[9,65] := {69} tii[9,66] := {54} tii[9,67] := {97} tii[9,68] := {100} tii[9,69] := {48} tii[9,70] := {79} tii[9,71] := {68} tii[9,72] := {95} tii[9,73] := {91} tii[9,74] := {80} tii[9,75] := {11} tii[9,76] := {19} tii[9,77] := {5} tii[9,78] := {28} tii[9,79] := {27} tii[9,80] := {8} tii[9,81] := {10} tii[9,82] := {14} tii[9,83] := {4} tii[9,84] := {42} tii[9,85] := {67} tii[9,86] := {38} tii[9,87] := {21} tii[9,88] := {1} tii[9,89] := {31} tii[9,90] := {26} tii[9,91] := {9} tii[9,92] := {16} tii[9,93] := {41} tii[9,94] := {49} tii[9,95] := {3} tii[9,96] := {37} tii[9,97] := {66} tii[9,98] := {86} tii[9,99] := {43} tii[9,100] := {23} tii[9,101] := {6} tii[9,102] := {62} tii[9,103] := {56} tii[9,104] := {2} tii[9,105] := {0} cell#100 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {265} tii[20,2] := {277} tii[20,3] := {78, 139} tii[20,4] := {285} tii[20,5] := {207} tii[20,6] := {295} tii[20,7] := {145, 221} tii[20,8] := {198, 260} tii[20,9] := {160, 215} tii[20,10] := {299} tii[20,11] := {267} tii[20,12] := {306} tii[20,13] := {163, 219} tii[20,14] := {220, 276} tii[20,15] := {212, 258} tii[20,16] := {259, 298} tii[20,17] := {305} tii[20,18] := {311} tii[20,19] := {294} tii[20,20] := {274, 300} tii[20,21] := {279, 302} tii[20,22] := {297, 309} tii[20,23] := {312} tii[20,24] := {308, 314} tii[20,25] := {43} tii[20,26] := {169} tii[20,27] := {105} tii[20,28] := {155} tii[20,29] := {42, 99} tii[20,30] := {77} tii[20,31] := {168} tii[20,32] := {84} tii[20,33] := {206} tii[20,34] := {104, 185} tii[20,35] := {12, 35} tii[20,36] := {143} tii[20,37] := {132} tii[20,38] := {154, 229} tii[20,39] := {29, 70} tii[20,40] := {196} tii[20,41] := {117} tii[20,42] := {76, 138} tii[20,43] := {239} tii[20,44] := {164} tii[20,45] := {59, 100} tii[20,46] := {208} tii[20,47] := {80, 141} tii[20,48] := {142, 222} tii[20,49] := {182} tii[20,50] := {209} tii[20,51] := {75, 88} tii[20,52] := {89, 152} tii[20,53] := {131, 194} tii[20,54] := {228} tii[20,55] := {195, 261} tii[20,56] := {216} tii[20,57] := {223} tii[20,58] := {181, 244} tii[20,59] := {192, 247} tii[20,60] := {162, 213} tii[20,61] := {256} tii[20,62] := {233, 271} tii[20,63] := {248, 290} tii[20,64] := {119} tii[20,65] := {32, 65} tii[20,66] := {240} tii[20,67] := {124} tii[20,68] := {186} tii[20,69] := {58, 112} tii[20,70] := {176} tii[20,71] := {232} tii[20,72] := {161} tii[20,73] := {118, 179} tii[20,74] := {49, 102} tii[20,75] := {266} tii[20,76] := {120, 183} tii[20,77] := {203} tii[20,78] := {241} tii[20,79] := {85} tii[20,80] := {96, 140} tii[20,81] := {184, 252} tii[20,82] := {218} tii[20,83] := {22, 66} tii[20,84] := {175, 230} tii[20,85] := {242} tii[20,86] := {73, 151} tii[20,87] := {133} tii[20,88] := {116, 127} tii[20,89] := {128, 193} tii[20,90] := {257} tii[20,91] := {231, 282} tii[20,92] := {83, 144} tii[20,93] := {123} tii[20,94] := {249} tii[20,95] := {217, 269} tii[20,96] := {253} tii[20,97] := {110, 190} tii[20,98] := {62, 109} tii[20,99] := {134, 197} tii[20,100] := {202, 245} tii[20,101] := {174} tii[20,102] := {280} tii[20,103] := {226, 272} tii[20,104] := {262, 289} tii[20,105] := {158, 235} tii[20,106] := {273, 304} tii[20,107] := {201} tii[20,108] := {135, 180} tii[20,109] := {286} tii[20,110] := {238} tii[20,111] := {251} tii[20,112] := {159, 170} tii[20,113] := {171, 227} tii[20,114] := {268} tii[20,115] := {281} tii[20,116] := {278} tii[20,117] := {204} tii[20,118] := {275} tii[20,119] := {250, 287} tii[20,120] := {136, 187} tii[20,121] := {188, 254} tii[20,122] := {255, 291} tii[20,123] := {296} tii[20,124] := {243} tii[20,125] := {237, 270} tii[20,126] := {283, 301} tii[20,127] := {234, 284} tii[20,128] := {292, 310} tii[20,129] := {293} tii[20,130] := {264, 288} tii[20,131] := {307} tii[20,132] := {303, 313} tii[20,133] := {6} tii[20,134] := {17} tii[20,135] := {21} tii[20,136] := {2, 15} tii[20,137] := {47} tii[20,138] := {8} tii[20,139] := {94} tii[20,140] := {10, 38} tii[20,141] := {41} tii[20,142] := {82} tii[20,143] := {11, 34} tii[20,144] := {69} tii[20,145] := {27, 71} tii[20,146] := {18, 26} tii[20,147] := {130} tii[20,148] := {51, 98} tii[20,149] := {20, 64} tii[20,150] := {50} tii[20,151] := {46} tii[20,152] := {7, 36} tii[20,153] := {40, 111} tii[20,154] := {23} tii[20,155] := {74} tii[20,156] := {93} tii[20,157] := {45, 103} tii[20,158] := {122} tii[20,159] := {30, 63} tii[20,160] := {81} tii[20,161] := {53} tii[20,162] := {68, 149} tii[20,163] := {3, 16} tii[20,164] := {108} tii[20,165] := {95, 153} tii[20,166] := {129} tii[20,167] := {44, 55} tii[20,168] := {56, 113} tii[20,169] := {173} tii[20,170] := {31, 67} tii[20,171] := {19, 28} tii[20,172] := {115, 200} tii[20,173] := {87, 137} tii[20,174] := {121} tii[20,175] := {107, 191} tii[20,176] := {146} tii[20,177] := {172} tii[20,178] := {60, 106} tii[20,179] := {125, 177} tii[20,180] := {157, 236} tii[20,181] := {86} tii[20,182] := {52} tii[20,183] := {114} tii[20,184] := {166} tii[20,185] := {61, 101} tii[20,186] := {14, 37} tii[20,187] := {90} tii[20,188] := {150} tii[20,189] := {211} tii[20,190] := {79, 91} tii[20,191] := {92, 156} tii[20,192] := {48, 57} tii[20,193] := {126, 178} tii[20,194] := {165} tii[20,195] := {97, 147} tii[20,196] := {54} tii[20,197] := {148, 225} tii[20,198] := {189} tii[20,199] := {210} tii[20,200] := {33, 72} tii[20,201] := {167, 214} tii[20,202] := {199, 263} tii[20,203] := {224} tii[20,204] := {205, 246} tii[20,205] := {1} tii[20,206] := {0, 4} tii[20,207] := {25} tii[20,208] := {5, 9} tii[20,209] := {24} tii[20,210] := {13, 39} cell#101 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {175} tii[17,2] := {119, 222} tii[17,3] := {200} tii[17,4] := {71, 235} tii[17,5] := {178, 223} tii[17,6] := {192, 232} tii[17,7] := {109, 242} tii[17,8] := {127, 244} tii[17,9] := {79} tii[17,10] := {154} tii[17,11] := {95, 209} tii[17,12] := {110} tii[17,13] := {39, 131} tii[17,14] := {65, 161} tii[17,15] := {164} tii[17,16] := {72, 215} tii[17,17] := {144} tii[17,18] := {19, 165} tii[17,19] := {133, 197} tii[17,20] := {123, 162} tii[17,21] := {36, 190} tii[17,22] := {151, 213} tii[17,23] := {85, 227} tii[17,24] := {104, 234} tii[17,25] := {63, 216} tii[17,26] := {105} tii[17,27] := {134} tii[17,28] := {58, 156} tii[17,29] := {90, 180} tii[17,30] := {130} tii[17,31] := {183} tii[17,32] := {157} tii[17,33] := {107} tii[17,34] := {158, 211} tii[17,35] := {167} tii[17,36] := {8, 185} tii[17,37] := {51, 226} tii[17,38] := {49, 177} tii[17,39] := {139} tii[17,40] := {173, 224} tii[17,41] := {146, 182} tii[17,42] := {21, 205} tii[17,43] := {74, 196} tii[17,44] := {70, 194} tii[17,45] := {135, 203} tii[17,46] := {61, 236} tii[17,47] := {114, 189} tii[17,48] := {96, 210} tii[17,49] := {78, 240} tii[17,50] := {42, 228} tii[17,51] := {153, 219} tii[17,52] := {141, 231} tii[17,53] := {187} tii[17,54] := {18, 202} tii[17,55] := {168, 199} tii[17,56] := {35, 218} tii[17,57] := {84, 241} tii[17,58] := {32, 214} tii[17,59] := {159, 212} tii[17,60] := {103, 243} tii[17,61] := {62, 237} tii[17,62] := {52, 229} tii[17,63] := {93, 239} tii[17,64] := {86, 238} tii[17,65] := {57} tii[17,66] := {83} tii[17,67] := {24, 108} tii[17,68] := {40} tii[17,69] := {43, 140} tii[17,70] := {30, 66} tii[17,71] := {14, 121} tii[17,72] := {97} tii[17,73] := {7, 98} tii[17,74] := {75, 120} tii[17,75] := {26, 149} tii[17,76] := {38, 174} tii[17,77] := {106} tii[17,78] := {59} tii[17,79] := {132} tii[17,80] := {81} tii[17,81] := {31, 155} tii[17,82] := {48, 91} tii[17,83] := {115} tii[17,84] := {54, 179} tii[17,85] := {122} tii[17,86] := {50, 176} tii[17,87] := {9, 143} tii[17,88] := {111, 186} tii[17,89] := {60} tii[17,90] := {29, 113} tii[17,91] := {99, 142} tii[17,92] := {73, 195} tii[17,93] := {129, 206} tii[17,94] := {88, 170} tii[17,95] := {6, 124} tii[17,96] := {22, 171} tii[17,97] := {89} tii[17,98] := {118, 221} tii[17,99] := {28, 193} tii[17,100] := {76, 128} tii[17,101] := {33, 184} tii[17,102] := {13, 147} tii[17,103] := {112, 181} tii[17,104] := {53, 204} tii[17,105] := {94, 225} tii[17,106] := {46, 207} tii[17,107] := {80} tii[17,108] := {69, 117} tii[17,109] := {82} tii[17,110] := {145} tii[17,111] := {3, 166} tii[17,112] := {47, 138} tii[17,113] := {116} tii[17,114] := {125, 163} tii[17,115] := {11, 191} tii[17,116] := {1, 148} tii[17,117] := {15, 208} tii[17,118] := {100, 152} tii[17,119] := {20, 201} tii[17,120] := {136, 198} tii[17,121] := {5, 169} tii[17,122] := {37, 160} tii[17,123] := {34, 217} tii[17,124] := {92, 172} tii[17,125] := {27, 220} tii[17,126] := {68, 233} tii[17,127] := {12, 188} tii[17,128] := {45, 230} tii[17,129] := {25} tii[17,130] := {17, 44} tii[17,131] := {10, 56} tii[17,132] := {41} tii[17,133] := {16, 87} tii[17,134] := {64} tii[17,135] := {4, 77} tii[17,136] := {55, 102} tii[17,137] := {23, 137} tii[17,138] := {2, 101} tii[17,139] := {67, 150} tii[17,140] := {0, 126} cell#102 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {95} tii[19,2] := {113} tii[19,3] := {121} tii[19,4] := {88} tii[19,5] := {51} tii[19,6] := {112} tii[19,7] := {68} tii[19,8] := {120} tii[19,9] := {70} tii[19,10] := {50} tii[19,11] := {99} tii[19,12] := {65} tii[19,13] := {33} tii[19,14] := {109} tii[19,15] := {81} tii[19,16] := {64} tii[19,17] := {94} tii[19,18] := {73} tii[19,19] := {96} tii[19,20] := {59} tii[19,21] := {114} tii[19,22] := {75} tii[19,23] := {122} tii[19,24] := {87} tii[19,25] := {71} tii[19,26] := {39} tii[19,27] := {111} tii[19,28] := {84} tii[19,29] := {53} tii[19,30] := {55} tii[19,31] := {119} tii[19,32] := {31} tii[19,33] := {98} tii[19,34] := {17} tii[19,35] := {82} tii[19,36] := {48} tii[19,37] := {108} tii[19,38] := {26} tii[19,39] := {93} tii[19,40] := {97} tii[19,41] := {80} tii[19,42] := {115} tii[19,43] := {91} tii[19,44] := {63} tii[19,45] := {123} tii[19,46] := {60} tii[19,47] := {110} tii[19,48] := {100} tii[19,49] := {76} tii[19,50] := {43} tii[19,51] := {118} tii[19,52] := {67} tii[19,53] := {24} tii[19,54] := {107} tii[19,55] := {116} tii[19,56] := {106} tii[19,57] := {124} tii[19,58] := {92} tii[19,59] := {117} tii[19,60] := {125} tii[19,61] := {58} tii[19,62] := {74} tii[19,63] := {78} tii[19,64] := {32} tii[19,65] := {61} tii[19,66] := {89} tii[19,67] := {49} tii[19,68] := {14} tii[19,69] := {103} tii[19,70] := {5} tii[19,71] := {28} tii[19,72] := {13} tii[19,73] := {72} tii[19,74] := {20} tii[19,75] := {36} tii[19,76] := {54} tii[19,77] := {85} tii[19,78] := {15} tii[19,79] := {30} tii[19,80] := {34} tii[19,81] := {6} tii[19,82] := {102} tii[19,83] := {29} tii[19,84] := {47} tii[19,85] := {16} tii[19,86] := {12} tii[19,87] := {7} tii[19,88] := {25} tii[19,89] := {21} tii[19,90] := {83} tii[19,91] := {10} tii[19,92] := {37} tii[19,93] := {3} tii[19,94] := {27} tii[19,95] := {44} tii[19,96] := {38} tii[19,97] := {79} tii[19,98] := {90} tii[19,99] := {62} tii[19,100] := {52} tii[19,101] := {42} tii[19,102] := {104} tii[19,103] := {69} tii[19,104] := {35} tii[19,105] := {19} tii[19,106] := {45} tii[19,107] := {40} tii[19,108] := {22} tii[19,109] := {101} tii[19,110] := {56} tii[19,111] := {23} tii[19,112] := {8} tii[19,113] := {66} tii[19,114] := {46} tii[19,115] := {11} tii[19,116] := {4} tii[19,117] := {57} tii[19,118] := {105} tii[19,119] := {86} tii[19,120] := {77} tii[19,121] := {41} tii[19,122] := {18} tii[19,123] := {2} tii[19,124] := {9} tii[19,125] := {1} tii[19,126] := {0} cell#103 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {337} tii[15,2] := {185, 380} tii[15,3] := {116, 445} tii[15,4] := {396} tii[15,5] := {312} tii[15,6] := {124, 429} tii[15,7] := {211, 212, 370, 501} tii[15,8] := {297, 298, 415, 529} tii[15,9] := {444} tii[15,10] := {184, 471} tii[15,11] := {418} tii[15,12] := {92, 247, 339, 500} tii[15,13] := {453, 454} tii[15,14] := {165, 301, 412, 528} tii[15,15] := {244, 499} tii[15,16] := {289, 290, 486, 531} tii[15,17] := {177, 466} tii[15,18] := {447} tii[15,19] := {76, 472} tii[15,20] := {371} tii[15,21] := {278, 279, 400, 518} tii[15,22] := {361, 362, 439, 536} tii[15,23] := {117, 424} tii[15,24] := {485} tii[15,25] := {313} tii[15,26] := {66, 379} tii[15,27] := {123, 503} tii[15,28] := {459} tii[15,29] := {50, 182, 398, 525} tii[15,30] := {213, 214, 342, 492} tii[15,31] := {98, 99, 322, 422} tii[15,32] := {489, 490} tii[15,33] := {109, 234, 457, 542} tii[15,34] := {299, 300, 390, 521} tii[15,35] := {369} tii[15,36] := {276, 277, 284, 468} tii[15,37] := {179, 524} tii[15,38] := {205, 206, 223, 432} tii[15,39] := {410, 411} tii[15,40] := {225, 226, 516, 543} tii[15,41] := {332, 359, 360, 510} tii[15,42] := {306, 404, 405, 533} tii[15,43] := {498} tii[15,44] := {183, 527} tii[15,45] := {484} tii[15,46] := {91, 216, 448, 535} tii[15,47] := {506, 507} tii[15,48] := {164, 263, 491, 546} tii[15,49] := {446} tii[15,50] := {143, 152, 399, 519} tii[15,51] := {245, 541} tii[15,52] := {87, 106, 335, 495} tii[15,53] := {291, 292, 534, 549} tii[15,54] := {477, 478} tii[15,55] := {198, 228, 458, 537} tii[15,56] := {440, 504} tii[15,57] := {171, 282, 488, 547} tii[15,58] := {272, 545} tii[15,59] := {323, 324, 540, 550} tii[15,60] := {264, 381, 526, 552} tii[15,61] := {47} tii[15,62] := {217} tii[15,63] := {49, 132} tii[15,64] := {108, 195} tii[15,65] := {86} tii[15,66] := {69, 395} tii[15,67] := {281} tii[15,68] := {142} tii[15,69] := {249} tii[15,70] := {36, 191} tii[15,71] := {147, 148, 311, 469} tii[15,72] := {33, 343} tii[15,73] := {227} tii[15,74] := {82, 262} tii[15,75] := {232, 233, 363, 511} tii[15,76] := {57, 58, 288, 392} tii[15,77] := {73, 256} tii[15,78] := {93, 210, 250, 427} tii[15,79] := {309} tii[15,80] := {130, 325} tii[15,81] := {61, 141, 188, 384} tii[15,82] := {352, 353} tii[15,83] := {166, 296, 307, 482} tii[15,84] := {240, 241, 347, 443} tii[15,85] := {68, 376} tii[15,86] := {138} tii[15,87] := {67, 401} tii[15,88] := {344} tii[15,89] := {248} tii[15,90] := {32, 320} tii[15,91] := {207} tii[15,92] := {145, 146, 280, 460} tii[15,93] := {13, 257} tii[15,94] := {100, 101, 351, 441} tii[15,95] := {55, 56, 259, 372} tii[15,96] := {293} tii[15,97] := {230, 231, 328, 496} tii[15,98] := {42, 326} tii[15,99] := {208, 209, 219, 426} tii[15,100] := {368} tii[15,101] := {180} tii[15,102] := {35, 318} tii[15,103] := {51, 186, 275, 470} tii[15,104] := {310} tii[15,105] := {19, 258} tii[15,106] := {157, 158, 314, 476} tii[15,107] := {408, 409} tii[15,108] := {139, 140, 161, 383} tii[15,109] := {81, 387} tii[15,110] := {354, 355} tii[15,111] := {267, 294, 295, 481} tii[15,112] := {252} tii[15,113] := {26, 127, 204, 434} tii[15,114] := {110, 242, 358, 512} tii[15,115] := {39, 40, 194, 316} tii[15,116] := {239, 345, 346, 515} tii[15,117] := {364, 365} tii[15,118] := {74, 75, 135, 265} tii[15,119] := {172, 173, 403, 483} tii[15,120] := {144, 153, 274, 461} tii[15,121] := {338} tii[15,122] := {72, 377} tii[15,123] := {60, 187, 269, 475} tii[15,124] := {88, 107, 203, 421} tii[15,125] := {129, 437} tii[15,126] := {200, 229, 357, 497} tii[15,127] := {385, 386} tii[15,128] := {329, 430} tii[15,129] := {174, 283, 406, 523} tii[15,130] := {237, 238, 449, 514} tii[15,131] := {53, 65, 176, 373} tii[15,132] := {201, 348, 431, 539} tii[15,133] := {202} tii[15,134] := {402} tii[15,135] := {115, 428} tii[15,136] := {273} tii[15,137] := {2, 319} tii[15,138] := {356} tii[15,139] := {154, 155, 382, 464} tii[15,140] := {18, 388} tii[15,141] := {12, 378} tii[15,142] := {44, 321} tii[15,143] := {246} tii[15,144] := {20, 125, 341, 502} tii[15,145] := {419} tii[15,146] := {221, 222, 350, 494} tii[15,147] := {41, 438} tii[15,148] := {77, 78, 261, 374} tii[15,149] := {455, 456} tii[15,150] := {315} tii[15,151] := {7, 79, 271, 479} tii[15,152] := {63, 175, 414, 530} tii[15,153] := {121, 122, 196, 331} tii[15,154] := {416, 417} tii[15,155] := {112, 113, 450, 513} tii[15,156] := {397} tii[15,157] := {181} tii[15,158] := {90, 97, 340, 493} tii[15,159] := {34, 425} tii[15,160] := {159, 160, 287, 462} tii[15,161] := {25, 126, 336, 508} tii[15,162] := {435, 436} tii[15,163] := {48, 62, 270, 463} tii[15,164] := {253} tii[15,165] := {80, 480} tii[15,166] := {136, 163, 413, 522} tii[15,167] := {391, 473} tii[15,168] := {149, 150, 167, 389} tii[15,169] := {366, 367} tii[15,170] := {169, 170, 487, 532} tii[15,171] := {114, 218, 451, 538} tii[15,172] := {22, 30, 243, 423} tii[15,173] := {333, 452} tii[15,174] := {137, 286, 474, 548} tii[15,175] := {71, 467} tii[15,176] := {59, 156, 394, 520} tii[15,177] := {128, 509} tii[15,178] := {52, 64, 308, 465} tii[15,179] := {235, 236, 517, 544} tii[15,180] := {199, 349, 505, 551} tii[15,181] := {21} tii[15,182] := {6, 45} tii[15,183] := {89} tii[15,184] := {11, 285} tii[15,185] := {24, 84} tii[15,186] := {162} tii[15,187] := {27, 28, 224, 334} tii[15,188] := {8, 54, 168, 266} tii[15,189] := {120} tii[15,190] := {4, 192} tii[15,191] := {17, 133} tii[15,192] := {104, 105, 251, 433} tii[15,193] := {190} tii[15,194] := {15, 16, 134, 254} tii[15,195] := {29, 96, 131, 330} tii[15,196] := {37, 38, 85, 197} tii[15,197] := {304, 305} tii[15,198] := {14, 46, 70, 255} tii[15,199] := {119} tii[15,200] := {102, 103, 220, 420} tii[15,201] := {3, 193} tii[15,202] := {189} tii[15,203] := {94, 95, 111, 327} tii[15,204] := {9, 83, 151, 393} tii[15,205] := {302, 303} tii[15,206] := {23, 31, 118, 317} tii[15,207] := {268, 407} tii[15,208] := {0, 260} tii[15,209] := {1, 43, 215, 442} tii[15,210] := {5, 10, 178, 375} cell#104 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {51} tii[22,2] := {48} tii[22,3] := {52} tii[22,4] := {49, 54} tii[22,5] := {42} tii[22,6] := {45} tii[22,7] := {43, 53} tii[22,8] := {39} tii[22,9] := {35, 47} tii[22,10] := {26, 50} tii[22,11] := {33} tii[22,12] := {38} tii[22,13] := {34, 46} tii[22,14] := {29} tii[22,15] := {25, 41} tii[22,16] := {16, 44} tii[22,17] := {20} tii[22,18] := {15, 31} tii[22,19] := {10, 37} tii[22,20] := {6, 32} tii[22,21] := {23} tii[22,22] := {28} tii[22,23] := {24, 40} tii[22,24] := {19} tii[22,25] := {14, 30} tii[22,26] := {9, 36} tii[22,27] := {11} tii[22,28] := {8, 21} tii[22,29] := {5, 27} tii[22,30] := {3, 22} tii[22,31] := {7} tii[22,32] := {4, 12} tii[22,33] := {2, 17} tii[22,34] := {1, 13} tii[22,35] := {0, 18} cell#105 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {102} tii[14,2] := {125, 126} tii[14,3] := {147, 148} tii[14,4] := {78} tii[14,5] := {54} tii[14,6] := {110, 111} tii[14,7] := {71, 72} tii[14,8] := {136, 137} tii[14,9] := {123, 124} tii[14,10] := {105, 106} tii[14,11] := {145, 146} tii[14,12] := {150, 151} tii[14,13] := {55} tii[14,14] := {34} tii[14,15] := {89, 90} tii[14,16] := {50, 51} tii[14,17] := {119, 120} tii[14,18] := {27} tii[14,19] := {108, 109} tii[14,20] := {84, 85} tii[14,21] := {41, 42} tii[14,22] := {134, 135} tii[14,23] := {58, 59} tii[14,24] := {139, 140} tii[14,25] := {88, 122} tii[14,26] := {65, 104} tii[14,27] := {118, 144} tii[14,28] := {49, 101} tii[14,29] := {129, 152} tii[14,30] := {142, 153} tii[14,31] := {35} tii[14,32] := {18} tii[14,33] := {67, 68} tii[14,34] := {32, 33} tii[14,35] := {99, 100} tii[14,36] := {13} tii[14,37] := {86, 87} tii[14,38] := {63, 64} tii[14,39] := {23, 24} tii[14,40] := {116, 117} tii[14,41] := {37, 38} tii[14,42] := {127, 128} tii[14,43] := {6} tii[14,44] := {66, 107} tii[14,45] := {11, 12} tii[14,46] := {45, 83} tii[14,47] := {98, 133} tii[14,48] := {30, 77} tii[14,49] := {20, 21} tii[14,50] := {112, 141} tii[14,51] := {10, 36} tii[14,52] := {130, 149} tii[14,53] := {46, 103} tii[14,54] := {29, 79} tii[14,55] := {75, 121} tii[14,56] := {16, 62} tii[14,57] := {93, 138} tii[14,58] := {7, 44} tii[14,59] := {113, 143} tii[14,60] := {131, 132} tii[14,61] := {76} tii[14,62] := {94, 95} tii[14,63] := {43} tii[14,64] := {114, 115} tii[14,65] := {60, 61} tii[14,66] := {81, 82} tii[14,67] := {14} tii[14,68] := {96, 97} tii[14,69] := {25, 26} tii[14,70] := {91, 92} tii[14,71] := {39, 40} tii[14,72] := {22, 57} tii[14,73] := {1} tii[14,74] := {73, 74} tii[14,75] := {4, 5} tii[14,76] := {8, 9} tii[14,77] := {69, 70} tii[14,78] := {31, 80} tii[14,79] := {3, 19} tii[14,80] := {0, 15} tii[14,81] := {52, 53} tii[14,82] := {47, 48} tii[14,83] := {17, 56} tii[14,84] := {2, 28} cell#106 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {47} tii[9,2] := {70} tii[9,3] := {85} tii[9,4] := {59} tii[9,5] := {72} tii[9,6] := {40} tii[9,7] := {83} tii[9,8] := {56} tii[9,9] := {94} tii[9,10] := {81} tii[9,11] := {77} tii[9,12] := {95} tii[9,13] := {90} tii[9,14] := {98} tii[9,15] := {97} tii[9,16] := {92} tii[9,17] := {102} tii[9,18] := {104} tii[9,19] := {35} tii[9,20] := {8} tii[9,21] := {17} tii[9,22] := {46} tii[9,23] := {63} tii[9,24] := {36} tii[9,25] := {29} tii[9,26] := {58} tii[9,27] := {15} tii[9,28] := {43} tii[9,29] := {26} tii[9,30] := {23} tii[9,31] := {57} tii[9,32] := {21} tii[9,33] := {69} tii[9,34] := {11} tii[9,35] := {37} tii[9,36] := {74} tii[9,37] := {65} tii[9,38] := {87} tii[9,39] := {48} tii[9,40] := {32} tii[9,41] := {64} tii[9,42] := {41} tii[9,43] := {82} tii[9,44] := {60} tii[9,45] := {78} tii[9,46] := {96} tii[9,47] := {100} tii[9,48] := {66} tii[9,49] := {24} tii[9,50] := {38} tii[9,51] := {34} tii[9,52] := {30} tii[9,53] := {71} tii[9,54] := {50} tii[9,55] := {44} tii[9,56] := {20} tii[9,57] := {86} tii[9,58] := {61} tii[9,59] := {54} tii[9,60] := {75} tii[9,61] := {93} tii[9,62] := {45} tii[9,63] := {28} tii[9,64] := {73} tii[9,65] := {89} tii[9,66] := {62} tii[9,67] := {101} tii[9,68] := {103} tii[9,69] := {67} tii[9,70] := {88} tii[9,71] := {79} tii[9,72] := {99} tii[9,73] := {80} tii[9,74] := {84} tii[9,75] := {4} tii[9,76] := {10} tii[9,77] := {2} tii[9,78] := {18} tii[9,79] := {14} tii[9,80] := {12} tii[9,81] := {5} tii[9,82] := {22} tii[9,83] := {6} tii[9,84] := {25} tii[9,85] := {52} tii[9,86] := {27} tii[9,87] := {31} tii[9,88] := {3} tii[9,89] := {42} tii[9,90] := {33} tii[9,91] := {19} tii[9,92] := {9} tii[9,93] := {49} tii[9,94] := {39} tii[9,95] := {7} tii[9,96] := {53} tii[9,97] := {76} tii[9,98] := {91} tii[9,99] := {55} tii[9,100] := {16} tii[9,101] := {13} tii[9,102] := {51} tii[9,103] := {68} tii[9,104] := {0} tii[9,105] := {1} cell#107 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+14*X TII subcells: tii[14,1] := {84} tii[14,2] := {56, 114} tii[14,3] := {74, 126} tii[14,4] := {101} tii[14,5] := {92} tii[14,6] := {34, 124} tii[14,7] := {106, 108} tii[14,8] := {53, 138} tii[14,9] := {54, 135} tii[14,10] := {68, 128} tii[14,11] := {70, 144} tii[14,12] := {85, 150} tii[14,13] := {94} tii[14,14] := {82} tii[14,15] := {16, 118} tii[14,16] := {98, 99} tii[14,17] := {30, 133} tii[14,18] := {63} tii[14,19] := {32, 132} tii[14,20] := {47, 123} tii[14,21] := {80, 81} tii[14,22] := {49, 143} tii[14,23] := {62, 96} tii[14,24] := {65, 149} tii[14,25] := {23, 117} tii[14,26] := {39, 111} tii[14,27] := {40, 134} tii[14,28] := {21, 95} tii[14,29] := {59, 141} tii[14,30] := {35, 127} tii[14,31] := {102} tii[14,32] := {93} tii[14,33] := {5, 125} tii[14,34] := {107, 109} tii[14,35] := {12, 139} tii[14,36] := {76} tii[14,37] := {14, 136} tii[14,38] := {24, 129} tii[14,39] := {89, 91} tii[14,40] := {26, 145} tii[14,41] := {73, 104} tii[14,42] := {43, 151} tii[14,43] := {55} tii[14,44] := {9, 131} tii[14,45] := {69, 71} tii[14,46] := {19, 122} tii[14,47] := {20, 142} tii[14,48] := {7, 112} tii[14,49] := {52, 86} tii[14,50] := {37, 148} tii[14,51] := {31, 78} tii[14,52] := {17, 140} tii[14,53] := {15, 137} tii[14,54] := {25, 130} tii[14,55] := {27, 146} tii[14,56] := {11, 121} tii[14,57] := {44, 152} tii[14,58] := {3, 105} tii[14,59] := {36, 147} tii[14,60] := {45, 153} tii[14,61] := {64} tii[14,62] := {46, 83} tii[14,63] := {75} tii[14,64] := {38, 100} tii[14,65] := {88, 90} tii[14,66] := {72, 103} tii[14,67] := {42} tii[14,68] := {18, 115} tii[14,69] := {60, 61} tii[14,70] := {51, 119} tii[14,71] := {41, 79} tii[14,72] := {22, 57} tii[14,73] := {33} tii[14,74] := {6, 110} tii[14,75] := {48, 50} tii[14,76] := {29, 66} tii[14,77] := {28, 113} tii[14,78] := {8, 77} tii[14,79] := {13, 58} tii[14,80] := {4, 67} tii[14,81] := {1, 116} tii[14,82] := {10, 120} tii[14,83] := {2, 97} tii[14,84] := {0, 87} cell#108 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {97} tii[7,2] := {85} tii[7,3] := {43, 122} tii[7,4] := {59, 136} tii[7,5] := {96} tii[7,6] := {81, 114} tii[7,7] := {71} tii[7,8] := {33, 134} tii[7,9] := {46, 143} tii[7,10] := {27, 123} tii[7,11] := {83} tii[7,12] := {18, 107} tii[7,13] := {67, 100} tii[7,14] := {40, 137} tii[7,15] := {50, 142} tii[7,16] := {95} tii[7,17] := {79, 113} tii[7,18] := {75, 124} tii[7,19] := {58} tii[7,20] := {24, 139} tii[7,21] := {35, 146} tii[7,22] := {69} tii[7,23] := {19, 130} tii[7,24] := {12, 116} tii[7,25] := {53, 87} tii[7,26] := {29, 141} tii[7,27] := {38, 145} tii[7,28] := {14, 117} tii[7,29] := {82} tii[7,30] := {9, 103} tii[7,31] := {22, 133} tii[7,32] := {65, 99} tii[7,33] := {4, 92} tii[7,34] := {61, 111} tii[7,35] := {28, 140} tii[7,36] := {36, 144} tii[7,37] := {91} tii[7,38] := {77, 105} tii[7,39] := {64, 118} tii[7,40] := {52, 128} tii[7,41] := {55} tii[7,42] := {72} tii[7,43] := {68} tii[7,44] := {37, 110} tii[7,45] := {86} tii[7,46] := {51, 127} tii[7,47] := {25, 94} tii[7,48] := {63, 115} tii[7,49] := {56} tii[7,50] := {20, 109} tii[7,51] := {31, 108} tii[7,52] := {73} tii[7,53] := {13, 93} tii[7,54] := {30, 126} tii[7,55] := {70, 101} tii[7,56] := {39, 135} tii[7,57] := {7, 89} tii[7,58] := {49, 125} tii[7,59] := {44} tii[7,60] := {10, 104} tii[7,61] := {23, 121} tii[7,62] := {60} tii[7,63] := {5, 90} tii[7,64] := {15, 120} tii[7,65] := {11, 102} tii[7,66] := {2, 78} tii[7,67] := {21, 131} tii[7,68] := {57, 88} tii[7,69] := {26, 138} tii[7,70] := {62, 112} tii[7,71] := {1, 66} tii[7,72] := {32, 132} tii[7,73] := {34} tii[7,74] := {16, 129} tii[7,75] := {47} tii[7,76] := {8, 106} tii[7,77] := {45, 74} tii[7,78] := {3, 80} tii[7,79] := {48, 98} tii[7,80] := {42, 119} tii[7,81] := {41} tii[7,82] := {17, 84} tii[7,83] := {6, 76} tii[7,84] := {0, 54} cell#109 , |C| = 126 special orbit = [7, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {112} tii[24,4] := {107} tii[24,5] := {89} tii[24,6] := {61} tii[24,7] := {52} tii[24,8] := {55} tii[24,9] := {60} tii[24,10] := {123} tii[24,11] := {67} tii[24,12] := {115} tii[24,13] := {40} tii[24,14] := {120} tii[24,15] := {83} tii[24,16] := {102} tii[24,17] := {45} tii[24,18] := {117} tii[24,19] := {98} tii[24,20] := {113} tii[24,21] := {108} tii[24,22] := {54} tii[24,23] := {90} tii[24,24] := {33} tii[24,25] := {101} tii[24,26] := {71} tii[24,27] := {93} tii[24,28] := {76} tii[24,29] := {43} tii[24,30] := {65} tii[24,31] := {82} tii[24,32] := {26} tii[24,33] := {124} tii[24,34] := {96} tii[24,35] := {32} tii[24,36] := {122} tii[24,37] := {109} tii[24,38] := {119} tii[24,39] := {84} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {20} tii[24,43] := {56} tii[24,44] := {88} tii[24,45] := {99} tii[24,46] := {118} tii[24,47] := {74} tii[24,48] := {77} tii[24,49] := {114} tii[24,50] := {87} tii[24,51] := {62} tii[24,52] := {29} tii[24,53] := {49} tii[24,54] := {106} tii[24,55] := {53} tii[24,56] := {13} tii[24,57] := {100} tii[24,58] := {70} tii[24,59] := {92} tii[24,60] := {57} tii[24,61] := {46} tii[24,62] := {18} tii[24,63] := {36} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {48} tii[24,67] := {0} tii[24,68] := {39} tii[24,69] := {3} tii[24,70] := {30} tii[24,71] := {9} tii[24,72] := {21} tii[24,73] := {8} tii[24,74] := {116} tii[24,75] := {69} tii[24,76] := {16} tii[24,77] := {44} tii[24,78] := {111} tii[24,79] := {86} tii[24,80] := {34} tii[24,81] := {105} tii[24,82] := {27} tii[24,83] := {103} tii[24,84] := {73} tii[24,85] := {47} tii[24,86] := {95} tii[24,87] := {81} tii[24,88] := {68} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {31} tii[24,92] := {85} tii[24,93] := {10} tii[24,94] := {104} tii[24,95] := {22} tii[24,96] := {72} tii[24,97] := {17} tii[24,98] := {91} tii[24,99] := {59} tii[24,100] := {94} tii[24,101] := {35} tii[24,102] := {80} tii[24,103] := {66} tii[24,104] := {58} tii[24,105] := {12} tii[24,106] := {79} tii[24,107] := {24} tii[24,108] := {51} tii[24,109] := {1} tii[24,110] := {19} tii[24,111] := {5} tii[24,112] := {14} tii[24,113] := {11} tii[24,114] := {42} tii[24,115] := {75} tii[24,116] := {23} tii[24,117] := {64} tii[24,118] := {50} tii[24,119] := {41} tii[24,120] := {6} tii[24,121] := {63} tii[24,122] := {15} tii[24,123] := {37} tii[24,124] := {2} tii[24,125] := {7} tii[24,126] := {25} cell#110 , |C| = 315 special orbit = [5, 3, 3, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[2, 1]]+phi[[1, 1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[16,1] := {289} tii[16,2] := {253, 313} tii[16,3] := {255} tii[16,4] := {214} tii[16,5] := {199, 303} tii[16,6] := {133, 314} tii[16,7] := {141} tii[16,8] := {58, 182} tii[16,9] := {203} tii[16,10] := {274} tii[16,11] := {174} tii[16,12] := {117} tii[16,13] := {228, 309} tii[16,14] := {241} tii[16,15] := {44, 213} tii[16,16] := {142, 261} tii[16,17] := {193, 287} tii[16,18] := {256} tii[16,19] := {205} tii[16,20] := {151} tii[16,21] := {200, 304} tii[16,22] := {71, 240} tii[16,23] := {239} tii[16,24] := {178} tii[16,25] := {98, 260} tii[16,26] := {221} tii[16,27] := {138, 286} tii[16,28] := {168, 294} tii[16,29] := {100, 258} tii[16,30] := {136, 284} tii[16,31] := {140} tii[16,32] := {230} tii[16,33] := {26, 242} tii[16,34] := {84} tii[16,35] := {264} tii[16,36] := {175, 279} tii[16,37] := {225, 299} tii[16,38] := {254} tii[16,39] := {232} tii[16,40] := {172} tii[16,41] := {280} tii[16,42] := {183} tii[16,43] := {59} tii[16,44] := {233} tii[16,45] := {45, 263} tii[16,46] := {212} tii[16,47] := {143} tii[16,48] := {66, 235} tii[16,49] := {167, 293} tii[16,50] := {165, 292} tii[16,51] := {267} tii[16,52] := {188} tii[16,53] := {104, 269} tii[16,54] := {202, 308} tii[16,55] := {82} tii[16,56] := {198, 302} tii[16,57] := {152} tii[16,58] := {134, 305} tii[16,59] := {69, 277} tii[16,60] := {122} tii[16,61] := {229, 312} tii[16,62] := {103, 297} tii[16,63] := {204} tii[16,64] := {27, 281} tii[16,65] := {238} tii[16,66] := {177} tii[16,67] := {97, 259} tii[16,68] := {137, 285} tii[16,69] := {220} tii[16,70] := {145} tii[16,71] := {131, 275} tii[16,72] := {101, 310} tii[16,73] := {42, 291} tii[16,74] := {169, 295} tii[16,75] := {72, 307} tii[16,76] := {189} tii[16,77] := {67, 301} tii[16,78] := {102, 311} tii[16,79] := {19} tii[16,80] := {85} tii[16,81] := {24, 57} tii[16,82] := {46, 92} tii[16,83] := {33} tii[16,84] := {173} tii[16,85] := {116} tii[16,86] := {54} tii[16,87] := {215} tii[16,88] := {86} tii[16,89] := {12, 83} tii[16,90] := {108, 236} tii[16,91] := {144} tii[16,92] := {89} tii[16,93] := {28, 123} tii[16,94] := {157, 270} tii[16,95] := {129, 194} tii[16,96] := {20, 110} tii[16,97] := {185} tii[16,98] := {81, 211} tii[16,99] := {113} tii[16,100] := {39, 153} tii[16,101] := {156} tii[16,102] := {124, 251} tii[16,103] := {65, 187} tii[16,104] := {94, 227} tii[16,105] := {231} tii[16,106] := {52} tii[16,107] := {176} tii[16,108] := {262} tii[16,109] := {150} tii[16,110] := {37} tii[16,111] := {207} tii[16,112] := {79} tii[16,113] := {130, 278} tii[16,114] := {7, 114} tii[16,115] := {164, 226} tii[16,116] := {246} tii[16,117] := {120} tii[16,118] := {171, 298} tii[16,119] := {18, 158} tii[16,120] := {216} tii[16,121] := {148} tii[16,122] := {55} tii[16,123] := {166, 290} tii[16,124] := {13, 147} tii[16,125] := {68, 237} tii[16,126] := {56} tii[16,127] := {118} tii[16,128] := {179} tii[16,129] := {128, 245} tii[16,130] := {192} tii[16,131] := {201, 306} tii[16,132] := {29, 190} tii[16,133] := {90} tii[16,134] := {91} tii[16,135] := {51, 219} tii[16,136] := {105, 271} tii[16,137] := {223} tii[16,138] := {162} tii[16,139] := {75, 252} tii[16,140] := {80} tii[16,141] := {132, 276} tii[16,142] := {25, 180} tii[16,143] := {77, 244} tii[16,144] := {170, 296} tii[16,145] := {47, 222} tii[16,146] := {121} tii[16,147] := {106, 272} tii[16,148] := {78} tii[16,149] := {115} tii[16,150] := {206} tii[16,151] := {53} tii[16,152] := {2, 149} tii[16,153] := {88} tii[16,154] := {197, 249} tii[16,155] := {8, 195} tii[16,156] := {5, 181} tii[16,157] := {208} tii[16,158] := {34} tii[16,159] := {111} tii[16,160] := {184} tii[16,161] := {41, 210} tii[16,162] := {163, 266} tii[16,163] := {15, 224} tii[16,164] := {155} tii[16,165] := {248} tii[16,166] := {61} tii[16,167] := {73, 250} tii[16,168] := {31, 186} tii[16,169] := {49, 273} tii[16,170] := {125} tii[16,171] := {109} tii[16,172] := {21} tii[16,173] := {99, 257} tii[16,174] := {14, 209} tii[16,175] := {50, 217} tii[16,176] := {139, 282} tii[16,177] := {154} tii[16,178] := {40} tii[16,179] := {135, 283} tii[16,180] := {30, 247} tii[16,181] := {93} tii[16,182] := {74, 288} tii[16,183] := {6, 234} tii[16,184] := {16, 268} tii[16,185] := {76, 243} tii[16,186] := {48, 300} tii[16,187] := {9} tii[16,188] := {3, 23} tii[16,189] := {35} tii[16,190] := {112} tii[16,191] := {11, 38} tii[16,192] := {62} tii[16,193] := {96, 159} tii[16,194] := {70, 127} tii[16,195] := {36} tii[16,196] := {146} tii[16,197] := {4, 60} tii[16,198] := {95, 218} tii[16,199] := {63} tii[16,200] := {191} tii[16,201] := {126} tii[16,202] := {43, 161} tii[16,203] := {10} tii[16,204] := {107, 265} tii[16,205] := {1, 87} tii[16,206] := {22} tii[16,207] := {32, 196} tii[16,208] := {64} tii[16,209] := {0, 119} tii[16,210] := {17, 160} cell#111 , |C| = 126 special orbit = [7, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {125} tii[24,2] := {121} tii[24,3] := {112} tii[24,4] := {107} tii[24,5] := {89} tii[24,6] := {61} tii[24,7] := {52} tii[24,8] := {55} tii[24,9] := {60} tii[24,10] := {123} tii[24,11] := {67} tii[24,12] := {115} tii[24,13] := {40} tii[24,14] := {120} tii[24,15] := {83} tii[24,16] := {102} tii[24,17] := {45} tii[24,18] := {117} tii[24,19] := {98} tii[24,20] := {113} tii[24,21] := {108} tii[24,22] := {54} tii[24,23] := {90} tii[24,24] := {33} tii[24,25] := {101} tii[24,26] := {71} tii[24,27] := {93} tii[24,28] := {76} tii[24,29] := {43} tii[24,30] := {65} tii[24,31] := {82} tii[24,32] := {26} tii[24,33] := {124} tii[24,34] := {96} tii[24,35] := {32} tii[24,36] := {122} tii[24,37] := {109} tii[24,38] := {119} tii[24,39] := {84} tii[24,40] := {97} tii[24,41] := {38} tii[24,42] := {20} tii[24,43] := {56} tii[24,44] := {88} tii[24,45] := {99} tii[24,46] := {118} tii[24,47] := {74} tii[24,48] := {77} tii[24,49] := {114} tii[24,50] := {87} tii[24,51] := {62} tii[24,52] := {29} tii[24,53] := {49} tii[24,54] := {106} tii[24,55] := {53} tii[24,56] := {13} tii[24,57] := {100} tii[24,58] := {70} tii[24,59] := {92} tii[24,60] := {57} tii[24,61] := {46} tii[24,62] := {18} tii[24,63] := {36} tii[24,64] := {78} tii[24,65] := {28} tii[24,66] := {48} tii[24,67] := {0} tii[24,68] := {39} tii[24,69] := {3} tii[24,70] := {30} tii[24,71] := {9} tii[24,72] := {21} tii[24,73] := {8} tii[24,74] := {116} tii[24,75] := {69} tii[24,76] := {16} tii[24,77] := {44} tii[24,78] := {111} tii[24,79] := {86} tii[24,80] := {34} tii[24,81] := {105} tii[24,82] := {27} tii[24,83] := {103} tii[24,84] := {73} tii[24,85] := {47} tii[24,86] := {95} tii[24,87] := {81} tii[24,88] := {68} tii[24,89] := {4} tii[24,90] := {110} tii[24,91] := {31} tii[24,92] := {85} tii[24,93] := {10} tii[24,94] := {104} tii[24,95] := {22} tii[24,96] := {72} tii[24,97] := {17} tii[24,98] := {91} tii[24,99] := {59} tii[24,100] := {94} tii[24,101] := {35} tii[24,102] := {80} tii[24,103] := {66} tii[24,104] := {58} tii[24,105] := {12} tii[24,106] := {79} tii[24,107] := {24} tii[24,108] := {51} tii[24,109] := {1} tii[24,110] := {19} tii[24,111] := {5} tii[24,112] := {14} tii[24,113] := {11} tii[24,114] := {42} tii[24,115] := {75} tii[24,116] := {23} tii[24,117] := {64} tii[24,118] := {50} tii[24,119] := {41} tii[24,120] := {6} tii[24,121] := {63} tii[24,122] := {15} tii[24,123] := {37} tii[24,124] := {2} tii[24,125] := {7} tii[24,126] := {25} cell#112 , |C| = 315 special orbit = [5, 3, 3, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[2, 1]]+phi[[1, 1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[16,1] := {289} tii[16,2] := {253, 313} tii[16,3] := {255} tii[16,4] := {214} tii[16,5] := {199, 303} tii[16,6] := {133, 314} tii[16,7] := {141} tii[16,8] := {58, 182} tii[16,9] := {203} tii[16,10] := {274} tii[16,11] := {174} tii[16,12] := {117} tii[16,13] := {228, 309} tii[16,14] := {241} tii[16,15] := {44, 213} tii[16,16] := {142, 261} tii[16,17] := {193, 287} tii[16,18] := {256} tii[16,19] := {205} tii[16,20] := {151} tii[16,21] := {200, 304} tii[16,22] := {71, 240} tii[16,23] := {239} tii[16,24] := {178} tii[16,25] := {98, 260} tii[16,26] := {221} tii[16,27] := {138, 286} tii[16,28] := {168, 294} tii[16,29] := {100, 258} tii[16,30] := {136, 284} tii[16,31] := {140} tii[16,32] := {230} tii[16,33] := {26, 242} tii[16,34] := {84} tii[16,35] := {264} tii[16,36] := {175, 279} tii[16,37] := {225, 299} tii[16,38] := {254} tii[16,39] := {232} tii[16,40] := {172} tii[16,41] := {280} tii[16,42] := {183} tii[16,43] := {59} tii[16,44] := {233} tii[16,45] := {45, 263} tii[16,46] := {212} tii[16,47] := {143} tii[16,48] := {66, 235} tii[16,49] := {167, 293} tii[16,50] := {165, 292} tii[16,51] := {267} tii[16,52] := {188} tii[16,53] := {104, 269} tii[16,54] := {202, 308} tii[16,55] := {82} tii[16,56] := {198, 302} tii[16,57] := {152} tii[16,58] := {134, 305} tii[16,59] := {69, 277} tii[16,60] := {122} tii[16,61] := {229, 312} tii[16,62] := {103, 297} tii[16,63] := {204} tii[16,64] := {27, 281} tii[16,65] := {238} tii[16,66] := {177} tii[16,67] := {97, 259} tii[16,68] := {137, 285} tii[16,69] := {220} tii[16,70] := {145} tii[16,71] := {131, 275} tii[16,72] := {101, 310} tii[16,73] := {42, 291} tii[16,74] := {169, 295} tii[16,75] := {72, 307} tii[16,76] := {189} tii[16,77] := {67, 301} tii[16,78] := {102, 311} tii[16,79] := {19} tii[16,80] := {85} tii[16,81] := {24, 57} tii[16,82] := {46, 92} tii[16,83] := {33} tii[16,84] := {173} tii[16,85] := {116} tii[16,86] := {54} tii[16,87] := {215} tii[16,88] := {86} tii[16,89] := {12, 83} tii[16,90] := {108, 236} tii[16,91] := {144} tii[16,92] := {89} tii[16,93] := {28, 123} tii[16,94] := {157, 270} tii[16,95] := {129, 194} tii[16,96] := {20, 110} tii[16,97] := {185} tii[16,98] := {81, 211} tii[16,99] := {113} tii[16,100] := {39, 153} tii[16,101] := {156} tii[16,102] := {124, 251} tii[16,103] := {65, 187} tii[16,104] := {94, 227} tii[16,105] := {231} tii[16,106] := {52} tii[16,107] := {176} tii[16,108] := {262} tii[16,109] := {150} tii[16,110] := {37} tii[16,111] := {207} tii[16,112] := {79} tii[16,113] := {130, 278} tii[16,114] := {7, 114} tii[16,115] := {164, 226} tii[16,116] := {246} tii[16,117] := {120} tii[16,118] := {171, 298} tii[16,119] := {18, 158} tii[16,120] := {216} tii[16,121] := {148} tii[16,122] := {55} tii[16,123] := {166, 290} tii[16,124] := {13, 147} tii[16,125] := {68, 237} tii[16,126] := {56} tii[16,127] := {118} tii[16,128] := {179} tii[16,129] := {128, 245} tii[16,130] := {192} tii[16,131] := {201, 306} tii[16,132] := {29, 190} tii[16,133] := {90} tii[16,134] := {91} tii[16,135] := {51, 219} tii[16,136] := {105, 271} tii[16,137] := {223} tii[16,138] := {162} tii[16,139] := {75, 252} tii[16,140] := {80} tii[16,141] := {132, 276} tii[16,142] := {25, 180} tii[16,143] := {77, 244} tii[16,144] := {170, 296} tii[16,145] := {47, 222} tii[16,146] := {121} tii[16,147] := {106, 272} tii[16,148] := {78} tii[16,149] := {115} tii[16,150] := {206} tii[16,151] := {53} tii[16,152] := {2, 149} tii[16,153] := {88} tii[16,154] := {197, 249} tii[16,155] := {8, 195} tii[16,156] := {5, 181} tii[16,157] := {208} tii[16,158] := {34} tii[16,159] := {111} tii[16,160] := {184} tii[16,161] := {41, 210} tii[16,162] := {163, 266} tii[16,163] := {15, 224} tii[16,164] := {155} tii[16,165] := {248} tii[16,166] := {61} tii[16,167] := {73, 250} tii[16,168] := {31, 186} tii[16,169] := {49, 273} tii[16,170] := {125} tii[16,171] := {109} tii[16,172] := {21} tii[16,173] := {99, 257} tii[16,174] := {14, 209} tii[16,175] := {50, 217} tii[16,176] := {139, 282} tii[16,177] := {154} tii[16,178] := {40} tii[16,179] := {135, 283} tii[16,180] := {30, 247} tii[16,181] := {93} tii[16,182] := {74, 288} tii[16,183] := {6, 234} tii[16,184] := {16, 268} tii[16,185] := {76, 243} tii[16,186] := {48, 300} tii[16,187] := {9} tii[16,188] := {3, 23} tii[16,189] := {35} tii[16,190] := {112} tii[16,191] := {11, 38} tii[16,192] := {62} tii[16,193] := {96, 159} tii[16,194] := {70, 127} tii[16,195] := {36} tii[16,196] := {146} tii[16,197] := {4, 60} tii[16,198] := {95, 218} tii[16,199] := {63} tii[16,200] := {191} tii[16,201] := {126} tii[16,202] := {43, 161} tii[16,203] := {10} tii[16,204] := {107, 265} tii[16,205] := {1, 87} tii[16,206] := {22} tii[16,207] := {32, 196} tii[16,208] := {64} tii[16,209] := {0, 119} tii[16,210] := {17, 160} cell#113 , |C| = 140 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {137} tii[23,2] := {125} tii[23,3] := {99} tii[23,4] := {139} tii[23,5] := {113} tii[23,6] := {136} tii[23,7] := {78} tii[23,8] := {131} tii[23,9] := {123, 135} tii[23,10] := {121} tii[23,11] := {54} tii[23,12] := {107} tii[23,13] := {89, 119} tii[23,14] := {66} tii[23,15] := {45, 86} tii[23,16] := {138} tii[23,17] := {94} tii[23,18] := {133} tii[23,19] := {53} tii[23,20] := {127} tii[23,21] := {117, 132} tii[23,22] := {126} tii[23,23] := {106} tii[23,24] := {33} tii[23,25] := {87} tii[23,26] := {115} tii[23,27] := {67, 104} tii[23,28] := {101, 124} tii[23,29] := {100} tii[23,30] := {43} tii[23,31] := {25, 64} tii[23,32] := {81, 112} tii[23,33] := {61, 103} tii[23,34] := {95} tii[23,35] := {16} tii[23,36] := {76} tii[23,37] := {57, 91} tii[23,38] := {55} tii[23,39] := {24} tii[23,40] := {11, 42} tii[23,41] := {35, 72} tii[23,42] := {20, 62} tii[23,43] := {17} tii[23,44] := {6, 29} tii[23,45] := {2, 22} tii[23,46] := {49} tii[23,47] := {134} tii[23,48] := {74} tii[23,49] := {128} tii[23,50] := {96} tii[23,51] := {118} tii[23,52] := {50} tii[23,53] := {130} tii[23,54] := {75} tii[23,55] := {116} tii[23,56] := {122} tii[23,57] := {102} tii[23,58] := {109, 129} tii[23,59] := {52} tii[23,60] := {108} tii[23,61] := {83} tii[23,62] := {90, 120} tii[23,63] := {69, 111} tii[23,64] := {114} tii[23,65] := {30} tii[23,66] := {98} tii[23,67] := {97} tii[23,68] := {51} tii[23,69] := {80, 110} tii[23,70] := {82} tii[23,71] := {79} tii[23,72] := {32} tii[23,73] := {88} tii[23,74] := {58, 93} tii[23,75] := {60} tii[23,76] := {68, 105} tii[23,77] := {39, 84} tii[23,78] := {46, 92} tii[23,79] := {56} tii[23,80] := {15} tii[23,81] := {36, 73} tii[23,82] := {38} tii[23,83] := {21, 63} tii[23,84] := {27, 71} tii[23,85] := {9, 41} tii[23,86] := {13} tii[23,87] := {77} tii[23,88] := {31} tii[23,89] := {59} tii[23,90] := {14} tii[23,91] := {65} tii[23,92] := {37} tii[23,93] := {44, 85} tii[23,94] := {26, 70} tii[23,95] := {34} tii[23,96] := {5} tii[23,97] := {18, 48} tii[23,98] := {19} tii[23,99] := {12, 47} tii[23,100] := {8, 40} tii[23,101] := {3, 23} tii[23,102] := {1} tii[23,103] := {7} tii[23,104] := {4, 28} tii[23,105] := {0, 10} cell#114 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {454} tii[15,2] := {337, 539} tii[15,3] := {244, 508} tii[15,4] := {411} tii[15,5] := {313} tii[15,6] := {281, 520} tii[15,7] := {139, 364, 459, 543} tii[15,8] := {208, 428, 487, 551} tii[15,9] := {438} tii[15,10] := {222, 532} tii[15,11] := {396} tii[15,12] := {83, 368, 440, 504} tii[15,13] := {347, 436} tii[15,14] := {127, 406, 484, 529} tii[15,15] := {255, 547} tii[15,16] := {204, 302, 534, 552} tii[15,17] := {189, 491} tii[15,18] := {360} tii[15,19] := {221, 494} tii[15,20] := {251} tii[15,21] := {97, 307, 434, 531} tii[15,22] := {152, 379, 468, 548} tii[15,23] := {138, 455} tii[15,24] := {393} tii[15,25] := {197} tii[15,26] := {98, 420} tii[15,27] := {169, 511} tii[15,28] := {345} tii[15,29] := {53, 312, 394, 473} tii[15,30] := {66, 249, 389, 510} tii[15,31] := {79, 153, 372, 450} tii[15,32] := {291, 391} tii[15,33] := {87, 354, 447, 506} tii[15,34] := {106, 327, 431, 536} tii[15,35] := {234} tii[15,36] := {42, 288, 338, 493} tii[15,37] := {199, 533} tii[15,38] := {30, 235, 284, 461} tii[15,39] := {181, 287} tii[15,40] := {150, 243, 513, 546} tii[15,41] := {71, 351, 387, 524} tii[15,42] := {94, 340, 408, 541} tii[15,43] := {361} tii[15,44] := {122, 495} tii[15,45] := {311} tii[15,46] := {32, 280, 362, 442} tii[15,47] := {257, 353} tii[15,48] := {57, 331, 426, 486} tii[15,49] := {253} tii[15,50] := {16, 223, 309, 417} tii[15,51] := {146, 521} tii[15,52] := {11, 171, 261, 376} tii[15,53] := {103, 188, 496, 538} tii[15,54] := {202, 300} tii[15,55] := {36, 277, 381, 466} tii[15,56] := {156, 273} tii[15,57] := {46, 230, 432, 501} tii[15,58] := {123, 540} tii[15,59] := {85, 164, 522, 550} tii[15,60] := {59, 130, 500, 542} tii[15,61] := {304} tii[15,62] := {369} tii[15,63] := {191, 416} tii[15,64] := {266, 465} tii[15,65] := {359} tii[15,66] := {190, 476} tii[15,67] := {419} tii[15,68] := {306} tii[15,69] := {252} tii[15,70] := {167, 457} tii[15,71] := {99, 308, 421, 527} tii[15,72] := {141, 443} tii[15,73] := {378} tii[15,74] := {228, 498} tii[15,75] := {154, 380, 451, 544} tii[15,76] := {118, 210, 398, 475} tii[15,77] := {220, 492} tii[15,78] := {68, 344, 370, 509} tii[15,79] := {290} tii[15,80] := {285, 523} tii[15,81] := {51, 293, 322, 481} tii[15,82] := {237, 342} tii[15,83] := {107, 403, 409, 535} tii[15,84] := {136, 384, 453, 549} tii[15,85] := {96, 412} tii[15,86] := {305} tii[15,87] := {192, 480} tii[15,88] := {366} tii[15,89] := {144} tii[15,90] := {65, 367} tii[15,91] := {247} tii[15,92] := {41, 195, 336, 479} tii[15,93] := {119, 415} tii[15,94] := {166, 267, 444, 507} tii[15,95] := {49, 105, 316, 405} tii[15,96] := {324} tii[15,97] := {70, 268, 383, 516} tii[15,98] := {175, 464} tii[15,99] := {24, 233, 282, 458} tii[15,100] := {346} tii[15,101] := {194} tii[15,102] := {168, 456} tii[15,103] := {55, 314, 395, 478} tii[15,104] := {179} tii[15,105] := {43, 315} tii[15,106] := {116, 320, 422, 528} tii[15,107] := {294, 392} tii[15,108] := {14, 180, 226, 425} tii[15,109] := {227, 497} tii[15,110] := {133, 232} tii[15,111] := {44, 295, 335, 499} tii[15,112] := {265} tii[15,113] := {39, 262, 349, 445} tii[15,114] := {88, 357, 448, 515} tii[15,115] := {31, 72, 263, 358} tii[15,116] := {63, 286, 356, 525} tii[15,117] := {238, 355} tii[15,118] := {18, 95, 212, 333} tii[15,119] := {112, 332, 490, 537} tii[15,120] := {13, 196, 224, 418} tii[15,121] := {145} tii[15,122] := {121, 477} tii[15,123] := {62, 317, 399, 474} tii[15,124] := {7, 148, 172, 377} tii[15,125] := {174, 514} tii[15,126] := {26, 269, 279, 467} tii[15,127] := {102, 187} tii[15,128] := {73, 161} tii[15,129] := {40, 231, 334, 502} tii[15,130] := {159, 275, 517, 545} tii[15,131] := {3, 109, 129, 330} tii[15,132] := {27, 178, 388, 472} tii[15,133] := {245} tii[15,134] := {310} tii[15,135] := {140, 460} tii[15,136] := {193} tii[15,137] := {82, 363} tii[15,138] := {264} tii[15,139] := {117, 209, 423, 488} tii[15,140] := {126, 427} tii[15,141] := {120, 413} tii[15,142] := {69, 371} tii[15,143] := {142} tii[15,144] := {33, 254, 343, 441} tii[15,145] := {289} tii[15,146] := {78, 259, 390, 512} tii[15,147] := {173, 462} tii[15,148] := {52, 108, 323, 410} tii[15,149] := {236, 341} tii[15,150] := {206} tii[15,151] := {22, 203, 292, 400} tii[15,152] := {58, 301, 402, 485} tii[15,153] := {35, 137, 271, 385} tii[15,154] := {182, 298} tii[15,155] := {75, 274, 452, 518} tii[15,156] := {198} tii[15,157] := {100} tii[15,158] := {8, 170, 250, 365} tii[15,159] := {84, 439} tii[15,160] := {50, 200, 339, 482} tii[15,161] := {38, 258, 348, 435} tii[15,162] := {149, 242} tii[15,163] := {5, 124, 201, 321} tii[15,164] := {151} tii[15,165] := {125, 483} tii[15,166] := {19, 218, 328, 429} tii[15,167] := {110, 214} tii[15,168] := {17, 183, 229, 430} tii[15,169] := {135, 241} tii[15,170] := {111, 215, 489, 530} tii[15,171] := {28, 177, 386, 470} tii[15,172] := {2, 89, 158, 272} tii[15,173] := {77, 163} tii[15,174] := {20, 131, 433, 503} tii[15,175] := {54, 414} tii[15,176] := {21, 225, 318, 401} tii[15,177] := {86, 463} tii[15,178] := {6, 128, 213, 329} tii[15,179] := {74, 162, 469, 519} tii[15,180] := {37, 91, 471, 526} tii[15,181] := {246} tii[15,182] := {219, 326} tii[15,183] := {248} tii[15,184] := {101, 397} tii[15,185] := {165, 375} tii[15,186] := {325} tii[15,187] := {81, 155, 350, 437} tii[15,188] := {56, 186, 296, 407} tii[15,189] := {143} tii[15,190] := {25, 256} tii[15,191] := {132, 424} tii[15,192] := {80, 260, 373, 505} tii[15,193] := {207} tii[15,194] := {15, 45, 205, 303} tii[15,195] := {34, 240, 270, 449} tii[15,196] := {10, 64, 160, 276} tii[15,197] := {184, 299} tii[15,198] := {4, 48, 114, 217} tii[15,199] := {67} tii[15,200] := {29, 147, 283, 446} tii[15,201] := {92, 374} tii[15,202] := {104} tii[15,203] := {9, 134, 176, 382} tii[15,204] := {23, 211, 297, 404} tii[15,205] := {93, 185} tii[15,206] := {1, 76, 90, 278} tii[15,207] := {47, 115} tii[15,208] := {61, 319} tii[15,209] := {12, 157, 239, 352} tii[15,210] := {0, 60, 113, 216} cell#115 , |C| = 315 special orbit = [5, 3, 3, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 1, 1],[2, 1]]+phi[[1, 1, 1],[3, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[16,1] := {310} tii[16,2] := {264, 313} tii[16,3] := {311} tii[16,4] := {286} tii[16,5] := {204, 312} tii[16,6] := {206, 314} tii[16,7] := {90} tii[16,8] := {72, 116} tii[16,9] := {159} tii[16,10] := {300} tii[16,11] := {123} tii[16,12] := {133} tii[16,13] := {236, 304} tii[16,14] := {263} tii[16,15] := {47, 150} tii[16,16] := {166, 219} tii[16,17] := {214, 257} tii[16,18] := {283} tii[16,19] := {158} tii[16,20] := {238} tii[16,21] := {205, 293} tii[16,22] := {71, 186} tii[16,23] := {262} tii[16,24] := {198} tii[16,25] := {96, 218} tii[16,26] := {241} tii[16,27] := {144, 256} tii[16,28] := {171, 276} tii[16,29] := {94, 217} tii[16,30] := {142, 255} tii[16,31] := {160} tii[16,32] := {197} tii[16,33] := {30, 187} tii[16,34] := {169} tii[16,35] := {287} tii[16,36] := {203, 251} tii[16,37] := {246, 281} tii[16,38] := {231} tii[16,39] := {301} tii[16,40] := {196} tii[16,41] := {303} tii[16,42] := {265} tii[16,43] := {134} tii[16,44] := {261} tii[16,45] := {46, 221} tii[16,46] := {285} tii[16,47] := {233} tii[16,48] := {67, 250} tii[16,49] := {170, 305} tii[16,50] := {167, 275} tii[16,51] := {289} tii[16,52] := {268} tii[16,53] := {109, 280} tii[16,54] := {215, 299} tii[16,55] := {165} tii[16,56] := {201, 292} tii[16,57] := {240} tii[16,58] := {135, 294} tii[16,59] := {66, 248} tii[16,60] := {213} tii[16,61] := {244, 309} tii[16,62] := {108, 278} tii[16,63] := {230} tii[16,64] := {70, 252} tii[16,65] := {302} tii[16,66] := {260} tii[16,67] := {95, 274} tii[16,68] := {143, 298} tii[16,69] := {288} tii[16,70] := {234} tii[16,71] := {125, 291} tii[16,72] := {172, 306} tii[16,73] := {93, 273} tii[16,74] := {175, 308} tii[16,75] := {141, 297} tii[16,76] := {269} tii[16,77] := {124, 290} tii[16,78] := {174, 307} tii[16,79] := {7} tii[16,80] := {48} tii[16,81] := {9, 23} tii[16,82] := {20, 40} tii[16,83] := {14} tii[16,84] := {122} tii[16,85] := {69} tii[16,86] := {26} tii[16,87] := {237} tii[16,88] := {101} tii[16,89] := {18, 38} tii[16,90] := {130, 184} tii[16,91] := {98} tii[16,92] := {52} tii[16,93] := {35, 61} tii[16,94] := {180, 226} tii[16,95] := {74, 120} tii[16,96] := {29, 58} tii[16,97] := {207} tii[16,98] := {97, 149} tii[16,99] := {128} tii[16,100] := {55, 86} tii[16,101] := {178} tii[16,102] := {145, 192} tii[16,103] := {77, 117} tii[16,104] := {113, 157} tii[16,105] := {195} tii[16,106] := {25} tii[16,107] := {131} tii[16,108] := {284} tii[16,109] := {99} tii[16,110] := {100} tii[16,111] := {232} tii[16,112] := {42} tii[16,113] := {129, 249} tii[16,114] := {10, 59} tii[16,115] := {102, 155} tii[16,116] := {267} tii[16,117] := {78} tii[16,118] := {179, 279} tii[16,119] := {21, 87} tii[16,120] := {239} tii[16,121] := {164} tii[16,122] := {64} tii[16,123] := {162, 271} tii[16,124] := {16, 84} tii[16,125] := {68, 185} tii[16,126] := {127} tii[16,127] := {208} tii[16,128] := {200} tii[16,129] := {137, 189} tii[16,130] := {212} tii[16,131] := {210, 295} tii[16,132] := {33, 118} tii[16,133] := {106} tii[16,134] := {177} tii[16,135] := {51, 152} tii[16,136] := {110, 227} tii[16,137] := {243} tii[16,138] := {181} tii[16,139] := {83, 194} tii[16,140] := {161} tii[16,141] := {126, 247} tii[16,142] := {28, 114} tii[16,143] := {76, 188} tii[16,144] := {176, 277} tii[16,145] := {54, 153} tii[16,146] := {209} tii[16,147] := {112, 228} tii[16,148] := {41} tii[16,149] := {132} tii[16,150] := {168} tii[16,151] := {63} tii[16,152] := {2, 85} tii[16,153] := {105} tii[16,154] := {136, 193} tii[16,155] := {12, 119} tii[16,156] := {8, 115} tii[16,157] := {235} tii[16,158] := {91} tii[16,159] := {202} tii[16,160] := {266} tii[16,161] := {45, 220} tii[16,162] := {173, 224} tii[16,163] := {19, 154} tii[16,164] := {245} tii[16,165] := {270} tii[16,166] := {139} tii[16,167] := {81, 258} tii[16,168] := {31, 190} tii[16,169] := {57, 229} tii[16,170] := {216} tii[16,171] := {199} tii[16,172] := {65} tii[16,173] := {92, 272} tii[16,174] := {15, 148} tii[16,175] := {49, 223} tii[16,176] := {138, 254} tii[16,177] := {242} tii[16,178] := {107} tii[16,179] := {140, 296} tii[16,180] := {32, 191} tii[16,181] := {182} tii[16,182] := {82, 259} tii[16,183] := {27, 183} tii[16,184] := {53, 225} tii[16,185] := {75, 253} tii[16,186] := {111, 282} tii[16,187] := {3} tii[16,188] := {0, 6} tii[16,189] := {17} tii[16,190] := {73} tii[16,191] := {4, 13} tii[16,192] := {34} tii[16,193] := {50, 89} tii[16,194] := {36, 62} tii[16,195] := {44} tii[16,196] := {163} tii[16,197] := {11, 24} tii[16,198] := {104, 151} tii[16,199] := {80} tii[16,200] := {211} tii[16,201] := {147} tii[16,202] := {56, 88} tii[16,203] := {43} tii[16,204] := {103, 222} tii[16,205] := {5, 39} tii[16,206] := {79} tii[16,207] := {37, 121} tii[16,208] := {146} tii[16,209] := {1, 60} tii[16,210] := {22, 156} cell#116 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {491} tii[15,2] := {339, 509} tii[15,3] := {256, 366} tii[15,4] := {522} tii[15,5] := {454} tii[15,6] := {268, 534} tii[15,7] := {259, 369, 370, 471} tii[15,8] := {349, 434, 435, 514} tii[15,9] := {533} tii[15,10] := {340, 546} tii[15,11] := {508} tii[15,12] := {124, 237, 468, 527} tii[15,13] := {474, 529} tii[15,14] := {208, 317, 513, 543} tii[15,15] := {373, 549} tii[15,16] := {315, 421, 542, 552} tii[15,17] := {224, 329} tii[15,18] := {500} tii[15,19] := {196, 524} tii[15,20] := {417} tii[15,21] := {227, 335, 336, 451} tii[15,22] := {301, 409, 410, 499} tii[15,23] := {157, 258} tii[15,24] := {523} tii[15,25] := {362} tii[15,26] := {113, 187} tii[15,27] := {269, 541} tii[15,28] := {494} tii[15,29] := {72, 172, 448, 507} tii[15,30] := {159, 265, 266, 399} tii[15,31] := {154, 164, 165, 281} tii[15,32] := {456, 517} tii[15,33] := {141, 244, 498, 538} tii[15,34] := {235, 351, 352, 460} tii[15,35] := {403} tii[15,36] := {103, 195, 334, 427} tii[15,37] := {309, 547} tii[15,38] := {68, 136, 296, 377} tii[15,39] := {346, 445} tii[15,40] := {243, 365, 536, 551} tii[15,41] := {168, 286, 413, 481} tii[15,42] := {219, 356, 446, 520} tii[15,43] := {492} tii[15,44] := {231, 525} tii[15,45] := {452} tii[15,46] := {54, 130, 395, 470} tii[15,47] := {404, 483} tii[15,48] := {111, 210, 458, 515} tii[15,49] := {402} tii[15,50] := {26, 77, 333, 426} tii[15,51] := {271, 535} tii[15,52] := {15, 45, 295, 376} tii[15,53] := {204, 327, 511, 545} tii[15,54] := {345, 442} tii[15,55] := {62, 143, 412, 480} tii[15,56] := {288, 414} tii[15,57] := {91, 216, 443, 519} tii[15,58] := {198, 510} tii[15,59] := {139, 254, 476, 532} tii[15,60] := {90, 218, 439, 521} tii[15,61] := {186} tii[15,62] := {400} tii[15,63] := {192, 307} tii[15,64] := {283, 382} tii[15,65] := {257} tii[15,66] := {184, 303} tii[15,67] := {453} tii[15,68] := {331} tii[15,69] := {401} tii[15,70] := {129, 368} tii[15,71] := {188, 305, 306, 425} tii[15,72] := {155, 236} tii[15,73] := {407} tii[15,74] := {209, 433} tii[15,75] := {282, 380, 381, 479} tii[15,76] := {183, 199, 200, 316} tii[15,77] := {190, 422} tii[15,78] := {127, 238, 367, 464} tii[15,79] := {428} tii[15,80] := {280, 477} tii[15,81] := {99, 175, 330, 419} tii[15,82] := {378, 466} tii[15,83] := {212, 318, 438, 503} tii[15,84] := {251, 386, 467, 531} tii[15,85] := {97, 185} tii[15,86] := {328} tii[15,87] := {221, 304} tii[15,88] := {495} tii[15,89] := {299} tii[15,90] := {65, 123} tii[15,91] := {396} tii[15,92] := {101, 193, 194, 337} tii[15,93] := {76, 424} tii[15,94] := {255, 272, 273, 379} tii[15,95] := {95, 107, 108, 207} tii[15,96] := {457} tii[15,97] := {167, 284, 285, 411} tii[15,98] := {142, 478} tii[15,99] := {55, 131, 264, 371} tii[15,100] := {473} tii[15,101] := {332} tii[15,102] := {126, 469} tii[15,103] := {74, 173, 423, 501} tii[15,104] := {342} tii[15,105] := {36, 75} tii[15,106] := {222, 310, 311, 430} tii[15,107] := {432, 504} tii[15,108] := {37, 83, 226, 313} tii[15,109] := {206, 512} tii[15,110] := {278, 392} tii[15,111] := {112, 211, 354, 436} tii[15,112] := {408} tii[15,113] := {52, 117, 394, 465} tii[15,114] := {145, 245, 482, 528} tii[15,115] := {53, 60, 61, 146} tii[15,116] := {150, 290, 393, 486} tii[15,117] := {384, 485} tii[15,118] := {29, 34, 105, 181} tii[15,119] := {180, 322, 505, 544} tii[15,120] := {27, 78, 191, 308} tii[15,121] := {270} tii[15,122] := {189, 506} tii[15,123] := {96, 174, 447, 502} tii[15,124] := {17, 46, 158, 242} tii[15,125] := {279, 537} tii[15,126] := {63, 144, 287, 383} tii[15,127] := {203, 325} tii[15,128] := {147, 291} tii[15,129] := {94, 217, 326, 441} tii[15,130] := {249, 387, 530, 550} tii[15,131] := {8, 22, 104, 178} tii[15,132] := {49, 152, 253, 389} tii[15,133] := {294} tii[15,134] := {463} tii[15,135] := {169, 260} tii[15,136] := {361} tii[15,137] := {42, 398} tii[15,138] := {418} tii[15,139] := {223, 232, 233, 350} tii[15,140] := {84, 459} tii[15,141] := {73, 450} tii[15,142] := {67, 128} tii[15,143] := {297} tii[15,144] := {40, 115, 397, 472} tii[15,145] := {455} tii[15,146] := {170, 274, 275, 405} tii[15,147] := {140, 497} tii[15,148] := {100, 109, 110, 213} tii[15,149] := {406, 488} tii[15,150] := {363} tii[15,151] := {24, 69, 360, 431} tii[15,152] := {86, 176, 461, 516} tii[15,153] := {57, 64, 163, 252} tii[15,154] := {355, 462} tii[15,155] := {119, 250, 489, 539} tii[15,156] := {341} tii[15,157] := {228} tii[15,158] := {11, 43, 263, 372} tii[15,159] := {125, 493} tii[15,160] := {114, 201, 202, 344} tii[15,161] := {51, 116, 416, 475} tii[15,162] := {277, 390} tii[15,163] := {6, 20, 225, 314} tii[15,164] := {300} tii[15,165] := {205, 526} tii[15,166] := {33, 85, 353, 437} tii[15,167] := {214, 357} tii[15,168] := {38, 89, 230, 320} tii[15,169] := {289, 415} tii[15,170] := {179, 323, 518, 548} tii[15,171] := {50, 149, 391, 487} tii[15,172] := {1, 9, 161, 248} tii[15,173] := {151, 293} tii[15,174] := {23, 93, 324, 444} tii[15,175] := {102, 449} tii[15,176] := {35, 82, 359, 429} tii[15,177] := {166, 496} tii[15,178] := {7, 21, 229, 319} tii[15,179] := {148, 292, 484, 540} tii[15,180] := {48, 153, 388, 490} tii[15,181] := {132} tii[15,182] := {80, 177} tii[15,183] := {262} tii[15,184] := {98, 171} tii[15,185] := {133, 241} tii[15,186] := {348} tii[15,187] := {122, 137, 138, 246} tii[15,188] := {79, 88, 197, 302} tii[15,189] := {261} tii[15,190] := {16, 41} tii[15,191] := {81, 312} tii[15,192] := {156, 239, 240, 375} tii[15,193] := {347} tii[15,194] := {25, 31, 32, 87} tii[15,195] := {56, 118, 267, 364} tii[15,196] := {13, 14, 59, 121} tii[15,197] := {321, 440} tii[15,198] := {4, 5, 30, 71} tii[15,199] := {160} tii[15,200] := {66, 134, 135, 276} tii[15,201] := {44, 374} tii[15,202] := {234} tii[15,203] := {18, 47, 162, 247} tii[15,204] := {28, 70, 338, 420} tii[15,205] := {215, 358} tii[15,206] := {2, 10, 58, 120} tii[15,207] := {92, 220} tii[15,208] := {19, 343} tii[15,209] := {12, 39, 298, 385} tii[15,210] := {0, 3, 106, 182} cell#117 , |C| = 70 special orbit = [3, 3, 3, 3, 3] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {41} tii[10,5] := {53} tii[10,6] := {34} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {50} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {49} tii[10,13] := {60} tii[10,14] := {57} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {4} tii[10,20] := {10} tii[10,21] := {25} tii[10,22] := {38} tii[10,23] := {20} tii[10,24] := {33} tii[10,25] := {8} tii[10,26] := {15} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {40} tii[10,30] := {12} tii[10,31] := {45} tii[10,32] := {52} tii[10,33] := {27} tii[10,34] := {21} tii[10,35] := {39} tii[10,36] := {48} tii[10,37] := {35} tii[10,38] := {59} tii[10,39] := {13} tii[10,40] := {22} tii[10,41] := {18} tii[10,42] := {42} tii[10,43] := {29} tii[10,44] := {54} tii[10,45] := {36} tii[10,46] := {47} tii[10,47] := {56} tii[10,48] := {24} tii[10,49] := {44} tii[10,50] := {65} tii[10,51] := {37} tii[10,52] := {55} tii[10,53] := {51} tii[10,54] := {2} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {11} tii[10,58] := {7} tii[10,59] := {3} tii[10,60] := {14} tii[10,61] := {31} tii[10,62] := {16} tii[10,63] := {17} tii[10,64] := {5} tii[10,65] := {28} tii[10,66] := {23} tii[10,67] := {46} tii[10,68] := {9} tii[10,69] := {30} tii[10,70] := {0} cell#118 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {488} tii[15,2] := {347, 506} tii[15,3] := {168, 532} tii[15,4] := {444} tii[15,5] := {346} tii[15,6] := {288, 468} tii[15,7] := {172, 267, 469, 549} tii[15,8] := {244, 332, 502, 552} tii[15,9] := {489} tii[15,10] := {231, 449} tii[15,11] := {446} tii[15,12] := {91, 286, 379, 534} tii[15,13] := {405, 477} tii[15,14] := {143, 361, 423, 544} tii[15,15] := {291, 493} tii[15,16] := {237, 339, 456, 518} tii[15,17] := {122, 522} tii[15,18] := {396} tii[15,19] := {229, 425} tii[15,20] := {287} tii[15,21] := {127, 208, 450, 547} tii[15,22] := {189, 271, 483, 551} tii[15,23] := {86, 500} tii[15,24] := {445} tii[15,25] := {230} tii[15,26] := {63, 464} tii[15,27] := {177, 400} tii[15,28] := {397} tii[15,29] := {59, 227, 327, 508} tii[15,30] := {90, 158, 404, 541} tii[15,31] := {41, 83, 422, 499} tii[15,32] := {353, 433} tii[15,33] := {102, 304, 376, 530} tii[15,34] := {142, 214, 443, 548} tii[15,35] := {290} tii[15,36] := {61, 130, 373, 523} tii[15,37] := {232, 452} tii[15,38] := {44, 100, 321, 496} tii[15,39] := {236, 337} tii[15,40] := {183, 278, 409, 486} tii[15,41] := {104, 192, 419, 538} tii[15,42] := {150, 252, 367, 516} tii[15,43] := {490} tii[15,44] := {132, 426} tii[15,45] := {447} tii[15,46] := {36, 266, 294, 535} tii[15,47] := {406, 478} tii[15,48] := {72, 331, 342, 545} tii[15,49] := {401} tii[15,50] := {21, 209, 259, 524} tii[15,51] := {179, 471} tii[15,52] := {12, 161, 204, 497} tii[15,53] := {138, 220, 430, 504} tii[15,54] := {354, 439} tii[15,55] := {47, 272, 316, 539} tii[15,56] := {306, 416} tii[15,57] := {77, 253, 334, 515} tii[15,58] := {234, 509} tii[15,59] := {185, 281, 475, 531} tii[15,60] := {147, 255, 434, 517} tii[15,61] := {222} tii[15,62] := {399} tii[15,63] := {226, 326} tii[15,64] := {303, 384} tii[15,65] := {282} tii[15,66] := {123, 521} tii[15,67] := {448} tii[15,68] := {343} tii[15,69] := {289} tii[15,70] := {173, 378} tii[15,71] := {129, 210, 427, 546} tii[15,72] := {95, 491} tii[15,73] := {411} tii[15,74] := {245, 432} tii[15,75] := {191, 273, 467, 550} tii[15,76] := {66, 121, 454, 513} tii[15,77] := {225, 424} tii[15,78] := {92, 175, 403, 533} tii[15,79] := {349} tii[15,80] := {302, 476} tii[15,81] := {70, 137, 356, 510} tii[15,82] := {296, 392} tii[15,83] := {144, 247, 442, 543} tii[15,84] := {197, 310, 388, 528} tii[15,85] := {57, 463} tii[15,86] := {221} tii[15,87] := {131, 505} tii[15,88] := {398} tii[15,89] := {178} tii[15,90] := {39, 420} tii[15,91] := {283} tii[15,92] := {60, 115, 352, 525} tii[15,93] := {128, 325} tii[15,94] := {96, 165, 472, 527} tii[15,95] := {24, 53, 374, 459} tii[15,96] := {358} tii[15,97] := {103, 163, 395, 540} tii[15,98] := {190, 383} tii[15,99] := {38, 93, 318, 494} tii[15,100] := {402} tii[15,101] := {224} tii[15,102] := {170, 377} tii[15,103] := {62, 228, 350, 507} tii[15,104] := {233} tii[15,105] := {23, 372} tii[15,106] := {134, 213, 428, 542} tii[15,107] := {355, 440} tii[15,108] := {27, 71, 261, 457} tii[15,109] := {242, 431} tii[15,110] := {184, 279} tii[15,111] := {74, 145, 370, 519} tii[15,112] := {301} tii[15,113] := {45, 182, 297, 473} tii[15,114] := {105, 305, 393, 529} tii[15,115] := {14, 34, 320, 418} tii[15,116] := {110, 198, 311, 481} tii[15,117] := {307, 387} tii[15,118] := {7, 33, 263, 365} tii[15,119] := {151, 335, 366, 501} tii[15,120] := {22, 116, 260, 453} tii[15,121] := {293} tii[15,122] := {126, 344} tii[15,123] := {69, 235, 329, 511} tii[15,124] := {13, 82, 205, 410} tii[15,125] := {188, 412} tii[15,126] := {48, 164, 317, 487} tii[15,127] := {239, 341} tii[15,128] := {193, 313} tii[15,129] := {78, 219, 254, 438} tii[15,130] := {196, 277, 413, 480} tii[15,131] := {9, 54, 156, 364} tii[15,132] := {112, 201, 280, 391} tii[15,133] := {167} tii[15,134] := {345} tii[15,135] := {94, 492} tii[15,136] := {223} tii[15,137] := {89, 265} tii[15,138] := {300} tii[15,139] := {65, 119, 455, 514} tii[15,140] := {141, 330} tii[15,141] := {124, 323} tii[15,142] := {40, 421} tii[15,143] := {169} tii[15,144] := {37, 174, 292, 470} tii[15,145] := {348} tii[15,146] := {97, 160, 407, 537} tii[15,147] := {186, 381} tii[15,148] := {28, 55, 375, 462} tii[15,149] := {295, 389} tii[15,150] := {241} tii[15,151] := {26, 136, 238, 429} tii[15,152] := {73, 246, 340, 503} tii[15,153] := {15, 51, 322, 417} tii[15,154] := {249, 333} tii[15,155] := {109, 274, 309, 465} tii[15,156] := {351} tii[15,157] := {125} tii[15,158] := {10, 159, 203, 495} tii[15,159] := {87, 285} tii[15,160] := {68, 117, 357, 526} tii[15,161] := {42, 181, 270, 474} tii[15,162] := {298, 394} tii[15,163] := {5, 118, 154, 458} tii[15,164] := {187} tii[15,165] := {139, 360} tii[15,166] := {29, 215, 258, 520} tii[15,167] := {248, 368} tii[15,168] := {31, 75, 264, 461} tii[15,169] := {195, 275} tii[15,170] := {148, 217, 363, 437} tii[15,171] := {52, 199, 276, 482} tii[15,172] := {2, 84, 113, 415} tii[15,173] := {200, 315} tii[15,174] := {79, 153, 338, 441} tii[15,175] := {58, 324} tii[15,176] := {25, 212, 240, 512} tii[15,177] := {101, 382} tii[15,178] := {8, 120, 155, 460} tii[15,179] := {108, 166, 386, 466} tii[15,180] := {111, 202, 390, 485} tii[15,181] := {176} tii[15,182] := {133, 216} tii[15,183] := {284} tii[15,184] := {64, 451} tii[15,185] := {180, 269} tii[15,186] := {359} tii[15,187] := {46, 85, 408, 484} tii[15,188] := {30, 76, 362, 436} tii[15,189] := {171} tii[15,190] := {11, 319} tii[15,191] := {135, 328} tii[15,192] := {99, 162, 380, 536} tii[15,193] := {243} tii[15,194] := {6, 19, 262, 371} tii[15,195] := {49, 107, 308, 479} tii[15,196] := {3, 18, 207, 312} tii[15,197] := {251, 336} tii[15,198] := {0, 20, 157, 256} tii[15,199] := {88} tii[15,200] := {43, 81, 299, 498} tii[15,201] := {98, 268} tii[15,202] := {140} tii[15,203] := {17, 50, 206, 414} tii[15,204] := {32, 146, 250, 435} tii[15,205] := {149, 218} tii[15,206] := {4, 35, 114, 314} tii[15,207] := {152, 257} tii[15,208] := {67, 211} tii[15,209] := {16, 106, 194, 385} tii[15,210] := {1, 56, 80, 369} cell#119 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {85} tii[9,2] := {101} tii[9,3] := {104} tii[9,4] := {80} tii[9,5] := {64} tii[9,6] := {23} tii[9,7] := {99} tii[9,8] := {38} tii[9,9] := {103} tii[9,10] := {81} tii[9,11] := {67} tii[9,12] := {91} tii[9,13] := {87} tii[9,14] := {97} tii[9,15] := {82} tii[9,16] := {68} tii[9,17] := {92} tii[9,18] := {76} tii[9,19] := {71} tii[9,20] := {30} tii[9,21] := {44} tii[9,22] := {86} tii[9,23] := {96} tii[9,24] := {72} tii[9,25] := {14} tii[9,26] := {49} tii[9,27] := {43} tii[9,28] := {25} tii[9,29] := {59} tii[9,30] := {57} tii[9,31] := {98} tii[9,32] := {8} tii[9,33] := {65} tii[9,34] := {5} tii[9,35] := {74} tii[9,36] := {102} tii[9,37] := {51} tii[9,38] := {78} tii[9,39] := {88} tii[9,40] := {17} tii[9,41] := {95} tii[9,42] := {28} tii[9,43] := {50} tii[9,44] := {94} tii[9,45] := {36} tii[9,46] := {63} tii[9,47] := {46} tii[9,48] := {27} tii[9,49] := {35} tii[9,50] := {54} tii[9,51] := {48} tii[9,52] := {15} tii[9,53] := {93} tii[9,54] := {69} tii[9,55] := {26} tii[9,56] := {10} tii[9,57] := {100} tii[9,58] := {83} tii[9,59] := {41} tii[9,60] := {90} tii[9,61] := {66} tii[9,62] := {34} tii[9,63] := {16} tii[9,64] := {89} tii[9,65] := {52} tii[9,66] := {53} tii[9,67] := {79} tii[9,68] := {62} tii[9,69] := {56} tii[9,70] := {77} tii[9,71] := {40} tii[9,72] := {47} tii[9,73] := {73} tii[9,74] := {55} tii[9,75] := {20} tii[9,76] := {32} tii[9,77] := {13} tii[9,78] := {45} tii[9,79] := {42} tii[9,80] := {4} tii[9,81] := {21} tii[9,82] := {11} tii[9,83] := {2} tii[9,84] := {58} tii[9,85] := {84} tii[9,86] := {60} tii[9,87] := {18} tii[9,88] := {1} tii[9,89] := {12} tii[9,90] := {22} tii[9,91] := {9} tii[9,92] := {31} tii[9,93] := {37} tii[9,94] := {75} tii[9,95] := {3} tii[9,96] := {39} tii[9,97] := {61} tii[9,98] := {33} tii[9,99] := {19} tii[9,100] := {24} tii[9,101] := {6} tii[9,102] := {70} tii[9,103] := {29} tii[9,104] := {7} tii[9,105] := {0} cell#120 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {77} tii[9,2] := {97} tii[9,3] := {103} tii[9,4] := {63} tii[9,5] := {51} tii[9,6] := {21} tii[9,7] := {87} tii[9,8] := {35} tii[9,9] := {99} tii[9,10] := {61} tii[9,11] := {55} tii[9,12] := {78} tii[9,13] := {98} tii[9,14] := {104} tii[9,15] := {88} tii[9,16] := {83} tii[9,17] := {100} tii[9,18] := {102} tii[9,19] := {64} tii[9,20] := {31} tii[9,21] := {48} tii[9,22] := {75} tii[9,23] := {91} tii[9,24] := {69} tii[9,25] := {14} tii[9,26] := {39} tii[9,27] := {42} tii[9,28] := {25} tii[9,29] := {60} tii[9,30] := {49} tii[9,31] := {89} tii[9,32] := {9} tii[9,33] := {50} tii[9,34] := {4} tii[9,35] := {65} tii[9,36] := {101} tii[9,37] := {41} tii[9,38] := {66} tii[9,39] := {84} tii[9,40] := {17} tii[9,41] := {93} tii[9,42] := {23} tii[9,43] := {62} tii[9,44] := {94} tii[9,45] := {56} tii[9,46] := {79} tii[9,47] := {86} tii[9,48] := {43} tii[9,49] := {30} tii[9,50] := {47} tii[9,51] := {37} tii[9,52] := {15} tii[9,53] := {74} tii[9,54] := {52} tii[9,55] := {26} tii[9,56] := {8} tii[9,57] := {90} tii[9,58] := {68} tii[9,59] := {33} tii[9,60] := {80} tii[9,61] := {76} tii[9,62] := {27} tii[9,63] := {12} tii[9,64] := {82} tii[9,65] := {70} tii[9,66] := {40} tii[9,67] := {92} tii[9,68] := {96} tii[9,69] := {44} tii[9,70] := {67} tii[9,71] := {57} tii[9,72] := {85} tii[9,73] := {95} tii[9,74] := {71} tii[9,75] := {22} tii[9,76] := {36} tii[9,77] := {13} tii[9,78] := {45} tii[9,79] := {38} tii[9,80] := {5} tii[9,81] := {20} tii[9,82] := {11} tii[9,83] := {2} tii[9,84] := {53} tii[9,85] := {81} tii[9,86] := {59} tii[9,87] := {16} tii[9,88] := {1} tii[9,89] := {24} tii[9,90] := {18} tii[9,91] := {7} tii[9,92] := {29} tii[9,93] := {28} tii[9,94] := {72} tii[9,95] := {3} tii[9,96] := {32} tii[9,97] := {54} tii[9,98] := {73} tii[9,99] := {34} tii[9,100] := {19} tii[9,101] := {6} tii[9,102] := {58} tii[9,103] := {46} tii[9,104] := {10} tii[9,105] := {0} cell#121 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {111} tii[8,2] := {79} tii[8,3] := {123} tii[8,4] := {58} tii[8,5] := {112} tii[8,6] := {67, 136} tii[8,7] := {92, 139} tii[8,8] := {122} tii[8,9] := {119, 133} tii[8,10] := {78} tii[8,11] := {94} tii[8,12] := {85, 114} tii[8,13] := {23} tii[8,14] := {97} tii[8,15] := {27} tii[8,16] := {49} tii[8,17] := {73} tii[8,18] := {80} tii[8,19] := {41} tii[8,20] := {62} tii[8,21] := {48, 130} tii[8,22] := {17} tii[8,23] := {96} tii[8,24] := {66} tii[8,25] := {72, 137} tii[8,26] := {91} tii[8,27] := {75} tii[8,28] := {59} tii[8,29] := {33, 121} tii[8,30] := {109} tii[8,31] := {26} tii[8,32] := {20, 118} tii[8,33] := {98} tii[8,34] := {104, 124} tii[8,35] := {44} tii[8,36] := {54, 132} tii[8,37] := {70, 126} tii[8,38] := {40} tii[8,39] := {95} tii[8,40] := {61} tii[8,41] := {86, 115} tii[8,42] := {69, 102} tii[8,43] := {10} tii[8,44] := {87} tii[8,45] := {108} tii[8,46] := {93} tii[8,47] := {50, 131} tii[8,48] := {42} tii[8,49] := {16} tii[8,50] := {113} tii[8,51] := {74, 138} tii[8,52] := {30, 129} tii[8,53] := {28} tii[8,54] := {90, 134} tii[8,55] := {25} tii[8,56] := {77} tii[8,57] := {76} tii[8,58] := {47, 135} tii[8,59] := {43} tii[8,60] := {65, 100} tii[8,61] := {99} tii[8,62] := {107, 127} tii[8,63] := {51, 83} tii[8,64] := {39} tii[8,65] := {60} tii[8,66] := {68, 101} tii[8,67] := {2} tii[8,68] := {7} tii[8,69] := {6} tii[8,70] := {34} tii[8,71] := {14} tii[8,72] := {55} tii[8,73] := {21} tii[8,74] := {38} tii[8,75] := {22, 110} tii[8,76] := {57} tii[8,77] := {9} tii[8,78] := {32} tii[8,79] := {37, 125} tii[8,80] := {12, 105} tii[8,81] := {82} tii[8,82] := {18} tii[8,83] := {45} tii[8,84] := {52, 117} tii[8,85] := {8, 89} tii[8,86] := {36, 103} tii[8,87] := {4} tii[8,88] := {56} tii[8,89] := {31, 128} tii[8,90] := {46} tii[8,91] := {11} tii[8,92] := {81} tii[8,93] := {15, 106} tii[8,94] := {29} tii[8,95] := {88, 116} tii[8,96] := {53, 84} tii[8,97] := {1} tii[8,98] := {64} tii[8,99] := {5} tii[8,100] := {24, 120} tii[8,101] := {19} tii[8,102] := {35, 63} tii[8,103] := {0} tii[8,104] := {13} tii[8,105] := {3, 71} cell#122 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {111} tii[8,2] := {79} tii[8,3] := {123} tii[8,4] := {58} tii[8,5] := {112} tii[8,6] := {67, 136} tii[8,7] := {92, 139} tii[8,8] := {122} tii[8,9] := {119, 133} tii[8,10] := {78} tii[8,11] := {94} tii[8,12] := {85, 114} tii[8,13] := {23} tii[8,14] := {97} tii[8,15] := {27} tii[8,16] := {49} tii[8,17] := {73} tii[8,18] := {80} tii[8,19] := {41} tii[8,20] := {62} tii[8,21] := {48, 130} tii[8,22] := {17} tii[8,23] := {96} tii[8,24] := {66} tii[8,25] := {72, 137} tii[8,26] := {91} tii[8,27] := {75} tii[8,28] := {59} tii[8,29] := {33, 121} tii[8,30] := {109} tii[8,31] := {26} tii[8,32] := {20, 118} tii[8,33] := {98} tii[8,34] := {104, 124} tii[8,35] := {44} tii[8,36] := {54, 132} tii[8,37] := {70, 126} tii[8,38] := {40} tii[8,39] := {95} tii[8,40] := {61} tii[8,41] := {86, 115} tii[8,42] := {69, 102} tii[8,43] := {10} tii[8,44] := {87} tii[8,45] := {108} tii[8,46] := {93} tii[8,47] := {50, 131} tii[8,48] := {42} tii[8,49] := {16} tii[8,50] := {113} tii[8,51] := {74, 138} tii[8,52] := {30, 129} tii[8,53] := {28} tii[8,54] := {90, 134} tii[8,55] := {25} tii[8,56] := {77} tii[8,57] := {76} tii[8,58] := {47, 135} tii[8,59] := {43} tii[8,60] := {65, 100} tii[8,61] := {99} tii[8,62] := {107, 127} tii[8,63] := {51, 83} tii[8,64] := {39} tii[8,65] := {60} tii[8,66] := {68, 101} tii[8,67] := {2} tii[8,68] := {7} tii[8,69] := {6} tii[8,70] := {34} tii[8,71] := {14} tii[8,72] := {55} tii[8,73] := {21} tii[8,74] := {38} tii[8,75] := {22, 110} tii[8,76] := {57} tii[8,77] := {9} tii[8,78] := {32} tii[8,79] := {37, 125} tii[8,80] := {12, 105} tii[8,81] := {82} tii[8,82] := {18} tii[8,83] := {45} tii[8,84] := {52, 117} tii[8,85] := {8, 89} tii[8,86] := {36, 103} tii[8,87] := {4} tii[8,88] := {56} tii[8,89] := {31, 128} tii[8,90] := {46} tii[8,91] := {11} tii[8,92] := {81} tii[8,93] := {15, 106} tii[8,94] := {29} tii[8,95] := {88, 116} tii[8,96] := {53, 84} tii[8,97] := {1} tii[8,98] := {64} tii[8,99] := {5} tii[8,100] := {24, 120} tii[8,101] := {19} tii[8,102] := {35, 63} tii[8,103] := {0} tii[8,104] := {13} tii[8,105] := {3, 71} cell#123 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {54} tii[22,2] := {53} tii[22,3] := {51} tii[22,4] := {48, 52} tii[22,5] := {50} tii[22,6] := {47} tii[22,7] := {42, 49} tii[22,8] := {41} tii[22,9] := {35, 45} tii[22,10] := {26, 43} tii[22,11] := {46} tii[22,12] := {40} tii[22,13] := {34, 44} tii[22,14] := {33} tii[22,15] := {25, 38} tii[22,16] := {18, 36} tii[22,17] := {23} tii[22,18] := {17, 31} tii[22,19] := {10, 28} tii[22,20] := {6, 30} tii[22,21] := {39} tii[22,22] := {32} tii[22,23] := {24, 37} tii[22,24] := {22} tii[22,25] := {16, 29} tii[22,26] := {9, 27} tii[22,27] := {15} tii[22,28] := {8, 21} tii[22,29] := {5, 19} tii[22,30] := {3, 20} tii[22,31] := {7} tii[22,32] := {4, 14} tii[22,33] := {2, 11} tii[22,34] := {1, 13} tii[22,35] := {0, 12} cell#124 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {114} tii[14,2] := {142, 143} tii[14,3] := {150, 151} tii[14,4] := {89} tii[14,5] := {76} tii[14,6] := {122, 123} tii[14,7] := {95, 96} tii[14,8] := {144, 145} tii[14,9] := {103, 141} tii[14,10] := {84, 136} tii[14,11] := {128, 152} tii[14,12] := {147, 153} tii[14,13] := {68} tii[14,14] := {56} tii[14,15] := {101, 102} tii[14,16] := {72, 73} tii[14,17] := {126, 127} tii[14,18] := {39} tii[14,19] := {81, 121} tii[14,20] := {64, 115} tii[14,21] := {53, 54} tii[14,22] := {108, 146} tii[14,23] := {37, 71} tii[14,24] := {131, 149} tii[14,25] := {61, 116} tii[14,26] := {44, 98} tii[14,27] := {86, 137} tii[14,28] := {30, 78} tii[14,29] := {110, 148} tii[14,30] := {132, 133} tii[14,31] := {47} tii[14,32] := {38} tii[14,33] := {79, 80} tii[14,34] := {51, 52} tii[14,35] := {106, 107} tii[14,36] := {24} tii[14,37] := {60, 99} tii[14,38] := {43, 90} tii[14,39] := {33, 34} tii[14,40] := {85, 129} tii[14,41] := {22, 48} tii[14,42] := {109, 138} tii[14,43] := {13} tii[14,44] := {42, 92} tii[14,45] := {20, 21} tii[14,46] := {28, 77} tii[14,47] := {65, 120} tii[14,48] := {16, 58} tii[14,49] := {11, 31} tii[14,50] := {87, 135} tii[14,51] := {5, 26} tii[14,52] := {111, 112} tii[14,53] := {27, 100} tii[14,54] := {15, 91} tii[14,55] := {45, 130} tii[14,56] := {7, 70} tii[14,57] := {67, 139} tii[14,58] := {3, 49} tii[14,59] := {88, 134} tii[14,60] := {113, 140} tii[14,61] := {97} tii[14,62] := {118, 119} tii[14,63] := {57} tii[14,64] := {124, 125} tii[14,65] := {74, 75} tii[14,66] := {55, 94} tii[14,67] := {25} tii[14,68] := {104, 105} tii[14,69] := {35, 36} tii[14,70] := {66, 117} tii[14,71] := {23, 50} tii[14,72] := {12, 41} tii[14,73] := {6} tii[14,74] := {82, 83} tii[14,75] := {9, 10} tii[14,76] := {4, 18} tii[14,77] := {46, 93} tii[14,78] := {17, 59} tii[14,79] := {2, 14} tii[14,80] := {0, 19} tii[14,81] := {62, 63} tii[14,82] := {29, 69} tii[14,83] := {8, 40} tii[14,84] := {1, 32} cell#125 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {118} tii[14,2] := {86, 142} tii[14,3] := {99, 151} tii[14,4] := {109} tii[14,5] := {95} tii[14,6] := {68, 136} tii[14,7] := {79, 105} tii[14,8] := {83, 146} tii[14,9] := {59, 119} tii[14,10] := {40, 103} tii[14,11] := {74, 132} tii[14,12] := {53, 115} tii[14,13] := {117} tii[14,14] := {101} tii[14,15] := {49, 141} tii[14,16] := {87, 112} tii[14,17] := {65, 150} tii[14,18] := {85} tii[14,19] := {38, 135} tii[14,20] := {22, 121} tii[14,21] := {69, 98} tii[14,22] := {55, 145} tii[14,23] := {52, 91} tii[14,24] := {32, 131} tii[14,25] := {48, 143} tii[14,26] := {29, 130} tii[14,27] := {64, 152} tii[14,28] := {16, 114} tii[14,29] := {54, 144} tii[14,30] := {66, 153} tii[14,31] := {110} tii[14,32] := {96} tii[14,33] := {28, 137} tii[14,34] := {80, 106} tii[14,35] := {46, 147} tii[14,36] := {77} tii[14,37] := {20, 127} tii[14,38] := {9, 111} tii[14,39] := {61, 92} tii[14,40] := {34, 140} tii[14,41] := {42, 81} tii[14,42] := {17, 125} tii[14,43] := {60} tii[14,44] := {27, 138} tii[14,45] := {41, 75} tii[14,46] := {14, 124} tii[14,47] := {45, 148} tii[14,48] := {7, 107} tii[14,49] := {24, 63} tii[14,50] := {33, 139} tii[14,51] := {13, 76} tii[14,52] := {47, 149} tii[14,53] := {21, 120} tii[14,54] := {10, 104} tii[14,55] := {36, 133} tii[14,56] := {4, 89} tii[14,57] := {26, 126} tii[14,58] := {1, 73} tii[14,59] := {37, 134} tii[14,60] := {19, 116} tii[14,61] := {102} tii[14,62] := {88, 113} tii[14,63] := {78} tii[14,64] := {70, 129} tii[14,65] := {62, 94} tii[14,66] := {43, 71} tii[14,67] := {67} tii[14,68] := {51, 122} tii[14,69] := {50, 82} tii[14,70] := {25, 90} tii[14,71] := {31, 72} tii[14,72] := {18, 84} tii[14,73] := {39} tii[14,74] := {30, 128} tii[14,75] := {23, 57} tii[14,76] := {11, 44} tii[14,77] := {12, 108} tii[14,78] := {8, 100} tii[14,79] := {6, 58} tii[14,80] := {2, 35} tii[14,81] := {15, 123} tii[14,82] := {5, 97} tii[14,83] := {3, 93} tii[14,84] := {0, 56} cell#126 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {108} tii[7,2] := {89} tii[7,3] := {49, 135} tii[7,4] := {68, 143} tii[7,5] := {105} tii[7,6] := {96, 123} tii[7,7] := {74} tii[7,8] := {36, 140} tii[7,9] := {54, 146} tii[7,10] := {28, 130} tii[7,11] := {86} tii[7,12] := {16, 120} tii[7,13] := {79, 109} tii[7,14] := {43, 141} tii[7,15] := {52, 145} tii[7,16] := {100} tii[7,17] := {85, 117} tii[7,18] := {73, 129} tii[7,19] := {58} tii[7,20] := {27, 136} tii[7,21] := {42, 144} tii[7,22] := {71} tii[7,23] := {18, 121} tii[7,24] := {11, 113} tii[7,25] := {61, 91} tii[7,26] := {31, 137} tii[7,27] := {38, 142} tii[7,28] := {13, 106} tii[7,29] := {84} tii[7,30] := {7, 97} tii[7,31] := {22, 124} tii[7,32] := {69, 101} tii[7,33] := {5, 81} tii[7,34] := {57, 115} tii[7,35] := {29, 133} tii[7,36] := {34, 126} tii[7,37] := {72} tii[7,38] := {62, 92} tii[7,39] := {50, 103} tii[7,40] := {40, 94} tii[7,41] := {63} tii[7,42] := {83} tii[7,43] := {70} tii[7,44] := {37, 122} tii[7,45] := {90} tii[7,46] := {55, 138} tii[7,47] := {25, 114} tii[7,48] := {66, 125} tii[7,49] := {56} tii[7,50] := {19, 116} tii[7,51] := {35, 127} tii[7,52] := {76} tii[7,53] := {12, 104} tii[7,54] := {32, 131} tii[7,55] := {82, 111} tii[7,56] := {39, 139} tii[7,57] := {10, 88} tii[7,58] := {46, 132} tii[7,59] := {44} tii[7,60] := {8, 87} tii[7,61] := {26, 134} tii[7,62] := {60} tii[7,63] := {4, 80} tii[7,64] := {14, 110} tii[7,65] := {15, 107} tii[7,66] := {2, 64} tii[7,67] := {20, 119} tii[7,68] := {65, 93} tii[7,69] := {24, 112} tii[7,70] := {59, 118} tii[7,71] := {1, 53} tii[7,72] := {21, 95} tii[7,73] := {33} tii[7,74] := {17, 128} tii[7,75] := {47} tii[7,76] := {9, 98} tii[7,77] := {51, 77} tii[7,78] := {3, 67} tii[7,79] := {45, 102} tii[7,80] := {30, 78} tii[7,81] := {48} tii[7,82] := {23, 99} tii[7,83] := {6, 75} tii[7,84] := {0, 41} cell#127 , |C| = 189 special orbit = [5, 2, 2, 2, 2, 1, 1] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[13,1] := {167, 168} tii[13,2] := {145, 146} tii[13,3] := {97, 98} tii[13,4] := {180, 181} tii[13,5] := {165, 166} tii[13,6] := {186, 187} tii[13,7] := {71, 72} tii[13,8] := {147, 148} tii[13,9] := {184, 185} tii[13,10] := {188} tii[13,11] := {163, 164} tii[13,12] := {172} tii[13,13] := {95, 96} tii[13,14] := {117, 118} tii[13,15] := {135} tii[13,16] := {42, 43} tii[13,17] := {44, 45} tii[13,18] := {151, 152} tii[13,19] := {60, 61} tii[13,20] := {125, 126} tii[13,21] := {36, 37} tii[13,22] := {133, 134} tii[13,23] := {83, 84} tii[13,24] := {112, 113} tii[13,25] := {99, 100} tii[13,26] := {50, 51} tii[13,27] := {79, 80} tii[13,28] := {178, 179} tii[13,29] := {81, 82} tii[13,30] := {174, 175} tii[13,31] := {22, 23} tii[13,32] := {153, 154} tii[13,33] := {107, 108} tii[13,34] := {123, 124} tii[13,35] := {182} tii[13,36] := {137, 138} tii[13,37] := {91, 92} tii[13,38] := {73, 74} tii[13,39] := {141, 142} tii[13,40] := {34, 35} tii[13,41] := {161, 162} tii[13,42] := {155} tii[13,43] := {56, 57} tii[13,44] := {171} tii[13,45] := {127, 128} tii[13,46] := {159} tii[13,47] := {48, 49} tii[13,48] := {119, 120} tii[13,49] := {77, 78} tii[13,50] := {136} tii[13,51] := {115} tii[13,52] := {105, 106} tii[13,53] := {169, 170} tii[13,54] := {12, 13} tii[13,55] := {131, 132} tii[13,56] := {157, 158} tii[13,57] := {121, 122} tii[13,58] := {176, 177} tii[13,59] := {52, 53} tii[13,60] := {20, 21} tii[13,61] := {183} tii[13,62] := {149, 150} tii[13,63] := {38, 39} tii[13,64] := {173} tii[13,65] := {32, 33} tii[13,66] := {89, 90} tii[13,67] := {93, 94} tii[13,68] := {54, 55} tii[13,69] := {111} tii[13,70] := {129, 130} tii[13,71] := {160} tii[13,72] := {87} tii[13,73] := {46, 47} tii[13,74] := {75, 76} tii[13,75] := {114} tii[13,76] := {2, 3} tii[13,77] := {28, 29} tii[13,78] := {8, 9} tii[13,79] := {18, 19} tii[13,80] := {16, 17} tii[13,81] := {109, 110} tii[13,82] := {62, 63} tii[13,83] := {30, 31} tii[13,84] := {85, 86} tii[13,85] := {64, 65} tii[13,86] := {69, 70} tii[13,87] := {10, 11} tii[13,88] := {143, 144} tii[13,89] := {156} tii[13,90] := {103, 104} tii[13,91] := {24, 25} tii[13,92] := {58, 59} tii[13,93] := {140} tii[13,94] := {116} tii[13,95] := {4, 5} tii[13,96] := {67, 68} tii[13,97] := {14, 15} tii[13,98] := {101, 102} tii[13,99] := {40, 41} tii[13,100] := {139} tii[13,101] := {88} tii[13,102] := {0, 1} tii[13,103] := {6, 7} tii[13,104] := {26, 27} tii[13,105] := {66} cell#128 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {123} tii[14,2] := {105, 143} tii[14,3] := {118, 150} tii[14,4] := {111} tii[14,5] := {97} tii[14,6] := {89, 134} tii[14,7] := {88, 117} tii[14,8] := {106, 144} tii[14,9] := {73, 139} tii[14,10] := {59, 131} tii[14,11] := {91, 147} tii[14,12] := {103, 152} tii[14,13] := {96} tii[14,14] := {81} tii[14,15] := {72, 124} tii[14,16] := {70, 100} tii[14,17] := {90, 136} tii[14,18] := {63} tii[14,19] := {53, 130} tii[14,20] := {41, 121} tii[14,21] := {51, 84} tii[14,22] := {75, 140} tii[14,23] := {37, 95} tii[14,24] := {87, 148} tii[14,25] := {36, 125} tii[14,26] := {26, 116} tii[14,27] := {56, 137} tii[14,28] := {17, 102} tii[14,29] := {69, 145} tii[14,30] := {57, 151} tii[14,31] := {80} tii[14,32] := {62} tii[14,33] := {52, 113} tii[14,34] := {50, 83} tii[14,35] := {74, 128} tii[14,36] := {45} tii[14,37] := {35, 119} tii[14,38] := {25, 107} tii[14,39] := {33, 64} tii[14,40] := {55, 132} tii[14,41] := {21, 77} tii[14,42] := {67, 141} tii[14,43] := {28} tii[14,44] := {20, 114} tii[14,45] := {19, 47} tii[14,46] := {15, 99} tii[14,47] := {38, 129} tii[14,48] := {9, 85} tii[14,49] := {13, 60} tii[14,50] := {49, 138} tii[14,51] := {7, 48} tii[14,52] := {39, 146} tii[14,53] := {12, 120} tii[14,54] := {8, 108} tii[14,55] := {23, 133} tii[14,56] := {4, 94} tii[14,57] := {31, 142} tii[14,58] := {2, 78} tii[14,59] := {24, 149} tii[14,60] := {32, 153} tii[14,61] := {112} tii[14,62] := {104, 127} tii[14,63] := {82} tii[14,64] := {92, 135} tii[14,65] := {71, 101} tii[14,66] := {54, 110} tii[14,67] := {46} tii[14,68] := {76, 126} tii[14,69] := {34, 65} tii[14,70] := {42, 122} tii[14,71] := {22, 79} tii[14,72] := {14, 68} tii[14,73] := {18} tii[14,74] := {58, 115} tii[14,75] := {11, 29} tii[14,76] := {6, 43} tii[14,77] := {27, 109} tii[14,78] := {10, 86} tii[14,79] := {3, 30} tii[14,80] := {1, 44} tii[14,81] := {40, 98} tii[14,82] := {16, 93} tii[14,83] := {5, 66} tii[14,84] := {0, 61} cell#129 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {76} tii[9,2] := {96} tii[9,3] := {102} tii[9,4] := {63} tii[9,5] := {51} tii[9,6] := {19} tii[9,7] := {85} tii[9,8] := {32} tii[9,9] := {98} tii[9,10] := {62} tii[9,11] := {53} tii[9,12] := {81} tii[9,13] := {97} tii[9,14] := {103} tii[9,15] := {86} tii[9,16] := {78} tii[9,17] := {99} tii[9,18] := {104} tii[9,19] := {64} tii[9,20] := {29} tii[9,21] := {44} tii[9,22] := {75} tii[9,23] := {92} tii[9,24] := {67} tii[9,25] := {12} tii[9,26] := {40} tii[9,27] := {39} tii[9,28] := {23} tii[9,29] := {56} tii[9,30] := {49} tii[9,31] := {87} tii[9,32] := {7} tii[9,33] := {50} tii[9,34] := {5} tii[9,35] := {68} tii[9,36] := {100} tii[9,37] := {41} tii[9,38] := {69} tii[9,39] := {79} tii[9,40] := {16} tii[9,41] := {93} tii[9,42] := {25} tii[9,43] := {61} tii[9,44] := {88} tii[9,45] := {52} tii[9,46] := {80} tii[9,47] := {94} tii[9,48] := {45} tii[9,49] := {28} tii[9,50] := {43} tii[9,51] := {37} tii[9,52] := {13} tii[9,53] := {74} tii[9,54] := {54} tii[9,55] := {24} tii[9,56] := {9} tii[9,57] := {91} tii[9,58] := {66} tii[9,59] := {35} tii[9,60] := {82} tii[9,61] := {73} tii[9,62] := {27} tii[9,63] := {14} tii[9,64] := {77} tii[9,65] := {65} tii[9,66] := {42} tii[9,67] := {90} tii[9,68] := {101} tii[9,69] := {46} tii[9,70] := {72} tii[9,71] := {57} tii[9,72] := {95} tii[9,73] := {89} tii[9,74] := {70} tii[9,75] := {20} tii[9,76] := {33} tii[9,77] := {15} tii[9,78] := {47} tii[9,79] := {38} tii[9,80] := {4} tii[9,81] := {22} tii[9,82] := {10} tii[9,83] := {2} tii[9,84] := {55} tii[9,85] := {83} tii[9,86] := {59} tii[9,87] := {17} tii[9,88] := {1} tii[9,89] := {26} tii[9,90] := {18} tii[9,91] := {8} tii[9,92] := {30} tii[9,93] := {31} tii[9,94] := {71} tii[9,95] := {3} tii[9,96] := {34} tii[9,97] := {60} tii[9,98] := {84} tii[9,99] := {36} tii[9,100] := {21} tii[9,101] := {6} tii[9,102] := {58} tii[9,103] := {48} tii[9,104] := {11} tii[9,105] := {0} cell#130 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {83} tii[8,2] := {82} tii[8,3] := {101} tii[8,4] := {100} tii[8,5] := {119} tii[8,6] := {73, 130} tii[8,7] := {96, 137} tii[8,8] := {128} tii[8,9] := {126, 138} tii[8,10] := {118} tii[8,11] := {129} tii[8,12] := {127, 139} tii[8,13] := {9} tii[8,14] := {64} tii[8,15] := {15} tii[8,16] := {22} tii[8,17] := {37} tii[8,18] := {49} tii[8,19] := {21} tii[8,20] := {36} tii[8,21] := {56, 116} tii[8,22] := {23} tii[8,23] := {99} tii[8,24] := {33} tii[8,25] := {77, 131} tii[8,26] := {52} tii[8,27] := {46} tii[8,28] := {65} tii[8,29] := {42, 98} tii[8,30] := {114} tii[8,31] := {32} tii[8,32] := {28, 85} tii[8,33] := {68} tii[8,34] := {110, 133} tii[8,35] := {51} tii[8,36] := {60, 121} tii[8,37] := {75, 107} tii[8,38] := {45} tii[8,39] := {97} tii[8,40] := {67} tii[8,41] := {92, 122} tii[8,42] := {74, 108} tii[8,43] := {34} tii[8,44] := {48} tii[8,45] := {70} tii[8,46] := {63} tii[8,47] := {57, 117} tii[8,48] := {84} tii[8,49] := {47} tii[8,50] := {88} tii[8,51] := {78, 132} tii[8,52] := {41, 103} tii[8,53] := {69} tii[8,54] := {95, 123} tii[8,55] := {62} tii[8,56] := {115} tii[8,57] := {80} tii[8,58] := {55, 120} tii[8,59] := {87} tii[8,60] := {111, 134} tii[8,61] := {105} tii[8,62] := {113, 136} tii[8,63] := {94, 125} tii[8,64] := {79} tii[8,65] := {104} tii[8,66] := {112, 135} tii[8,67] := {1} tii[8,68] := {3} tii[8,69] := {2} tii[8,70] := {14} tii[8,71] := {5} tii[8,72] := {26} tii[8,73] := {10} tii[8,74] := {18} tii[8,75] := {29, 81} tii[8,76] := {31} tii[8,77] := {4} tii[8,78] := {16} tii[8,79] := {44, 106} tii[8,80] := {19, 66} tii[8,81] := {50} tii[8,82] := {11} tii[8,83] := {27} tii[8,84] := {58, 90} tii[8,85] := {12, 53} tii[8,86] := {43, 72} tii[8,87] := {8} tii[8,88] := {61} tii[8,89] := {40, 102} tii[8,90] := {24} tii[8,91] := {17} tii[8,92] := {86} tii[8,93] := {20, 71} tii[8,94] := {38} tii[8,95] := {93, 124} tii[8,96] := {59, 91} tii[8,97] := {13} tii[8,98] := {35} tii[8,99] := {25} tii[8,100] := {30, 89} tii[8,101] := {54} tii[8,102] := {76, 109} tii[8,103] := {0} tii[8,104] := {6} tii[8,105] := {7, 39} cell#131 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {133} tii[14,2] := {114, 146} tii[14,3] := {126, 152} tii[14,4] := {120} tii[14,5] := {109} tii[14,6] := {99, 138} tii[14,7] := {92, 119} tii[14,8] := {113, 147} tii[14,9] := {82, 134} tii[14,10] := {66, 123} tii[14,11] := {98, 143} tii[14,12] := {84, 150} tii[14,13] := {106} tii[14,14] := {90} tii[14,15] := {81, 128} tii[14,16] := {74, 104} tii[14,17] := {96, 141} tii[14,18] := {73} tii[14,19] := {64, 121} tii[14,20] := {46, 111} tii[14,21] := {55, 88} tii[14,22] := {80, 135} tii[14,23] := {38, 79} tii[14,24] := {67, 144} tii[14,25] := {44, 127} tii[14,26] := {30, 117} tii[14,27] := {62, 140} tii[14,28] := {17, 103} tii[14,29] := {49, 148} tii[14,30] := {61, 153} tii[14,31] := {89} tii[14,32] := {72} tii[14,33] := {63, 116} tii[14,34] := {54, 86} tii[14,35] := {78, 131} tii[14,36] := {52} tii[14,37] := {43, 107} tii[14,38] := {29, 93} tii[14,39] := {36, 69} tii[14,40] := {60, 124} tii[14,41] := {22, 57} tii[14,42] := {48, 136} tii[14,43] := {35} tii[14,44] := {28, 115} tii[14,45] := {21, 51} tii[14,46] := {15, 101} tii[14,47] := {42, 130} tii[14,48] := {9, 85} tii[14,49] := {12, 39} tii[14,50] := {32, 142} tii[14,51] := {7, 50} tii[14,52] := {41, 149} tii[14,53] := {14, 108} tii[14,54] := {8, 94} tii[14,55] := {27, 125} tii[14,56] := {4, 77} tii[14,57] := {18, 137} tii[14,58] := {2, 59} tii[14,59] := {26, 145} tii[14,60] := {19, 151} tii[14,61] := {122} tii[14,62] := {110, 132} tii[14,63] := {91} tii[14,64] := {100, 139} tii[14,65] := {75, 105} tii[14,66] := {56, 97} tii[14,67] := {53} tii[14,68] := {83, 129} tii[14,69] := {37, 71} tii[14,70] := {47, 112} tii[14,71] := {23, 58} tii[14,72] := {13, 70} tii[14,73] := {20} tii[14,74] := {65, 118} tii[14,75] := {11, 34} tii[14,76] := {6, 24} tii[14,77] := {31, 95} tii[14,78] := {10, 87} tii[14,79] := {3, 33} tii[14,80] := {1, 25} tii[14,81] := {45, 102} tii[14,82] := {16, 76} tii[14,83] := {5, 68} tii[14,84] := {0, 40} cell#132 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {61} tii[9,2] := {85} tii[9,3] := {97} tii[9,4] := {74} tii[9,5] := {62} tii[9,6] := {28} tii[9,7] := {96} tii[9,8] := {44} tii[9,9] := {102} tii[9,10] := {72} tii[9,11] := {67} tii[9,12] := {88} tii[9,13] := {100} tii[9,14] := {104} tii[9,15] := {92} tii[9,16] := {84} tii[9,17] := {101} tii[9,18] := {103} tii[9,19] := {48} tii[9,20] := {18} tii[9,21] := {32} tii[9,22] := {58} tii[9,23] := {75} tii[9,24] := {52} tii[9,25] := {17} tii[9,26] := {47} tii[9,27] := {27} tii[9,28] := {31} tii[9,29] := {43} tii[9,30] := {34} tii[9,31] := {71} tii[9,32] := {12} tii[9,33] := {59} tii[9,34] := {5} tii[9,35] := {50} tii[9,36] := {87} tii[9,37] := {53} tii[9,38] := {76} tii[9,39] := {66} tii[9,40] := {21} tii[9,41] := {77} tii[9,42] := {29} tii[9,43] := {69} tii[9,44] := {79} tii[9,45] := {57} tii[9,46] := {82} tii[9,47] := {91} tii[9,48] := {46} tii[9,49] := {39} tii[9,50] := {56} tii[9,51] := {45} tii[9,52] := {19} tii[9,53] := {86} tii[9,54] := {63} tii[9,55] := {33} tii[9,56] := {9} tii[9,57] := {98} tii[9,58] := {80} tii[9,59] := {42} tii[9,60] := {89} tii[9,61] := {81} tii[9,62] := {35} tii[9,63] := {16} tii[9,64] := {90} tii[9,65] := {70} tii[9,66] := {51} tii[9,67] := {93} tii[9,68] := {99} tii[9,69] := {55} tii[9,70] := {78} tii[9,71] := {60} tii[9,72] := {94} tii[9,73] := {95} tii[9,74] := {73} tii[9,75] := {13} tii[9,76] := {22} tii[9,77] := {6} tii[9,78] := {30} tii[9,79] := {24} tii[9,80] := {7} tii[9,81] := {11} tii[9,82] := {14} tii[9,83] := {2} tii[9,84] := {38} tii[9,85] := {65} tii[9,86] := {41} tii[9,87] := {20} tii[9,88] := {1} tii[9,89] := {25} tii[9,90] := {23} tii[9,91] := {10} tii[9,92] := {15} tii[9,93] := {37} tii[9,94] := {54} tii[9,95] := {4} tii[9,96] := {40} tii[9,97] := {64} tii[9,98] := {83} tii[9,99] := {36} tii[9,100] := {26} tii[9,101] := {8} tii[9,102] := {68} tii[9,103] := {49} tii[9,104] := {3} tii[9,105] := {0} cell#133 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {81} tii[12,2] := {56} tii[12,3] := {94} tii[12,4] := {35} tii[12,5] := {88} tii[12,6] := {97, 98} tii[12,7] := {54} tii[12,8] := {66, 67} tii[12,9] := {101} tii[12,10] := {18} tii[12,11] := {93} tii[12,12] := {103, 104} tii[12,13] := {80} tii[12,14] := {33} tii[12,15] := {46, 47} tii[12,16] := {91, 92} tii[12,17] := {79, 102} tii[12,18] := {43} tii[12,19] := {59, 60} tii[12,20] := {41, 76} tii[12,21] := {95} tii[12,22] := {7} tii[12,23] := {89} tii[12,24] := {99, 100} tii[12,25] := {15} tii[12,26] := {73} tii[12,27] := {25, 26} tii[12,28] := {84, 85} tii[12,29] := {70, 96} tii[12,30] := {55} tii[12,31] := {23} tii[12,32] := {68, 69} tii[12,33] := {39, 40} tii[12,34] := {21, 58} tii[12,35] := {51, 83} tii[12,36] := {32, 75} tii[12,37] := {16} tii[12,38] := {27, 28} tii[12,39] := {11, 45} tii[12,40] := {4, 36} tii[12,41] := {10} tii[12,42] := {63} tii[12,43] := {24} tii[12,44] := {50} tii[12,45] := {17} tii[12,46] := {74} tii[12,47] := {38} tii[12,48] := {86, 87} tii[12,49] := {71, 72} tii[12,50] := {6} tii[12,51] := {62} tii[12,52] := {20} tii[12,53] := {77, 78} tii[12,54] := {52, 53} tii[12,55] := {61, 90} tii[12,56] := {42, 82} tii[12,57] := {2} tii[12,58] := {34} tii[12,59] := {48, 49} tii[12,60] := {8} tii[12,61] := {29, 65} tii[12,62] := {30, 31} tii[12,63] := {14, 57} tii[12,64] := {22, 64} tii[12,65] := {5, 37} tii[12,66] := {0} tii[12,67] := {3} tii[12,68] := {12, 13} tii[12,69] := {9, 44} tii[12,70] := {1, 19} cell#134 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {73} tii[7,2] := {88} tii[7,3] := {48, 107} tii[7,4] := {68, 126} tii[7,5] := {104} tii[7,6] := {95, 128} tii[7,7] := {72} tii[7,8] := {35, 120} tii[7,9] := {54, 136} tii[7,10] := {27, 135} tii[7,11] := {85} tii[7,12] := {17, 123} tii[7,13] := {77, 111} tii[7,14] := {42, 143} tii[7,15] := {50, 146} tii[7,16] := {105} tii[7,17] := {96, 129} tii[7,18] := {79, 138} tii[7,19] := {58} tii[7,20] := {26, 108} tii[7,21] := {41, 127} tii[7,22] := {71} tii[7,23] := {18, 125} tii[7,24] := {11, 117} tii[7,25] := {62, 91} tii[7,26] := {30, 141} tii[7,27] := {37, 145} tii[7,28] := {13, 118} tii[7,29] := {86} tii[7,30] := {7, 101} tii[7,31] := {22, 134} tii[7,32] := {78, 112} tii[7,33] := {5, 84} tii[7,34] := {63, 122} tii[7,35] := {28, 142} tii[7,36] := {39, 131} tii[7,37] := {106} tii[7,38] := {97, 130} tii[7,39] := {80, 139} tii[7,40] := {66, 132} tii[7,41] := {33} tii[7,42] := {47} tii[7,43] := {45} tii[7,44] := {36, 87} tii[7,45] := {60} tii[7,46] := {55, 110} tii[7,47] := {25, 74} tii[7,48] := {65, 92} tii[7,49] := {57} tii[7,50] := {19, 124} tii[7,51] := {34, 89} tii[7,52] := {75} tii[7,53] := {12, 116} tii[7,54] := {31, 140} tii[7,55] := {81, 113} tii[7,56] := {38, 144} tii[7,57] := {10, 99} tii[7,58] := {52, 137} tii[7,59] := {44} tii[7,60] := {8, 98} tii[7,61] := {24, 102} tii[7,62] := {59} tii[7,63] := {4, 83} tii[7,64] := {15, 119} tii[7,65] := {14, 109} tii[7,66] := {2, 69} tii[7,67] := {21, 133} tii[7,68] := {64, 93} tii[7,69] := {29, 114} tii[7,70] := {67, 121} tii[7,71] := {1, 56} tii[7,72] := {40, 94} tii[7,73] := {32} tii[7,74] := {16, 90} tii[7,75] := {46} tii[7,76] := {9, 100} tii[7,77] := {49, 76} tii[7,78] := {3, 70} tii[7,79] := {51, 103} tii[7,80] := {53, 115} tii[7,81] := {23} tii[7,82] := {20, 61} tii[7,83] := {6, 82} tii[7,84] := {0, 43} cell#135 , |C| = 126 special orbit = [5, 2, 2, 2, 2, 1, 1] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1],[1, 1, 1]]+phi[[],[3, 2, 2]] TII depth = 3 TII multiplicity polynomial = 84*X+21*X^2 TII subcells: tii[13,1] := {118} tii[13,2] := {97} tii[13,3] := {61} tii[13,4] := {122} tii[13,5] := {104} tii[13,6] := {125} tii[13,7] := {43} tii[13,8] := {91} tii[13,9] := {120} tii[13,10] := {113, 124} tii[13,11] := {100} tii[13,12] := {86, 111} tii[13,13] := {51} tii[13,14] := {65} tii[13,15] := {48, 84} tii[13,16] := {25} tii[13,17] := {28} tii[13,18] := {109} tii[13,19] := {40} tii[13,20] := {80} tii[13,21] := {18} tii[13,22] := {96} tii[13,23] := {59} tii[13,24] := {82} tii[13,25] := {62} tii[13,26] := {27} tii[13,27] := {46} tii[13,28] := {123} tii[13,29] := {58} tii[13,30] := {116} tii[13,31] := {10} tii[13,32] := {110} tii[13,33] := {79} tii[13,34] := {72} tii[13,35] := {106, 121} tii[13,36] := {98} tii[13,37] := {60} tii[13,38] := {44} tii[13,39] := {85} tii[13,40] := {16} tii[13,41] := {105} tii[13,42] := {66, 99} tii[13,43] := {31} tii[13,44] := {93, 115} tii[13,45] := {83} tii[13,46] := {76, 108} tii[13,47] := {26} tii[13,48] := {73} tii[13,49] := {45} tii[13,50] := {53, 89} tii[13,51] := {37, 77} tii[13,52] := {70} tii[13,53] := {117} tii[13,54] := {6} tii[13,55] := {90} tii[13,56] := {107} tii[13,57] := {71} tii[13,58] := {112} tii[13,59] := {29} tii[13,60] := {9} tii[13,61] := {101, 119} tii[13,62] := {94} tii[13,63] := {20} tii[13,64] := {87, 114} tii[13,65] := {15} tii[13,66] := {52} tii[13,67] := {50} tii[13,68] := {30} tii[13,69] := {35, 69} tii[13,70] := {75} tii[13,71] := {67, 102} tii[13,72] := {23, 56} tii[13,73] := {22} tii[13,74] := {36} tii[13,75] := {33, 68} tii[13,76] := {1} tii[13,77] := {17} tii[13,78] := {4} tii[13,79] := {11} tii[13,80] := {8} tii[13,81] := {81} tii[13,82] := {42} tii[13,83] := {19} tii[13,84] := {64} tii[13,85] := {47} tii[13,86] := {41} tii[13,87] := {5} tii[13,88] := {92} tii[13,89] := {74, 103} tii[13,90] := {63} tii[13,91] := {12} tii[13,92] := {32} tii[13,93] := {55, 95} tii[13,94] := {38, 78} tii[13,95] := {2} tii[13,96] := {34} tii[13,97] := {7} tii[13,98] := {54} tii[13,99] := {21} tii[13,100] := {49, 88} tii[13,101] := {24, 57} tii[13,102] := {0} tii[13,103] := {3} tii[13,104] := {13} tii[13,105] := {14, 39} cell#136 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {99} tii[12,2] := {77} tii[12,3] := {103} tii[12,4] := {62} tii[12,5] := {96} tii[12,6] := {87, 101} tii[12,7] := {70} tii[12,8] := {53, 83} tii[12,9] := {100} tii[12,10] := {41} tii[12,11] := {92} tii[12,12] := {79, 98} tii[12,13] := {78} tii[12,14] := {51} tii[12,15] := {31, 68} tii[12,16] := {64, 91} tii[12,17] := {45, 81} tii[12,18] := {42} tii[12,19] := {24, 60} tii[12,20] := {13, 46} tii[12,21] := {104} tii[12,22] := {22} tii[12,23] := {97} tii[12,24] := {88, 102} tii[12,25] := {29} tii[12,26] := {86} tii[12,27] := {16, 49} tii[12,28] := {73, 95} tii[12,29] := {56, 90} tii[12,30] := {71} tii[12,31] := {23} tii[12,32] := {54, 84} tii[12,33] := {11, 38} tii[12,34] := {5, 27} tii[12,35] := {34, 75} tii[12,36] := {20, 82} tii[12,37] := {30} tii[12,38] := {17, 50} tii[12,39] := {8, 36} tii[12,40] := {2, 48} tii[12,41] := {39} tii[12,42] := {93} tii[12,43] := {61} tii[12,44] := {80} tii[12,45] := {40} tii[12,46] := {85} tii[12,47] := {65} tii[12,48] := {72, 94} tii[12,49] := {55, 89} tii[12,50] := {21} tii[12,51] := {63} tii[12,52] := {44} tii[12,53] := {43, 76} tii[12,54] := {33, 74} tii[12,55] := {26, 66} tii[12,56] := {14, 47} tii[12,57] := {10} tii[12,58] := {52} tii[12,59] := {32, 69} tii[12,60] := {25} tii[12,61] := {19, 58} tii[12,62] := {18, 57} tii[12,63] := {9, 67} tii[12,64] := {6, 28} tii[12,65] := {3, 59} tii[12,66] := {4} tii[12,67] := {12} tii[12,68] := {7, 35} tii[12,69] := {1, 15} tii[12,70] := {0, 37} cell#137 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {110} tii[8,2] := {111} tii[8,3] := {118} tii[8,4] := {89} tii[8,5] := {133} tii[8,6] := {74, 114} tii[8,7] := {104, 129} tii[8,8] := {136} tii[8,9] := {128, 139} tii[8,10] := {112} tii[8,11] := {120} tii[8,12] := {102, 132} tii[8,13] := {10} tii[8,14] := {88} tii[8,15] := {18} tii[8,16] := {28} tii[8,17] := {49} tii[8,18] := {66} tii[8,19] := {26} tii[8,20] := {48} tii[8,21] := {62, 99} tii[8,22] := {30} tii[8,23] := {127} tii[8,24] := {46} tii[8,25] := {94, 123} tii[8,26] := {71} tii[8,27] := {65} tii[8,28] := {90} tii[8,29] := {44, 76} tii[8,30] := {134} tii[8,31] := {45} tii[8,32] := {35, 57} tii[8,33] := {93} tii[8,34] := {121, 138} tii[8,35] := {70} tii[8,36] := {72, 105} tii[8,37] := {84, 124} tii[8,38] := {63} tii[8,39] := {119} tii[8,40] := {91} tii[8,41] := {101, 131} tii[8,42] := {82, 125} tii[8,43] := {17} tii[8,44] := {55} tii[8,45] := {79} tii[8,46] := {75} tii[8,47] := {54, 95} tii[8,48] := {67} tii[8,49] := {25} tii[8,50] := {103} tii[8,51] := {81, 115} tii[8,52] := {41, 73} tii[8,53] := {47} tii[8,54] := {97, 130} tii[8,55] := {42} tii[8,56] := {100} tii[8,57] := {98} tii[8,58] := {61, 96} tii[8,59] := {68} tii[8,60] := {78, 117} tii[8,61] := {122} tii[8,62] := {116, 137} tii[8,63] := {58, 108} tii[8,64] := {64} tii[8,65] := {92} tii[8,66] := {83, 126} tii[8,67] := {1} tii[8,68] := {3} tii[8,69] := {2} tii[8,70] := {16} tii[8,71] := {6} tii[8,72] := {32} tii[8,73] := {11} tii[8,74] := {21} tii[8,75] := {27, 56} tii[8,76] := {43} tii[8,77] := {5} tii[8,78] := {19} tii[8,79] := {50, 80} tii[8,80] := {22, 37} tii[8,81] := {69} tii[8,82] := {13} tii[8,83] := {34} tii[8,84] := {60, 107} tii[8,85] := {14, 24} tii[8,86] := {40, 85} tii[8,87] := {9} tii[8,88] := {87} tii[8,89] := {52, 77} tii[8,90] := {31} tii[8,91] := {20} tii[8,92] := {113} tii[8,93] := {23, 38} tii[8,94] := {51} tii[8,95] := {106, 135} tii[8,96] := {59, 109} tii[8,97] := {4} tii[8,98] := {36} tii[8,99] := {12} tii[8,100] := {29, 53} tii[8,101] := {33} tii[8,102] := {39, 86} tii[8,103] := {0} tii[8,104] := {7} tii[8,105] := {8, 15} cell#138 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {105} tii[7,2] := {85} tii[7,3] := {42, 135} tii[7,4] := {58, 144} tii[7,5] := {106} tii[7,6] := {88, 123} tii[7,7] := {68} tii[7,8] := {32, 131} tii[7,9] := {45, 142} tii[7,10] := {24, 117} tii[7,11] := {86} tii[7,12] := {19, 99} tii[7,13] := {70, 102} tii[7,14] := {36, 133} tii[7,15] := {48, 113} tii[7,16] := {107} tii[7,17] := {89, 125} tii[7,18] := {74, 114} tii[7,19] := {55} tii[7,20] := {23, 136} tii[7,21] := {35, 146} tii[7,22] := {69} tii[7,23] := {16, 129} tii[7,24] := {12, 110} tii[7,25] := {56, 84} tii[7,26] := {27, 139} tii[7,27] := {37, 122} tii[7,28] := {11, 134} tii[7,29] := {87} tii[7,30] := {8, 118} tii[7,31] := {20, 143} tii[7,32] := {71, 104} tii[7,33] := {5, 100} tii[7,34] := {59, 96} tii[7,35] := {29, 137} tii[7,36] := {39, 145} tii[7,37] := {108} tii[7,38] := {90, 126} tii[7,39] := {75, 115} tii[7,40] := {62, 127} tii[7,41] := {54} tii[7,42] := {73} tii[7,43] := {67} tii[7,44] := {33, 128} tii[7,45] := {91} tii[7,46] := {46, 138} tii[7,47] := {26, 109} tii[7,48] := {61, 121} tii[7,49] := {53} tii[7,50] := {17, 98} tii[7,51] := {34, 119} tii[7,52] := {72} tii[7,53] := {13, 80} tii[7,54] := {28, 116} tii[7,55] := {76, 101} tii[7,56] := {38, 95} tii[7,57] := {10, 65} tii[7,58] := {50, 78} tii[7,59] := {41} tii[7,60] := {7, 130} tii[7,61] := {25, 112} tii[7,62] := {57} tii[7,63] := {4, 111} tii[7,64] := {14, 140} tii[7,65] := {15, 81} tii[7,66] := {2, 92} tii[7,67] := {22, 132} tii[7,68] := {60, 82} tii[7,69] := {30, 141} tii[7,70] := {63, 97} tii[7,71] := {1, 77} tii[7,72] := {40, 124} tii[7,73] := {31} tii[7,74] := {18, 120} tii[7,75] := {44} tii[7,76] := {9, 94} tii[7,77] := {47, 66} tii[7,78] := {3, 83} tii[7,79] := {49, 79} tii[7,80] := {51, 103} tii[7,81] := {43} tii[7,82] := {21, 93} tii[7,83] := {6, 52} tii[7,84] := {0, 64} cell#139 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {69} tii[7,2] := {86} tii[7,3] := {39, 106} tii[7,4] := {61, 126} tii[7,5] := {104} tii[7,6] := {95, 128} tii[7,7] := {109} tii[7,8] := {55, 120} tii[7,9] := {79, 136} tii[7,10] := {40, 101} tii[7,11] := {124} tii[7,12] := {24, 83} tii[7,13] := {116, 140} tii[7,14] := {62, 121} tii[7,15] := {77, 137} tii[7,16] := {135} tii[7,17] := {123, 143} tii[7,18] := {108, 146} tii[7,19] := {99} tii[7,20] := {45, 107} tii[7,21] := {64, 127} tii[7,22] := {118} tii[7,23] := {30, 84} tii[7,24] := {18, 71} tii[7,25] := {100, 134} tii[7,26] := {47, 110} tii[7,27] := {63, 131} tii[7,28] := {19, 68} tii[7,29] := {125} tii[7,30] := {10, 51} tii[7,31] := {32, 91} tii[7,32] := {117, 141} tii[7,33] := {6, 37} tii[7,34] := {97, 145} tii[7,35] := {46, 113} tii[7,36] := {60, 132} tii[7,37] := {105} tii[7,38] := {96, 129} tii[7,39] := {75, 139} tii[7,40] := {59, 133} tii[7,41] := {21} tii[7,42] := {36} tii[7,43] := {34} tii[7,44] := {27, 85} tii[7,45] := {52} tii[7,46] := {44, 111} tii[7,47] := {16, 72} tii[7,48] := {57, 92} tii[7,49] := {49} tii[7,50] := {26, 82} tii[7,51] := {25, 88} tii[7,52] := {73} tii[7,53] := {15, 65} tii[7,54] := {43, 103} tii[7,55] := {76, 112} tii[7,56] := {58, 122} tii[7,57] := {9, 48} tii[7,58] := {70, 138} tii[7,59] := {67} tii[7,60] := {11, 50} tii[7,61] := {38, 102} tii[7,62] := {90} tii[7,63] := {4, 35} tii[7,64] := {20, 74} tii[7,65] := {17, 66} tii[7,66] := {2, 22} tii[7,67] := {31, 93} tii[7,68] := {98, 130} tii[7,69] := {42, 114} tii[7,70] := {87, 144} tii[7,71] := {1, 14} tii[7,72] := {28, 94} tii[7,73] := {56} tii[7,74] := {29, 89} tii[7,75] := {80} tii[7,76] := {12, 53} tii[7,77] := {81, 119} tii[7,78] := {3, 23} tii[7,79] := {78, 142} tii[7,80] := {41, 115} tii[7,81] := {13} tii[7,82] := {8, 54} tii[7,83] := {5, 33} tii[7,84] := {0, 7} cell#140 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {32} tii[11,2] := {31} tii[11,3] := {34, 35} tii[11,4] := {26} tii[11,5] := {29, 30} tii[11,6] := {25, 33} tii[11,7] := {19} tii[11,8] := {23, 24} tii[11,9] := {18, 28} tii[11,10] := {10, 27} tii[11,11] := {11} tii[11,12] := {16, 17} tii[11,13] := {9, 22} tii[11,14] := {5, 20} tii[11,15] := {3, 21} tii[11,16] := {6} tii[11,17] := {7, 8} tii[11,18] := {4, 15} tii[11,19] := {2, 12} tii[11,20] := {1, 14} tii[11,21] := {0, 13} cell#141 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {29} tii[6,2] := {34} tii[6,3] := {24} tii[6,4] := {16} tii[6,5] := {31} tii[6,6] := {33} tii[6,7] := {17} tii[6,8] := {12} tii[6,9] := {27} tii[6,10] := {11} tii[6,11] := {30} tii[6,12] := {32} tii[6,13] := {13} tii[6,14] := {9} tii[6,15] := {20} tii[6,16] := {7} tii[6,17] := {25} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {26} tii[6,21] := {10} tii[6,22] := {6} tii[6,23] := {14} tii[6,24] := {4} tii[6,25] := {18} tii[6,26] := {2} tii[6,27] := {21} tii[6,28] := {1} tii[6,29] := {19} tii[6,30] := {22} tii[6,31] := {23} tii[6,32] := {15} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#142 , |C| = 35 special orbit = [3, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {15} tii[5,5] := {28} tii[5,6] := {18} tii[5,7] := {25} tii[5,8] := {19} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {30} tii[5,12] := {27} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {24} tii[5,19] := {5} tii[5,20] := {14} tii[5,21] := {9} tii[5,22] := {20} tii[5,23] := {17} tii[5,24] := {22} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {12} tii[5,28] := {21} tii[5,29] := {10} tii[5,30] := {16} tii[5,31] := {26} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {13} cell#143 , |C| = 35 special orbit = [3, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {34} tii[5,2] := {11} tii[5,3] := {31} tii[5,4] := {15} tii[5,5] := {28} tii[5,6] := {18} tii[5,7] := {25} tii[5,8] := {19} tii[5,9] := {32} tii[5,10] := {23} tii[5,11] := {30} tii[5,12] := {27} tii[5,13] := {33} tii[5,14] := {2} tii[5,15] := {8} tii[5,16] := {3} tii[5,17] := {6} tii[5,18] := {24} tii[5,19] := {5} tii[5,20] := {14} tii[5,21] := {9} tii[5,22] := {20} tii[5,23] := {17} tii[5,24] := {22} tii[5,25] := {7} tii[5,26] := {29} tii[5,27] := {12} tii[5,28] := {21} tii[5,29] := {10} tii[5,30] := {16} tii[5,31] := {26} tii[5,32] := {0} tii[5,33] := {1} tii[5,34] := {4} tii[5,35] := {13} cell#144 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {35} tii[11,2] := {33} tii[11,3] := {30, 34} tii[11,4] := {29} tii[11,5] := {25, 32} tii[11,6] := {19, 31} tii[11,7] := {24} tii[11,8] := {18, 27} tii[11,9] := {11, 26} tii[11,10] := {8, 28} tii[11,11] := {17} tii[11,12] := {10, 22} tii[11,13] := {7, 20} tii[11,14] := {5, 23} tii[11,15] := {3, 21} tii[11,16] := {9} tii[11,17] := {6, 14} tii[11,18] := {4, 12} tii[11,19] := {2, 15} tii[11,20] := {1, 13} tii[11,21] := {0, 16} cell#145 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {31} tii[6,2] := {34} tii[6,3] := {26} tii[6,4] := {23} tii[6,5] := {32} tii[6,6] := {33} tii[6,7] := {20} tii[6,8] := {16} tii[6,9] := {27} tii[6,10] := {11} tii[6,11] := {30} tii[6,12] := {28} tii[6,13] := {12} tii[6,14] := {10} tii[6,15] := {21} tii[6,16] := {7} tii[6,17] := {25} tii[6,18] := {5} tii[6,19] := {22} tii[6,20] := {24} tii[6,21] := {9} tii[6,22] := {6} tii[6,23] := {13} tii[6,24] := {4} tii[6,25] := {19} tii[6,26] := {2} tii[6,27] := {14} tii[6,28] := {1} tii[6,29] := {18} tii[6,30] := {15} tii[6,31] := {29} tii[6,32] := {17} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#146 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {99} tii[8,2] := {100} tii[8,3] := {108} tii[8,4] := {119} tii[8,5] := {90} tii[8,6] := {41, 132} tii[8,7] := {58, 138} tii[8,8] := {109} tii[8,9] := {92, 124} tii[8,10] := {126} tii[8,11] := {133} tii[8,12] := {122, 139} tii[8,13] := {15} tii[8,14] := {81} tii[8,15] := {24} tii[8,16] := {34} tii[8,17] := {52} tii[8,18] := {65} tii[8,19] := {33} tii[8,20] := {51} tii[8,21] := {28, 129} tii[8,22] := {35} tii[8,23] := {72} tii[8,24] := {49} tii[8,25] := {43, 137} tii[8,26] := {68} tii[8,27] := {63} tii[8,28] := {82} tii[8,29] := {18, 120} tii[8,30] := {91} tii[8,31] := {48} tii[8,32] := {12, 103} tii[8,33] := {85} tii[8,34] := {73, 107} tii[8,35] := {67} tii[8,36] := {31, 131} tii[8,37] := {45, 115} tii[8,38] := {62} tii[8,39] := {110} tii[8,40] := {84} tii[8,41] := {93, 125} tii[8,42] := {76, 116} tii[8,43] := {50} tii[8,44] := {56} tii[8,45] := {75} tii[8,46] := {71} tii[8,47] := {29, 127} tii[8,48] := {101} tii[8,49] := {64} tii[8,50] := {94} tii[8,51] := {44, 135} tii[8,52] := {20, 111} tii[8,53] := {86} tii[8,54] := {60, 123} tii[8,55] := {80} tii[8,56] := {128} tii[8,57] := {55} tii[8,58] := {30, 121} tii[8,59] := {104} tii[8,60] := {112, 136} tii[8,61] := {74} tii[8,62] := {77, 106} tii[8,63] := {95, 130} tii[8,64] := {89} tii[8,65] := {114} tii[8,66] := {105, 134} tii[8,67] := {2} tii[8,68] := {5} tii[8,69] := {4} tii[8,70] := {23} tii[8,71] := {9} tii[8,72] := {38} tii[8,73] := {16} tii[8,74] := {27} tii[8,75] := {11, 102} tii[8,76] := {47} tii[8,77] := {8} tii[8,78] := {25} tii[8,79] := {21, 118} tii[8,80] := {6, 83} tii[8,81] := {66} tii[8,82] := {17} tii[8,83] := {39} tii[8,84] := {32, 97} tii[8,85] := {3, 69} tii[8,86] := {46, 79} tii[8,87] := {14} tii[8,88] := {40} tii[8,89] := {19, 113} tii[8,90] := {36} tii[8,91] := {26} tii[8,92] := {57} tii[8,93] := {7, 87} tii[8,94] := {53} tii[8,95] := {59, 88} tii[8,96] := {61, 98} tii[8,97] := {22} tii[8,98] := {42} tii[8,99] := {37} tii[8,100] := {13, 96} tii[8,101] := {70} tii[8,102] := {78, 117} tii[8,103] := {0} tii[8,104] := {10} tii[8,105] := {1, 54} cell#147 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {25} tii[6,2] := {30} tii[6,3] := {20} tii[6,4] := {17} tii[6,5] := {26} tii[6,6] := {31} tii[6,7] := {16} tii[6,8] := {13} tii[6,9] := {22} tii[6,10] := {11} tii[6,11] := {27} tii[6,12] := {32} tii[6,13] := {12} tii[6,14] := {10} tii[6,15] := {18} tii[6,16] := {7} tii[6,17] := {23} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {33} tii[6,21] := {9} tii[6,22] := {6} tii[6,23] := {14} tii[6,24] := {4} tii[6,25] := {19} tii[6,26] := {2} tii[6,27] := {24} tii[6,28] := {1} tii[6,29] := {29} tii[6,30] := {34} tii[6,31] := {21} tii[6,32] := {15} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#148 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {107} tii[7,2] := {128} tii[7,3] := {61, 98} tii[7,4] := {90, 121} tii[7,5] := {134} tii[7,6] := {118, 143} tii[7,7] := {117} tii[7,8] := {53, 87} tii[7,9] := {75, 113} tii[7,10] := {33, 64} tii[7,11] := {131} tii[7,12] := {21, 46} tii[7,13] := {110, 142} tii[7,14] := {54, 92} tii[7,15] := {71, 114} tii[7,16] := {108} tii[7,17] := {88, 127} tii[7,18] := {70, 115} tii[7,19] := {129} tii[7,20] := {62, 99} tii[7,21] := {91, 122} tii[7,22] := {135} tii[7,23] := {43, 77} tii[7,24] := {32, 57} tii[7,25] := {119, 145} tii[7,26] := {69, 101} tii[7,27] := {83, 124} tii[7,28] := {24, 55} tii[7,29] := {130} tii[7,30] := {17, 37} tii[7,31] := {47, 80} tii[7,32] := {109, 141} tii[7,33] := {10, 23} tii[7,34] := {93, 132} tii[7,35] := {59, 105} tii[7,36] := {49, 125} tii[7,37] := {136} tii[7,38] := {120, 146} tii[7,39] := {104, 139} tii[7,40] := {84, 144} tii[7,41] := {44} tii[7,42] := {66} tii[7,43] := {63} tii[7,44] := {42, 76} tii[7,45] := {89} tii[7,46] := {68, 100} tii[7,47] := {31, 56} tii[7,48] := {82, 123} tii[7,49] := {85} tii[7,50] := {18, 45} tii[7,51] := {51, 78} tii[7,52] := {111} tii[7,53] := {11, 26} tii[7,54] := {34, 67} tii[7,55] := {102, 137} tii[7,56] := {50, 95} tii[7,57] := {6, 16} tii[7,58] := {29, 73} tii[7,59] := {74} tii[7,60] := {15, 36} tii[7,61] := {35, 65} tii[7,62] := {97} tii[7,63] := {9, 22} tii[7,64] := {27, 58} tii[7,65] := {12, 28} tii[7,66] := {4, 13} tii[7,67] := {40, 81} tii[7,68] := {94, 133} tii[7,69] := {30, 106} tii[7,70] := {48, 96} tii[7,71] := {1, 7} tii[7,72] := {41, 126} tii[7,73] := {86} tii[7,74] := {52, 79} tii[7,75] := {112} tii[7,76] := {20, 39} tii[7,77] := {103, 138} tii[7,78] := {5, 14} tii[7,79] := {72, 116} tii[7,80] := {60, 140} tii[7,81] := {25} tii[7,82] := {19, 38} tii[7,83] := {2, 8} tii[7,84] := {0, 3} cell#149 , |C| = 49 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[4,1] := {14} tii[4,2] := {25} tii[4,3] := {32} tii[4,4] := {27, 40} tii[4,5] := {29} tii[4,6] := {36} tii[4,7] := {30, 42} tii[4,8] := {41} tii[4,9] := {35, 45} tii[4,10] := {28, 48} tii[4,11] := {2} tii[4,12] := {9} tii[4,13] := {3} tii[4,14] := {6} tii[4,15] := {5} tii[4,16] := {22} tii[4,17] := {11} tii[4,18] := {18, 33} tii[4,19] := {12, 26} tii[4,20] := {37} tii[4,21] := {8} tii[4,22] := {31, 43} tii[4,23] := {16} tii[4,24] := {23, 47} tii[4,25] := {19, 34} tii[4,26] := {15, 44} tii[4,27] := {13} tii[4,28] := {21} tii[4,29] := {24, 38} tii[4,30] := {20, 46} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {4} tii[4,34] := {7, 17} tii[4,35] := {10, 39} cell#150 , |C| = 49 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[4,1] := {33} tii[4,2] := {38} tii[4,3] := {44} tii[4,4] := {37, 48} tii[4,5] := {34} tii[4,6] := {40} tii[4,7] := {29, 47} tii[4,8] := {35} tii[4,9] := {22, 43} tii[4,10] := {15, 36} tii[4,11] := {3} tii[4,12] := {20} tii[4,13] := {5} tii[4,14] := {14} tii[4,15] := {11} tii[4,16] := {39} tii[4,17] := {23} tii[4,18] := {28, 46} tii[4,19] := {18, 41} tii[4,20] := {21} tii[4,21] := {17} tii[4,22] := {13, 32} tii[4,23] := {30} tii[4,24] := {6, 25} tii[4,25] := {27, 45} tii[4,26] := {4, 16} tii[4,27] := {12} tii[4,28] := {24} tii[4,29] := {19, 42} tii[4,30] := {8, 26} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {7} tii[4,34] := {10, 31} tii[4,35] := {2, 9} cell#151 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {13} tii[6,2] := {20} tii[6,3] := {19} tii[6,4] := {15} tii[6,5] := {27} tii[6,6] := {33} tii[6,7] := {16} tii[6,8] := {11} tii[6,9] := {23} tii[6,10] := {6} tii[6,11] := {29} tii[6,12] := {21} tii[6,13] := {18} tii[6,14] := {14} tii[6,15] := {26} tii[6,16] := {9} tii[6,17] := {32} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {34} tii[6,21] := {17} tii[6,22] := {12} tii[6,23] := {24} tii[6,24] := {7} tii[6,25] := {30} tii[6,26] := {3} tii[6,27] := {25} tii[6,28] := {1} tii[6,29] := {31} tii[6,30] := {22} tii[6,31] := {8} tii[6,32] := {10} tii[6,33] := {4} tii[6,34] := {2} tii[6,35] := {0} cell#152 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {20} tii[6,2] := {29} tii[6,3] := {17} tii[6,4] := {10} tii[6,5] := {25} tii[6,6] := {15} tii[6,7] := {21} tii[6,8] := {13} tii[6,9] := {30} tii[6,10] := {8} tii[6,11] := {23} tii[6,12] := {32} tii[6,13] := {18} tii[6,14] := {11} tii[6,15] := {27} tii[6,16] := {6} tii[6,17] := {19} tii[6,18] := {3} tii[6,19] := {28} tii[6,20] := {16} tii[6,21] := {22} tii[6,22] := {14} tii[6,23] := {31} tii[6,24] := {9} tii[6,25] := {24} tii[6,26] := {5} tii[6,27] := {33} tii[6,28] := {2} tii[6,29] := {26} tii[6,30] := {34} tii[6,31] := {12} tii[6,32] := {7} tii[6,33] := {4} tii[6,34] := {1} tii[6,35] := {0} cell#153 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {12} tii[3,2] := {17} tii[3,3] := {13, 23} tii[3,4] := {21} tii[3,5] := {15, 26} tii[3,6] := {10, 33} tii[3,7] := {18} tii[3,8] := {14, 24} tii[3,9] := {8, 31} tii[3,10] := {4, 25} tii[3,11] := {22} tii[3,12] := {16, 27} tii[3,13] := {11, 34} tii[3,14] := {6, 29} tii[3,15] := {3, 32} tii[3,16] := {2} tii[3,17] := {7} tii[3,18] := {9, 19} tii[3,19] := {5, 28} tii[3,20] := {1, 20} tii[3,21] := {0, 30} cell#154 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 10} tii[2,4] := {3, 8} tii[2,5] := {2, 11} tii[2,6] := {1, 9} tii[2,7] := {0, 12} cell#155 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {18} tii[3,2] := {25} tii[3,3] := {17, 33} tii[3,4] := {19} tii[3,5] := {11, 29} tii[3,6] := {7, 21} tii[3,7] := {24} tii[3,8] := {16, 34} tii[3,9] := {9, 27} tii[3,10] := {5, 32} tii[3,11] := {20} tii[3,12] := {12, 31} tii[3,13] := {8, 22} tii[3,14] := {3, 30} tii[3,15] := {1, 23} tii[3,16] := {6} tii[3,17] := {13} tii[3,18] := {10, 26} tii[3,19] := {4, 14} tii[3,20] := {2, 28} tii[3,21] := {0, 15} cell#156 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 11} tii[2,3] := {4, 7} tii[2,4] := {3, 12} tii[2,5] := {2, 8} tii[2,6] := {1, 10} tii[2,7] := {0, 9} cell#157 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}