TII subcells for the Spin(8,7) x PSp(4,3) block of Spin15 # cell#0 , |C| = 1 special orbit = [15] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 13 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {10, 12} tii[39,2] := {8, 11} tii[39,3] := {6, 9} tii[39,4] := {3, 7} tii[39,5] := {1, 5} tii[39,6] := {0, 4} tii[39,7] := {2} cell#2 , |C| = 35 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {1, 34} tii[38,2] := {8, 31} tii[38,3] := {0, 26} tii[38,4] := {6, 19} tii[38,5] := {18} tii[38,6] := {24} tii[38,7] := {4, 33} tii[38,8] := {9, 32} tii[38,9] := {13, 30} tii[38,10] := {17, 28} tii[38,11] := {23} tii[38,12] := {3, 29} tii[38,13] := {10, 27} tii[38,14] := {12, 25} tii[38,15] := {20} tii[38,16] := {5, 22} tii[38,17] := {7, 21} tii[38,18] := {15} tii[38,19] := {2, 16} tii[38,20] := {11} tii[38,21] := {14} cell#3 , |C| = 49 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4, 3],[]]+phi[[4],[3]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[35,1] := {16, 32} tii[35,2] := {25, 41} tii[35,3] := {44} tii[35,4] := {47} tii[35,5] := {48} tii[35,6] := {17, 33} tii[35,7] := {15, 38} tii[35,8] := {35} tii[35,9] := {43} tii[35,10] := {6, 23} tii[35,11] := {1, 13} tii[35,12] := {5, 29} tii[35,13] := {0, 12} tii[35,14] := {26} tii[35,15] := {4} tii[35,16] := {39} tii[35,17] := {14, 37} tii[35,18] := {8, 30} tii[35,19] := {34} tii[35,20] := {19} tii[35,21] := {42} tii[35,22] := {40} tii[35,23] := {45} tii[35,24] := {36} tii[35,25] := {46} tii[35,26] := {7, 24} tii[35,27] := {3, 22} tii[35,28] := {11} tii[35,29] := {9, 31} tii[35,30] := {20} tii[35,31] := {28} tii[35,32] := {2, 21} tii[35,33] := {10} tii[35,34] := {18} tii[35,35] := {27} cell#4 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {28} tii[37,3] := {18} tii[37,4] := {8} tii[37,5] := {2} tii[37,6] := {33} tii[37,7] := {32} tii[37,8] := {31} tii[37,9] := {30} tii[37,10] := {29} tii[37,11] := {26} tii[37,12] := {25} tii[37,13] := {22} tii[37,14] := {21} tii[37,15] := {16} tii[37,16] := {27} tii[37,17] := {23} tii[37,18] := {24} tii[37,19] := {19} tii[37,20] := {20} tii[37,21] := {14} tii[37,22] := {15} tii[37,23] := {11} tii[37,24] := {17} tii[37,25] := {12} tii[37,26] := {13} tii[37,27] := {9} tii[37,28] := {10} tii[37,29] := {6} tii[37,30] := {7} tii[37,31] := {4} tii[37,32] := {5} tii[37,33] := {3} tii[37,34] := {1} tii[37,35] := {0} cell#5 , |C| = 147 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {135, 146} tii[34,2] := {99, 137} tii[34,3] := {48, 106} tii[34,4] := {61} tii[34,5] := {26, 141} tii[34,6] := {62, 126} tii[34,7] := {115, 142} tii[34,8] := {25, 102} tii[34,9] := {85, 130} tii[34,10] := {52, 112} tii[34,11] := {68} tii[34,12] := {91} tii[34,13] := {11, 144} tii[34,14] := {127, 145} tii[34,15] := {27, 139} tii[34,16] := {41, 114} tii[34,17] := {9, 84} tii[34,18] := {117, 143} tii[34,19] := {43, 132} tii[34,20] := {66, 119} tii[34,21] := {33, 97} tii[34,22] := {104, 140} tii[34,23] := {65, 122} tii[34,24] := {49} tii[34,25] := {90, 133} tii[34,26] := {75} tii[34,27] := {22, 120} tii[34,28] := {83, 129} tii[34,29] := {8, 107} tii[34,30] := {2, 67} tii[34,31] := {28, 93} tii[34,32] := {69, 124} tii[34,33] := {17, 81} tii[34,34] := {31} tii[34,35] := {54, 110} tii[34,36] := {57} tii[34,37] := {0, 76} tii[34,38] := {32, 98} tii[34,39] := {4, 58} tii[34,40] := {16} tii[34,41] := {19, 79} tii[34,42] := {38} tii[34,43] := {21} tii[34,44] := {40} tii[34,45] := {44, 136} tii[34,46] := {63, 128} tii[34,47] := {82, 118} tii[34,48] := {105} tii[34,49] := {12, 131} tii[34,50] := {24, 121} tii[34,51] := {101, 138} tii[34,52] := {42, 116} tii[34,53] := {46, 109} tii[34,54] := {87, 134} tii[34,55] := {64, 103} tii[34,56] := {73, 123} tii[34,57] := {89} tii[34,58] := {10, 108} tii[34,59] := {30, 94} tii[34,60] := {71, 125} tii[34,61] := {47, 88} tii[34,62] := {56, 111} tii[34,63] := {74} tii[34,64] := {15, 78} tii[34,65] := {53} tii[34,66] := {37, 96} tii[34,67] := {23, 100} tii[34,68] := {45, 86} tii[34,69] := {72} tii[34,70] := {3, 92} tii[34,71] := {29, 70} tii[34,72] := {14, 77} tii[34,73] := {51, 113} tii[34,74] := {36, 95} tii[34,75] := {55} tii[34,76] := {5, 59} tii[34,77] := {34} tii[34,78] := {20, 80} tii[34,79] := {13, 50} tii[34,80] := {35} tii[34,81] := {1, 39} tii[34,82] := {18} tii[34,83] := {7, 60} tii[34,84] := {6} cell#6 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {31} tii[37,3] := {25} tii[37,4] := {20} tii[37,5] := {9} tii[37,6] := {26} tii[37,7] := {33} tii[37,8] := {21} tii[37,9] := {32} tii[37,10] := {17} tii[37,11] := {30} tii[37,12] := {12} tii[37,13] := {27} tii[37,14] := {15} tii[37,15] := {22} tii[37,16] := {16} tii[37,17] := {11} tii[37,18] := {29} tii[37,19] := {7} tii[37,20] := {28} tii[37,21] := {10} tii[37,22] := {23} tii[37,23] := {18} tii[37,24] := {6} tii[37,25] := {3} tii[37,26] := {24} tii[37,27] := {5} tii[37,28] := {19} tii[37,29] := {13} tii[37,30] := {0} tii[37,31] := {2} tii[37,32] := {14} tii[37,33] := {8} tii[37,34] := {1} tii[37,35] := {4} cell#7 , |C| = 147 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {111, 146} tii[34,2] := {71, 142} tii[34,3] := {63, 130} tii[34,4] := {102} tii[34,5] := {16, 120} tii[34,6] := {40, 99} tii[34,7] := {86, 144} tii[34,8] := {64, 95} tii[34,9] := {61, 139} tii[34,10] := {35, 128} tii[34,11] := {92} tii[34,12] := {108} tii[34,13] := {5, 126} tii[34,14] := {100, 145} tii[34,15] := {17, 116} tii[34,16] := {25, 85} tii[34,17] := {50, 81} tii[34,18] := {89, 143} tii[34,19] := {27, 124} tii[34,20] := {47, 135} tii[34,21] := {21, 121} tii[34,22] := {73, 140} tii[34,23] := {39, 131} tii[34,24] := {78} tii[34,25] := {56, 136} tii[34,26] := {97} tii[34,27] := {12, 91} tii[34,28] := {60, 138} tii[34,29] := {3, 103} tii[34,30] := {36, 67} tii[34,31] := {10, 114} tii[34,32] := {45, 133} tii[34,33] := {34, 113} tii[34,34] := {65} tii[34,35] := {28, 125} tii[34,36] := {83} tii[34,37] := {32, 82} tii[34,38] := {49, 122} tii[34,39] := {18, 94} tii[34,40] := {62} tii[34,41] := {33, 110} tii[34,42] := {77} tii[34,43] := {76} tii[34,44] := {90} tii[34,45] := {30, 112} tii[34,46] := {41, 101} tii[34,47] := {52, 87} tii[34,48] := {69} tii[34,49] := {6, 104} tii[34,50] := {14, 115} tii[34,51] := {75, 141} tii[34,52] := {26, 88} tii[34,53] := {24, 123} tii[34,54] := {59, 137} tii[34,55] := {38, 72} tii[34,56] := {44, 132} tii[34,57] := {55} tii[34,58] := {4, 107} tii[34,59] := {11, 117} tii[34,60] := {46, 134} tii[34,61] := {51, 84} tii[34,62] := {29, 127} tii[34,63] := {68} tii[34,64] := {8, 105} tii[34,65] := {80} tii[34,66] := {20, 118} tii[34,67] := {13, 74} tii[34,68] := {23, 58} tii[34,69] := {43} tii[34,70] := {0, 96} tii[34,71] := {37, 70} tii[34,72] := {2, 106} tii[34,73] := {31, 129} tii[34,74] := {15, 119} tii[34,75] := {54} tii[34,76] := {1, 93} tii[34,77] := {66} tii[34,78] := {9, 109} tii[34,79] := {22, 57} tii[34,80] := {42} tii[34,81] := {7, 79} tii[34,82] := {53} tii[34,83] := {19, 98} tii[34,84] := {48} cell#8 , |C| = 140 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 3],[1]]+phi[[3, 1],[3]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[29,1] := {43, 139} tii[29,2] := {119} tii[29,3] := {138} tii[29,4] := {89, 90} tii[29,5] := {112} tii[29,6] := {27, 127} tii[29,7] := {97} tii[29,8] := {131} tii[29,9] := {136} tii[29,10] := {64, 65} tii[29,11] := {69, 70} tii[29,12] := {13, 133} tii[29,13] := {98} tii[29,14] := {2, 122} tii[29,15] := {75} tii[29,16] := {79} tii[29,17] := {123} tii[29,18] := {104} tii[29,19] := {132} tii[29,20] := {42, 88} tii[29,21] := {25, 137} tii[29,22] := {24, 106} tii[29,23] := {76} tii[29,24] := {15, 135} tii[29,25] := {14, 117} tii[29,26] := {32} tii[29,27] := {96} tii[29,28] := {113} tii[29,29] := {10, 128} tii[29,30] := {60} tii[29,31] := {125} tii[29,32] := {85} tii[29,33] := {110} tii[29,34] := {62} tii[29,35] := {118} tii[29,36] := {94} tii[29,37] := {129} tii[29,38] := {126} tii[29,39] := {134} tii[29,40] := {92, 93} tii[29,41] := {100} tii[29,42] := {116} tii[29,43] := {67, 68} tii[29,44] := {46, 47} tii[29,45] := {49, 50} tii[29,46] := {8, 111} tii[29,47] := {78} tii[29,48] := {55} tii[29,49] := {37} tii[29,50] := {103} tii[29,51] := {84} tii[29,52] := {26, 66} tii[29,53] := {99} tii[29,54] := {17, 121} tii[29,55] := {16, 86} tii[29,56] := {33} tii[29,57] := {115} tii[29,58] := {11, 108} tii[29,59] := {80} tii[29,60] := {61} tii[29,61] := {41} tii[29,62] := {124} tii[29,63] := {72} tii[29,64] := {44, 45} tii[29,65] := {28, 29} tii[29,66] := {54} tii[29,67] := {21} tii[29,68] := {83} tii[29,69] := {12, 91} tii[29,70] := {5, 105} tii[29,71] := {6, 130} tii[29,72] := {51, 52} tii[29,73] := {77} tii[29,74] := {18} tii[29,75] := {3, 120} tii[29,76] := {38} tii[29,77] := {102} tii[29,78] := {56} tii[29,79] := {39} tii[29,80] := {1, 87} tii[29,81] := {23} tii[29,82] := {58} tii[29,83] := {114} tii[29,84] := {0, 109} tii[29,85] := {48} tii[29,86] := {53} tii[29,87] := {82} tii[29,88] := {34} tii[29,89] := {40} tii[29,90] := {19} tii[29,91] := {101} tii[29,92] := {71} tii[29,93] := {107} tii[29,94] := {73, 74} tii[29,95] := {59} tii[29,96] := {81} tii[29,97] := {30, 31} tii[29,98] := {22} tii[29,99] := {7, 63} tii[29,100] := {57} tii[29,101] := {36} tii[29,102] := {4, 95} tii[29,103] := {20} tii[29,104] := {35} tii[29,105] := {9} cell#9 , |C| = 105 special orbit = [7, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {103} tii[27,3] := {64} tii[27,4] := {72} tii[27,5] := {93} tii[27,6] := {85} tii[27,7] := {4} tii[27,8] := {45} tii[27,9] := {14} tii[27,10] := {48} tii[27,11] := {55} tii[27,12] := {98} tii[27,13] := {90} tii[27,14] := {92} tii[27,15] := {41} tii[27,16] := {69} tii[27,17] := {63} tii[27,18] := {102} tii[27,19] := {39} tii[27,20] := {71} tii[27,21] := {76} tii[27,22] := {97} tii[27,23] := {100} tii[27,24] := {84} tii[27,25] := {75} tii[27,26] := {95} tii[27,27] := {88} tii[27,28] := {82} tii[27,29] := {101} tii[27,30] := {91} tii[27,31] := {99} tii[27,32] := {67} tii[27,33] := {62} tii[27,34] := {0} tii[27,35] := {49} tii[27,36] := {5} tii[27,37] := {6} tii[27,38] := {32} tii[27,39] := {38} tii[27,40] := {9} tii[27,41] := {81} tii[27,42] := {44} tii[27,43] := {28} tii[27,44] := {21} tii[27,45] := {53} tii[27,46] := {13} tii[27,47] := {46} tii[27,48] := {61} tii[27,49] := {26} tii[27,50] := {89} tii[27,51] := {57} tii[27,52] := {40} tii[27,53] := {51} tii[27,54] := {68} tii[27,55] := {78} tii[27,56] := {56} tii[27,57] := {77} tii[27,58] := {1} tii[27,59] := {33} tii[27,60] := {29} tii[27,61] := {3} tii[27,62] := {23} tii[27,63] := {12} tii[27,64] := {24} tii[27,65] := {65} tii[27,66] := {43} tii[27,67] := {74} tii[27,68] := {96} tii[27,69] := {15} tii[27,70] := {8} tii[27,71] := {37} tii[27,72] := {58} tii[27,73] := {87} tii[27,74] := {34} tii[27,75] := {20} tii[27,76] := {79} tii[27,77] := {59} tii[27,78] := {73} tii[27,79] := {31} tii[27,80] := {86} tii[27,81] := {80} tii[27,82] := {25} tii[27,83] := {60} tii[27,84] := {50} tii[27,85] := {83} tii[27,86] := {66} tii[27,87] := {94} tii[27,88] := {10} tii[27,89] := {17} tii[27,90] := {54} tii[27,91] := {36} tii[27,92] := {27} tii[27,93] := {52} tii[27,94] := {2} tii[27,95] := {22} tii[27,96] := {11} tii[27,97] := {16} tii[27,98] := {42} tii[27,99] := {18} tii[27,100] := {35} tii[27,101] := {70} tii[27,102] := {30} tii[27,103] := {7} tii[27,104] := {19} tii[27,105] := {47} cell#10 , |C| = 154 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {147, 152} tii[32,2] := {120, 142} tii[32,3] := {72, 116} tii[32,4] := {80, 118} tii[32,5] := {141, 151} tii[32,6] := {95, 131} tii[32,7] := {129, 148} tii[32,8] := {43, 91} tii[32,9] := {110, 140} tii[32,10] := {52, 93} tii[32,11] := {86, 130} tii[32,12] := {111} tii[32,13] := {84, 125} tii[32,14] := {24, 66} tii[32,15] := {58, 107} tii[32,16] := {31, 68} tii[32,17] := {35, 88} tii[32,18] := {61} tii[32,19] := {15, 56} tii[32,20] := {14, 57} tii[32,21] := {5, 40} tii[32,22] := {18} tii[32,23] := {32, 33} tii[32,24] := {20} tii[32,25] := {146, 153} tii[32,26] := {136, 149} tii[32,27] := {135, 150} tii[32,28] := {122, 144} tii[32,29] := {121, 145} tii[32,30] := {99, 138} tii[32,31] := {98, 139} tii[32,32] := {123, 124} tii[32,33] := {119, 143} tii[32,34] := {109, 137} tii[32,35] := {85, 128} tii[32,36] := {96, 134} tii[32,37] := {97, 133} tii[32,38] := {60, 112} tii[32,39] := {73, 127} tii[32,40] := {74, 126} tii[32,41] := {87} tii[32,42] := {100, 101} tii[32,43] := {71, 117} tii[32,44] := {59, 108} tii[32,45] := {46, 106} tii[32,46] := {36, 89} tii[32,47] := {47, 105} tii[32,48] := {62} tii[32,49] := {77, 78} tii[32,50] := {27, 115} tii[32,51] := {17, 64} tii[32,52] := {38} tii[32,53] := {50, 102} tii[32,54] := {21} tii[32,55] := {94, 132} tii[32,56] := {70, 113} tii[32,57] := {69, 114} tii[32,58] := {45, 103} tii[32,59] := {44, 104} tii[32,60] := {75, 76} tii[32,61] := {42, 92} tii[32,62] := {34, 83} tii[32,63] := {25, 82} tii[32,64] := {26, 81} tii[32,65] := {16, 63} tii[32,66] := {48, 49} tii[32,67] := {37} tii[32,68] := {12, 90} tii[32,69] := {6, 41} tii[32,70] := {19} tii[32,71] := {30, 79} tii[32,72] := {8} tii[32,73] := {23, 67} tii[32,74] := {11, 53} tii[32,75] := {10, 54} tii[32,76] := {28, 29} tii[32,77] := {3, 65} tii[32,78] := {1, 22} tii[32,79] := {13, 51} tii[32,80] := {7} tii[32,81] := {2} tii[32,82] := {0, 55} tii[32,83] := {4, 39} tii[32,84] := {9} cell#11 , |C| = 553 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2, 1],[1]]+phi[[3, 1, 1],[2]]+phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[26,1] := {470, 471, 528, 552} tii[26,2] := {269, 402, 508, 542} tii[26,3] := {486, 531} tii[26,4] := {93, 495} tii[26,5] := {413, 414, 514, 551} tii[26,6] := {221, 385} tii[26,7] := {278, 279, 422, 544} tii[26,8] := {192, 327, 465, 532} tii[26,9] := {140, 265, 302, 523} tii[26,10] := {440, 507} tii[26,11] := {381} tii[26,12] := {449} tii[26,13] := {472, 473, 474, 548} tii[26,14] := {87, 232} tii[26,15] := {125, 274, 444, 521} tii[26,16] := {415, 416, 417, 545} tii[26,17] := {36, 142, 308, 453} tii[26,18] := {380, 489} tii[26,19] := {371, 372, 466, 535} tii[26,20] := {224} tii[26,21] := {313, 515} tii[26,22] := {316} tii[26,23] := {193, 194, 494, 539} tii[26,24] := {441, 442} tii[26,25] := {135, 136, 445, 524} tii[26,26] := {225} tii[26,27] := {100, 496} tii[26,28] := {317} tii[26,29] := {492, 493} tii[26,30] := {452} tii[26,31] := {120, 121, 510, 511} tii[26,32] := {252, 253, 418, 419} tii[26,33] := {357, 358, 460, 547} tii[26,34] := {216, 331, 343, 534} tii[26,35] := {405, 406} tii[26,36] := {480, 481} tii[26,37] := {66, 67, 526, 527} tii[26,38] := {45, 447} tii[26,39] := {423, 424, 503, 550} tii[26,40] := {148, 310} tii[26,41] := {122, 123, 501, 502} tii[26,42] := {195, 196, 351, 537} tii[26,43] := {176, 177, 347, 348} tii[26,44] := {94, 386} tii[26,45] := {80, 186, 218, 498} tii[26,46] := {377, 378, 464, 546} tii[26,47] := {182, 183, 463, 525} tii[26,48] := {139, 250, 412, 518} tii[26,49] := {303} tii[26,50] := {151, 322} tii[26,51] := {333, 334} tii[26,52] := {285, 286, 426, 540} tii[26,53] := {388} tii[26,54] := {238} tii[26,55] := {427, 428} tii[26,56] := {111, 251, 400, 401} tii[26,57] := {88, 233} tii[26,58] := {275, 276, 277, 522} tii[26,59] := {207, 329, 469, 530} tii[26,60] := {62, 328, 332, 456} tii[26,61] := {43, 170} tii[26,62] := {37, 146, 155, 454} tii[26,63] := {212, 213, 340, 490} tii[26,64] := {226} tii[26,65] := {260, 407} tii[26,66] := {101} tii[26,67] := {129, 284, 425, 504} tii[26,68] := {164, 434} tii[26,69] := {366, 482} tii[26,70] := {318} tii[26,71] := {336, 457} tii[26,72] := {83, 84, 228, 397} tii[26,73] := {154} tii[26,74] := {51, 320} tii[26,75] := {97} tii[26,76] := {430, 505} tii[26,77] := {242} tii[26,78] := {171} tii[26,79] := {29, 30, 512, 513} tii[26,80] := {156, 448} tii[26,81] := {355, 356, 477, 549} tii[26,82] := {109, 110, 270, 271} tii[26,83] := {68, 69, 475, 476} tii[26,84] := {223, 393} tii[26,85] := {79, 174, 342, 487} tii[26,86] := {296, 297, 437, 543} tii[26,87] := {115, 116, 436, 509} tii[26,88] := {258, 259} tii[26,89] := {315} tii[26,90] := {201, 202, 387, 533} tii[26,91] := {364, 365} tii[26,92] := {352, 353, 354, 538} tii[26,93] := {31, 32, 420, 421} tii[26,94] := {58, 175, 325, 326} tii[26,95] := {40, 160} tii[26,96] := {134, 248, 411, 506} tii[26,97] := {294, 295, 410, 520} tii[26,98] := {24, 247, 254, 398} tii[26,99] := {63, 64, 375, 468} tii[26,100] := {150, 321} tii[26,101] := {214, 215, 376, 536} tii[26,102] := {14, 86, 229, 396} tii[26,103] := {15, 106} tii[26,104] := {152} tii[26,105] := {184, 335} tii[26,106] := {237, 485} tii[26,107] := {130, 131, 314, 517} tii[26,108] := {73, 200, 359, 461} tii[26,109] := {235} tii[26,110] := {48} tii[26,111] := {287, 429} tii[26,112] := {239} tii[26,113] := {219, 220, 341, 491} tii[26,114] := {28, 112, 301, 446} tii[26,115] := {261, 399} tii[26,116] := {92} tii[26,117] := {38, 39, 307, 455} tii[26,118] := {309} tii[26,119] := {168, 435} tii[26,120] := {47} tii[26,121] := {367, 462} tii[26,122] := {18, 392} tii[26,123] := {166} tii[26,124] := {77, 197, 241, 497} tii[26,125] := {107, 379} tii[26,126] := {246} tii[26,127] := {23, 147, 272, 273} tii[26,128] := {42, 169} tii[26,129] := {78, 211, 384, 488} tii[26,130] := {7, 210, 222, 338} tii[26,131] := {119, 304} tii[26,132] := {99} tii[26,133] := {33, 163, 312, 432} tii[26,134] := {205, 389} tii[26,135] := {81, 82, 383, 499} tii[26,136] := {1, 141, 149, 305} tii[26,137] := {185, 339} tii[26,138] := {153} tii[26,139] := {157} tii[26,140] := {49, 451} tii[26,141] := {288, 433} tii[26,142] := {12, 102, 234, 390} tii[26,143] := {96} tii[26,144] := {240} tii[26,145] := {20, 394} tii[26,146] := {324} tii[26,147] := {262, 263} tii[26,148] := {158} tii[26,149] := {368, 369} tii[26,150] := {395} tii[26,151] := {187, 188, 478, 479} tii[26,152] := {256, 257, 438, 439} tii[26,153] := {362, 363} tii[26,154] := {70, 71, 458, 459} tii[26,155] := {46, 311} tii[26,156] := {117, 118, 403, 500} tii[26,157] := {91, 244} tii[26,158] := {298, 299, 404, 541} tii[26,159] := {180, 181, 373, 374} tii[26,160] := {203, 204, 361, 529} tii[26,161] := {165} tii[26,162] := {282, 283} tii[26,163] := {65, 179, 330, 467} tii[26,164] := {44, 172} tii[26,165] := {344, 345} tii[26,166] := {104} tii[26,167] := {132, 281, 289, 516} tii[26,168] := {56} tii[26,169] := {10, 11, 349, 350} tii[26,170] := {90, 243} tii[26,171] := {113, 114, 290, 291} tii[26,172] := {25, 26, 292, 409} tii[26,173] := {137, 138, 293, 519} tii[26,174] := {162} tii[26,175] := {198, 199} tii[26,176] := {74, 75, 236, 484} tii[26,177] := {27, 249, 255, 408} tii[26,178] := {9, 59, 217, 382} tii[26,179] := {16, 108} tii[26,180] := {143, 144, 264, 443} tii[26,181] := {230} tii[26,182] := {266, 267} tii[26,183] := {103, 370} tii[26,184] := {50} tii[26,185] := {35, 126, 167, 450} tii[26,186] := {76, 206, 360, 483} tii[26,187] := {55, 300} tii[26,188] := {21} tii[26,189] := {2, 41, 145, 306} tii[26,190] := {159} tii[26,191] := {191, 346} tii[26,192] := {13, 98, 105, 391} tii[26,193] := {54} tii[26,194] := {22, 245} tii[26,195] := {60, 61, 208, 209} tii[26,196] := {127, 128} tii[26,197] := {8, 173, 178, 337} tii[26,198] := {4, 57} tii[26,199] := {189, 190} tii[26,200] := {34, 133, 280, 431} tii[26,201] := {17} tii[26,202] := {5} tii[26,203] := {0, 85, 89, 227} tii[26,204] := {95} tii[26,205] := {124, 268} tii[26,206] := {3, 52, 161, 319} tii[26,207] := {19} tii[26,208] := {6, 323} tii[26,209] := {72, 231} tii[26,210] := {53} cell#12 , |C| = 105 special orbit = [7, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {104} tii[27,2] := {96} tii[27,3] := {79} tii[27,4] := {44} tii[27,5] := {100} tii[27,6] := {83} tii[27,7] := {17} tii[27,8] := {89} tii[27,9] := {38} tii[27,10] := {68} tii[27,11] := {32} tii[27,12] := {102} tii[27,13] := {97} tii[27,14] := {74} tii[27,15] := {66} tii[27,16] := {81} tii[27,17] := {93} tii[27,18] := {103} tii[27,19] := {13} tii[27,20] := {45} tii[27,21] := {86} tii[27,22] := {84} tii[27,23] := {101} tii[27,24] := {92} tii[27,25] := {40} tii[27,26] := {98} tii[27,27] := {59} tii[27,28] := {51} tii[27,29] := {88} tii[27,30] := {64} tii[27,31] := {77} tii[27,32] := {57} tii[27,33] := {37} tii[27,34] := {8} tii[27,35] := {69} tii[27,36] := {18} tii[27,37] := {25} tii[27,38] := {56} tii[27,39] := {63} tii[27,40] := {27} tii[27,41] := {91} tii[27,42] := {24} tii[27,43] := {52} tii[27,44] := {47} tii[27,45] := {70} tii[27,46] := {14} tii[27,47] := {65} tii[27,48] := {35} tii[27,49] := {6} tii[27,50] := {95} tii[27,51] := {75} tii[27,52] := {41} tii[27,53] := {21} tii[27,54] := {60} tii[27,55] := {87} tii[27,56] := {53} tii[27,57] := {71} tii[27,58] := {29} tii[27,59] := {80} tii[27,60] := {12} tii[27,61] := {39} tii[27,62] := {73} tii[27,63] := {58} tii[27,64] := {4} tii[27,65] := {76} tii[27,66] := {23} tii[27,67] := {85} tii[27,68] := {99} tii[27,69] := {1} tii[27,70] := {26} tii[27,71] := {62} tii[27,72] := {28} tii[27,73] := {94} tii[27,74] := {10} tii[27,75] := {46} tii[27,76] := {48} tii[27,77] := {78} tii[27,78] := {42} tii[27,79] := {55} tii[27,80] := {61} tii[27,81] := {90} tii[27,82] := {5} tii[27,83] := {36} tii[27,84] := {20} tii[27,85] := {54} tii[27,86] := {30} tii[27,87] := {72} tii[27,88] := {9} tii[27,89] := {16} tii[27,90] := {50} tii[27,91] := {34} tii[27,92] := {7} tii[27,93] := {22} tii[27,94] := {15} tii[27,95] := {49} tii[27,96] := {33} tii[27,97] := {2} tii[27,98] := {67} tii[27,99] := {43} tii[27,100] := {11} tii[27,101] := {82} tii[27,102] := {31} tii[27,103] := {0} tii[27,104] := {3} tii[27,105] := {19} cell#13 , |C| = 245 special orbit = [5, 4, 4, 1, 1] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2, 1],[2]]+phi[[2, 2],[2, 1]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[18,1] := {188, 244} tii[18,2] := {53, 211} tii[18,3] := {161, 243} tii[18,4] := {85, 225} tii[18,5] := {101, 212} tii[18,6] := {175, 240} tii[18,7] := {126, 224} tii[18,8] := {163} tii[18,9] := {195} tii[18,10] := {198, 231} tii[18,11] := {176, 226} tii[18,12] := {205} tii[18,13] := {77, 217} tii[18,14] := {109, 230} tii[18,15] := {16, 148} tii[18,16] := {32, 189} tii[18,17] := {52, 232} tii[18,18] := {61, 208} tii[18,19] := {40, 137} tii[18,20] := {138, 239} tii[18,21] := {58, 200} tii[18,22] := {93, 221} tii[18,23] := {74, 237} tii[18,24] := {51, 162} tii[18,25] := {165, 242} tii[18,26] := {72, 186} tii[18,27] := {103, 228} tii[18,28] := {79, 136} tii[18,29] := {107} tii[18,30] := {116} tii[18,31] := {142, 238} tii[18,32] := {146} tii[18,33] := {97, 159} tii[18,34] := {128} tii[18,35] := {7, 130} tii[18,36] := {31, 227} tii[18,37] := {60, 168} tii[18,38] := {111, 235} tii[18,39] := {37, 191} tii[18,40] := {67, 214} tii[18,41] := {1, 102} tii[18,42] := {50, 233} tii[18,43] := {76, 190} tii[18,44] := {39, 193} tii[18,45] := {9, 132} tii[18,46] := {135, 241} tii[18,47] := {134} tii[18,48] := {78, 219} tii[18,49] := {98, 209} tii[18,50] := {20, 164} tii[18,51] := {105, 167} tii[18,52] := {27, 171} tii[18,53] := {173} tii[18,54] := {115, 234} tii[18,55] := {45, 196} tii[18,56] := {144} tii[18,57] := {34, 179} tii[18,58] := {108} tii[18,59] := {125, 187} tii[18,60] := {88} tii[18,61] := {64, 207} tii[18,62] := {157} tii[18,63] := {147} tii[18,64] := {121} tii[18,65] := {70, 218} tii[18,66] := {131, 192} tii[18,67] := {153, 236} tii[18,68] := {96, 199} tii[18,69] := {170} tii[18,70] := {127, 222} tii[18,71] := {152, 210} tii[18,72] := {71, 178} tii[18,73] := {140} tii[18,74] := {185} tii[18,75] := {99, 206} tii[18,76] := {158} tii[18,77] := {84, 180} tii[18,78] := {6, 122} tii[18,79] := {59, 202} tii[18,80] := {17, 149} tii[18,81] := {23, 110} tii[18,82] := {36, 177} tii[18,83] := {42, 182} tii[18,84] := {66, 204} tii[18,85] := {54, 197} tii[18,86] := {35, 86} tii[18,87] := {89, 216} tii[18,88] := {65} tii[18,89] := {0, 75} tii[18,90] := {22, 166} tii[18,91] := {8, 174} tii[18,92] := {38, 220} tii[18,93] := {3, 104} tii[18,94] := {11, 133} tii[18,95] := {14, 143} tii[18,96] := {26, 203} tii[18,97] := {29, 172} tii[18,98] := {81, 215} tii[18,99] := {57, 112} tii[18,100] := {83} tii[18,101] := {19, 150} tii[18,102] := {10, 80} tii[18,103] := {41, 181} tii[18,104] := {92} tii[18,105] := {44, 183} tii[18,106] := {118, 229} tii[18,107] := {120} tii[18,108] := {62} tii[18,109] := {28, 117} tii[18,110] := {95} tii[18,111] := {69} tii[18,112] := {30, 124} tii[18,113] := {49, 156} tii[18,114] := {87} tii[18,115] := {100} tii[18,116] := {2, 160} tii[18,117] := {21, 213} tii[18,118] := {13, 194} tii[18,119] := {18, 106} tii[18,120] := {56, 201} tii[18,121] := {82, 139} tii[18,122] := {25, 169} tii[18,123] := {43, 145} tii[18,124] := {119} tii[18,125] := {91, 223} tii[18,126] := {94} tii[18,127] := {48, 151} tii[18,128] := {114} tii[18,129] := {12, 141} tii[18,130] := {73, 184} tii[18,131] := {68} tii[18,132] := {129} tii[18,133] := {33, 123} tii[18,134] := {63, 155} tii[18,135] := {4, 55} tii[18,136] := {24, 154} tii[18,137] := {15, 90} tii[18,138] := {47} tii[18,139] := {5, 113} tii[18,140] := {46} cell#14 , |C| = 126 special orbit = [7, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {123} tii[24,2] := {107} tii[24,3] := {82} tii[24,4] := {74} tii[24,5] := {37} tii[24,6] := {11} tii[24,7] := {124} tii[24,8] := {108} tii[24,9] := {83} tii[24,10] := {120} tii[24,11] := {121} tii[24,12] := {93} tii[24,13] := {94} tii[24,14] := {114} tii[24,15] := {115} tii[24,16] := {59} tii[24,17] := {60} tii[24,18] := {104} tii[24,19] := {105} tii[24,20] := {91} tii[24,21] := {85} tii[24,22] := {86} tii[24,23] := {41} tii[24,24] := {42} tii[24,25] := {68} tii[24,26] := {69} tii[24,27] := {52} tii[24,28] := {31} tii[24,29] := {32} tii[24,30] := {19} tii[24,31] := {125} tii[24,32] := {75} tii[24,33] := {117} tii[24,34] := {119} tii[24,35] := {38} tii[24,36] := {111} tii[24,37] := {113} tii[24,38] := {103} tii[24,39] := {109} tii[24,40] := {62} tii[24,41] := {63} tii[24,42] := {23} tii[24,43] := {49} tii[24,44] := {48} tii[24,45] := {99} tii[24,46] := {97} tii[24,47] := {22} tii[24,48] := {33} tii[24,49] := {88} tii[24,50] := {84} tii[24,51] := {16} tii[24,52] := {17} tii[24,53] := {7} tii[24,54] := {67} tii[24,55] := {76} tii[24,56] := {12} tii[24,57] := {55} tii[24,58] := {57} tii[24,59] := {45} tii[24,60] := {39} tii[24,61] := {5} tii[24,62] := {6} tii[24,63] := {1} tii[24,64] := {26} tii[24,65] := {13} tii[24,66] := {4} tii[24,67] := {122} tii[24,68] := {118} tii[24,69] := {116} tii[24,70] := {112} tii[24,71] := {110} tii[24,72] := {102} tii[24,73] := {106} tii[24,74] := {100} tii[24,75] := {101} tii[24,76] := {96} tii[24,77] := {98} tii[24,78] := {89} tii[24,79] := {90} tii[24,80] := {87} tii[24,81] := {72} tii[24,82] := {81} tii[24,83] := {70} tii[24,84] := {71} tii[24,85] := {66} tii[24,86] := {53} tii[24,87] := {35} tii[24,88] := {95} tii[24,89] := {92} tii[24,90] := {78} tii[24,91] := {79} tii[24,92] := {80} tii[24,93] := {77} tii[24,94] := {65} tii[24,95] := {64} tii[24,96] := {61} tii[24,97] := {58} tii[24,98] := {50} tii[24,99] := {51} tii[24,100] := {47} tii[24,101] := {46} tii[24,102] := {34} tii[24,103] := {20} tii[24,104] := {43} tii[24,105] := {40} tii[24,106] := {28} tii[24,107] := {27} tii[24,108] := {9} tii[24,109] := {73} tii[24,110] := {56} tii[24,111] := {54} tii[24,112] := {44} tii[24,113] := {36} tii[24,114] := {30} tii[24,115] := {29} tii[24,116] := {25} tii[24,117] := {18} tii[24,118] := {8} tii[24,119] := {24} tii[24,120] := {21} tii[24,121] := {15} tii[24,122] := {14} tii[24,123] := {2} tii[24,124] := {10} tii[24,125] := {3} tii[24,126] := {0} cell#15 , |C| = 315 special orbit = [5, 3, 3, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[16,1] := {217, 309} tii[16,2] := {253} tii[16,3] := {280, 294} tii[16,4] := {237, 310} tii[16,5] := {164} tii[16,6] := {259} tii[16,7] := {216, 311} tii[16,8] := {254} tii[16,9] := {59, 245} tii[16,10] := {168, 307} tii[16,11] := {167, 308} tii[16,12] := {85, 272} tii[16,13] := {211} tii[16,14] := {86, 271} tii[16,15] := {212} tii[16,16] := {152} tii[16,17] := {203} tii[16,18] := {219, 290} tii[16,19] := {218, 293} tii[16,20] := {150, 291} tii[16,21] := {193} tii[16,22] := {194} tii[16,23] := {171, 273} tii[16,24] := {170, 274} tii[16,25] := {61} tii[16,26] := {228, 229} tii[16,27] := {108} tii[16,28] := {243} tii[16,29] := {244} tii[16,30] := {204} tii[16,31] := {120, 313} tii[16,32] := {73, 262} tii[16,33] := {165} tii[16,34] := {49, 287} tii[16,35] := {132, 285} tii[16,36] := {174} tii[16,37] := {227} tii[16,38] := {38, 277} tii[16,39] := {258, 263} tii[16,40] := {169, 306} tii[16,41] := {179, 300} tii[16,42] := {195, 304} tii[16,43] := {22, 255} tii[16,44] := {75, 246} tii[16,45] := {149} tii[16,46] := {221, 240} tii[16,47] := {121, 296} tii[16,48] := {31} tii[16,49] := {148} tii[16,50] := {123} tii[16,51] := {136, 281} tii[16,52] := {184, 266} tii[16,53] := {65} tii[16,54] := {183} tii[16,55] := {48, 289} tii[16,56] := {158} tii[16,57] := {151, 288} tii[16,58] := {199} tii[16,59] := {200} tii[16,60] := {98, 269} tii[16,61] := {208} tii[16,62] := {156} tii[16,63] := {220, 314} tii[16,64] := {166} tii[16,65] := {249, 275} tii[16,66] := {172, 303} tii[16,67] := {44} tii[16,68] := {94} tii[16,69] := {230, 284} tii[16,70] := {124, 312} tii[16,71] := {69} tii[16,72] := {214} tii[16,73] := {215} tii[16,74] := {115} tii[16,75] := {190} tii[16,76] := {185, 299} tii[16,77] := {260} tii[16,78] := {235} tii[16,79] := {72, 261} tii[16,80] := {131, 286} tii[16,81] := {173} tii[16,82] := {226} tii[16,83] := {37, 278} tii[16,84] := {29, 201} tii[16,85] := {178, 301} tii[16,86] := {74, 247} tii[16,87] := {51, 238} tii[16,88] := {50, 239} tii[16,89] := {122} tii[16,90] := {104} tii[16,91] := {60, 153} tii[16,92] := {135, 282} tii[16,93] := {182} tii[16,94] := {155} tii[16,95] := {107} tii[16,96] := {159} tii[16,97] := {83, 196} tii[16,98] := {62} tii[16,99] := {82, 197} tii[16,100] := {209} tii[16,101] := {143, 144} tii[16,102] := {109} tii[16,103] := {34} tii[16,104] := {67} tii[16,105] := {17, 264} tii[16,106] := {16, 265} tii[16,107] := {103, 202} tii[16,108] := {130, 297} tii[16,109] := {129, 298} tii[16,110] := {10, 213} tii[16,111] := {40, 222} tii[16,112] := {39, 223} tii[16,113] := {77} tii[16,114] := {76} tii[16,115] := {154} tii[16,116] := {90, 267} tii[16,117] := {89, 268} tii[16,118] := {138} tii[16,119] := {137} tii[16,120] := {128, 241} tii[16,121] := {127, 242} tii[16,122] := {19, 176} tii[16,123] := {112} tii[16,124] := {113} tii[16,125] := {32} tii[16,126] := {21, 257} tii[16,127] := {102, 256} tii[16,128] := {20, 175} tii[16,129] := {106} tii[16,130] := {188, 189} tii[16,131] := {161} tii[16,132] := {162} tii[16,133] := {55, 232} tii[16,134] := {57, 234} tii[16,135] := {14} tii[16,136] := {66} tii[16,137] := {56, 231} tii[16,138] := {145, 146} tii[16,139] := {111} tii[16,140] := {47, 292} tii[16,141] := {78} tii[16,142] := {79} tii[16,143] := {33} tii[16,144] := {139} tii[16,145] := {140} tii[16,146] := {97, 270} tii[16,147] := {157} tii[16,148] := {6, 279} tii[16,149] := {84, 302} tii[16,150] := {119, 225} tii[16,151] := {18, 248} tii[16,152] := {43} tii[16,153] := {54, 283} tii[16,154] := {181} tii[16,155] := {93} tii[16,156] := {70} tii[16,157] := {42, 205} tii[16,158] := {7, 207} tii[16,159] := {81, 276} tii[16,160] := {177, 198} tii[16,161] := {12} tii[16,162] := {134} tii[16,163] := {116} tii[16,164] := {142, 233} tii[16,165] := {92, 250} tii[16,166] := {25, 252} tii[16,167] := {35} tii[16,168] := {4} tii[16,169] := {68} tii[16,170] := {99, 191} tii[16,171] := {80, 305} tii[16,172] := {2, 160} tii[16,173] := {45} tii[16,174] := {46} tii[16,175] := {13} tii[16,176] := {88} tii[16,177] := {141, 295} tii[16,178] := {11, 210} tii[16,179] := {95} tii[16,180] := {96} tii[16,181] := {58, 236} tii[16,182] := {110} tii[16,183] := {71} tii[16,184] := {117} tii[16,185] := {24} tii[16,186] := {147} tii[16,187] := {118, 224} tii[16,188] := {180} tii[16,189] := {41, 206} tii[16,190] := {30, 105} tii[16,191] := {133} tii[16,192] := {91, 251} tii[16,193] := {64} tii[16,194] := {36} tii[16,195] := {8, 126} tii[16,196] := {9, 125} tii[16,197] := {87} tii[16,198] := {63} tii[16,199] := {26, 187} tii[16,200] := {27, 186} tii[16,201] := {100, 101} tii[16,202] := {15} tii[16,203] := {0, 114} tii[16,204] := {53} tii[16,205] := {52} tii[16,206] := {3, 163} tii[16,207] := {5} tii[16,208] := {28, 192} tii[16,209] := {23} tii[16,210] := {1} cell#16 , |C| = 126 special orbit = [7, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {60} tii[24,2] := {99} tii[24,3] := {123} tii[24,4] := {68} tii[24,5] := {109} tii[24,6] := {80} tii[24,7] := {124} tii[24,8] := {103} tii[24,9] := {75} tii[24,10] := {44} tii[24,11] := {120} tii[24,12] := {91} tii[24,13] := {87} tii[24,14] := {24} tii[24,15] := {112} tii[24,16] := {119} tii[24,17] := {51} tii[24,18] := {43} tii[24,19] := {95} tii[24,20] := {72} tii[24,21] := {67} tii[24,22] := {105} tii[24,23] := {106} tii[24,24] := {62} tii[24,25] := {41} tii[24,26] := {96} tii[24,27] := {70} tii[24,28] := {86} tii[24,29] := {85} tii[24,30] := {73} tii[24,31] := {125} tii[24,32] := {66} tii[24,33] := {35} tii[24,34] := {116} tii[24,35] := {30} tii[24,36] := {58} tii[24,37] := {102} tii[24,38] := {83} tii[24,39] := {122} tii[24,40] := {40} tii[24,41] := {89} tii[24,42] := {38} tii[24,43] := {77} tii[24,44] := {20} tii[24,45] := {114} tii[24,46] := {81} tii[24,47] := {90} tii[24,48] := {45} tii[24,49] := {100} tii[24,50] := {121} tii[24,51] := {65} tii[24,52] := {64} tii[24,53] := {49} tii[24,54] := {113} tii[24,55] := {108} tii[24,56] := {31} tii[24,57] := {42} tii[24,58] := {97} tii[24,59] := {71} tii[24,60] := {107} tii[24,61] := {55} tii[24,62] := {54} tii[24,63] := {32} tii[24,64] := {94} tii[24,65] := {79} tii[24,66] := {56} tii[24,67] := {59} tii[24,68] := {115} tii[24,69] := {34} tii[24,70] := {101} tii[24,71] := {57} tii[24,72] := {82} tii[24,73] := {17} tii[24,74] := {9} tii[24,75] := {98} tii[24,76] := {33} tii[24,77] := {84} tii[24,78] := {22} tii[24,79] := {76} tii[24,80] := {61} tii[24,81] := {47} tii[24,82] := {21} tii[24,83] := {8} tii[24,84] := {52} tii[24,85] := {46} tii[24,86] := {27} tii[24,87] := {13} tii[24,88] := {118} tii[24,89] := {5} tii[24,90] := {69} tii[24,91] := {63} tii[24,92] := {111} tii[24,93] := {16} tii[24,94] := {92} tii[24,95] := {37} tii[24,96] := {117} tii[24,97] := {6} tii[24,98] := {23} tii[24,99] := {78} tii[24,100] := {110} tii[24,101] := {25} tii[24,102] := {48} tii[24,103] := {28} tii[24,104] := {104} tii[24,105] := {15} tii[24,106] := {93} tii[24,107] := {36} tii[24,108] := {50} tii[24,109] := {0} tii[24,110] := {39} tii[24,111] := {4} tii[24,112] := {19} tii[24,113] := {1} tii[24,114] := {53} tii[24,115] := {7} tii[24,116] := {10} tii[24,117] := {26} tii[24,118] := {12} tii[24,119] := {88} tii[24,120] := {3} tii[24,121] := {74} tii[24,122] := {18} tii[24,123] := {29} tii[24,124] := {2} tii[24,125] := {11} tii[24,126] := {14} cell#17 , |C| = 189 special orbit = [5, 2, 2, 2, 2, 1, 1] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1, 1],[1, 1]]+phi[[2, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[13,1] := {120, 182} tii[13,2] := {127, 185} tii[13,3] := {133, 181} tii[13,4] := {94, 172} tii[13,5] := {105, 175} tii[13,6] := {71, 151} tii[13,7] := {90, 171} tii[13,8] := {66, 152} tii[13,9] := {40, 117} tii[13,10] := {72} tii[13,11] := {108, 109} tii[13,12] := {73} tii[13,13] := {135, 136} tii[13,14] := {110, 111} tii[13,15] := {74} tii[13,16] := {121, 179} tii[13,17] := {126, 187} tii[13,18] := {91, 167} tii[13,19] := {92, 165} tii[13,20] := {86, 166} tii[13,21] := {85, 168} tii[13,22] := {55, 145} tii[13,23] := {56, 144} tii[13,24] := {95, 96} tii[13,25] := {129, 130} tii[13,26] := {128, 131} tii[13,27] := {99, 100} tii[13,28] := {39, 113} tii[13,29] := {119, 184} tii[13,30] := {16, 77} tii[13,31] := {52, 183} tii[13,32] := {81, 158} tii[13,33] := {80, 159} tii[13,34] := {36, 114} tii[13,35] := {41} tii[13,36] := {123, 124} tii[13,37] := {49, 178} tii[13,38] := {88, 161} tii[13,39] := {67, 68} tii[13,40] := {87, 162} tii[13,41] := {6, 47} tii[13,42] := {43} tii[13,43] := {62, 138} tii[13,44] := {18} tii[13,45] := {84, 154} tii[13,46] := {8} tii[13,47] := {132, 188} tii[13,48] := {37, 38} tii[13,49] := {101, 156} tii[13,50] := {19} tii[13,51] := {9} tii[13,52] := {93, 174} tii[13,53] := {58, 146} tii[13,54] := {27, 173} tii[13,55] := {57, 147} tii[13,56] := {97, 98} tii[13,57] := {28, 170} tii[13,58] := {17, 78} tii[13,59] := {54, 148} tii[13,60] := {53, 149} tii[13,61] := {42} tii[13,62] := {59, 142} tii[13,63] := {32, 115} tii[13,64] := {20} tii[13,65] := {89, 176} tii[13,66] := {69, 70} tii[13,67] := {13, 150} tii[13,68] := {63, 143} tii[13,69] := {44} tii[13,70] := {31, 116} tii[13,71] := {46} tii[13,72] := {22} tii[13,73] := {134, 137} tii[13,74] := {102, 103} tii[13,75] := {45} tii[13,76] := {118, 186} tii[13,77] := {82, 157} tii[13,78] := {79, 160} tii[13,79] := {122, 125} tii[13,80] := {48, 180} tii[13,81] := {29, 107} tii[13,82] := {30, 106} tii[13,83] := {83, 155} tii[13,84] := {60, 61} tii[13,85] := {33, 34} tii[13,86] := {25, 163} tii[13,87] := {24, 164} tii[13,88] := {1, 23} tii[13,89] := {7} tii[13,90] := {51, 139} tii[13,91] := {50, 140} tii[13,92] := {64, 65} tii[13,93] := {2} tii[13,94] := {0} tii[13,95] := {11, 177} tii[13,96] := {5, 112} tii[13,97] := {26, 153} tii[13,98] := {14, 75} tii[13,99] := {35, 104} tii[13,100] := {21} tii[13,101] := {3} tii[13,102] := {4, 169} tii[13,103] := {12, 141} tii[13,104] := {15, 76} tii[13,105] := {10} cell#18 , |C| = 35 special orbit = [3, 2, 2, 2, 2, 2, 2] special rep = [[1, 1, 1, 1], [1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1, 1],[1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X TII subcells: tii[5,1] := {32} tii[5,2] := {29} tii[5,3] := {25} tii[5,4] := {24} tii[5,5] := {14} tii[5,6] := {13} tii[5,7] := {8} tii[5,8] := {31} tii[5,9] := {22} tii[5,10] := {20} tii[5,11] := {10} tii[5,12] := {28} tii[5,13] := {16} tii[5,14] := {30} tii[5,15] := {19} tii[5,16] := {21} tii[5,17] := {9} tii[5,18] := {7} tii[5,19] := {33} tii[5,20] := {6} tii[5,21] := {17} tii[5,22] := {2} tii[5,23] := {1} tii[5,24] := {23} tii[5,25] := {26} tii[5,26] := {11} tii[5,27] := {12} tii[5,28] := {3} tii[5,29] := {34} tii[5,30] := {18} tii[5,31] := {5} tii[5,32] := {27} tii[5,33] := {15} tii[5,34] := {4} tii[5,35] := {0}