TII subcells for the Spin(8,7) x PSp(5,2) block of Spin15 # cell#0 , |C| = 1 special orbit = [15] special rep = [[7], []] , dim = 1 cell rep = phi[[7],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[40,1] := {0} cell#1 , |C| = 13 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6, 1],[]]+phi[[6],[1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[39,1] := {6, 12} tii[39,2] := {4, 11} tii[39,3] := {2, 10} tii[39,4] := {0, 9} tii[39,5] := {1, 8} tii[39,6] := {3, 7} tii[39,7] := {5} cell#2 , |C| = 35 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5, 2],[]]+phi[[5],[2]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[38,1] := {0, 34} tii[38,2] := {4, 30} tii[38,3] := {11, 29} tii[38,4] := {17, 28} tii[38,5] := {27} tii[38,6] := {32} tii[38,7] := {2, 33} tii[38,8] := {5, 31} tii[38,9] := {8, 25} tii[38,10] := {10, 20} tii[38,11] := {15} tii[38,12] := {1, 26} tii[38,13] := {3, 21} tii[38,14] := {6, 16} tii[38,15] := {12} tii[38,16] := {7, 24} tii[38,17] := {9, 19} tii[38,18] := {14} tii[38,19] := {13, 23} tii[38,20] := {18} tii[38,21] := {22} cell#3 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {26} tii[37,2] := {11} tii[37,3] := {2} tii[37,4] := {9} tii[37,5] := {24} tii[37,6] := {34} tii[37,7] := {16} tii[37,8] := {33} tii[37,9] := {12} tii[37,10] := {32} tii[37,11] := {7} tii[37,12] := {30} tii[37,13] := {10} tii[37,14] := {27} tii[37,15] := {17} tii[37,16] := {31} tii[37,17] := {29} tii[37,18] := {6} tii[37,19] := {28} tii[37,20] := {3} tii[37,21] := {19} tii[37,22] := {5} tii[37,23] := {14} tii[37,24] := {25} tii[37,25] := {21} tii[37,26] := {0} tii[37,27] := {15} tii[37,28] := {1} tii[37,29] := {8} tii[37,30] := {23} tii[37,31] := {20} tii[37,32] := {4} tii[37,33] := {13} tii[37,34] := {22} tii[37,35] := {18} cell#4 , |C| = 147 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {128, 135} tii[34,2] := {53, 140} tii[34,3] := {125, 145} tii[34,4] := {146} tii[34,5] := {4, 142} tii[34,6] := {22, 119} tii[34,7] := {82, 98} tii[34,8] := {52, 114} tii[34,9] := {31, 90} tii[34,10] := {80, 86} tii[34,11] := {111} tii[34,12] := {134} tii[34,13] := {0, 144} tii[34,14] := {108, 120} tii[34,15] := {5, 138} tii[34,16] := {9, 97} tii[34,17] := {28, 89} tii[34,18] := {84, 103} tii[34,19] := {12, 127} tii[34,20] := {14, 116} tii[34,21] := {50, 112} tii[34,22] := {57, 71} tii[34,23] := {20, 122} tii[34,24] := {85} tii[34,25] := {43, 94} tii[34,26] := {118} tii[34,27] := {21, 105} tii[34,28] := {30, 131} tii[34,29] := {37, 76} tii[34,30] := {51, 115} tii[34,31] := {56, 70} tii[34,32] := {17, 121} tii[34,33] := {77, 130} tii[34,34] := {110} tii[34,35] := {40, 93} tii[34,36] := {133} tii[34,37] := {81, 124} tii[34,38] := {106, 139} tii[34,39] := {104, 109} tii[34,40] := {129} tii[34,41] := {92, 132} tii[34,42] := {141} tii[34,43] := {137} tii[34,44] := {143} tii[34,45] := {13, 136} tii[34,46] := {24, 123} tii[34,47] := {36, 101} tii[34,48] := {64} tii[34,49] := {1, 126} tii[34,50] := {3, 107} tii[34,51] := {55, 74} tii[34,52] := {11, 102} tii[34,53] := {8, 100} tii[34,54] := {35, 46} tii[34,55] := {19, 69} tii[34,56] := {27, 63} tii[34,57] := {42} tii[34,58] := {10, 79} tii[34,59] := {16, 72} tii[34,60] := {18, 68} tii[34,61] := {33, 95} tii[34,62] := {39, 41} tii[34,63] := {61} tii[34,64] := {29, 78} tii[34,65] := {88} tii[34,66] := {59, 66} tii[34,67] := {2, 73} tii[34,68] := {7, 45} tii[34,69] := {26} tii[34,70] := {23, 49} tii[34,71] := {15, 67} tii[34,72] := {34, 47} tii[34,73] := {6, 99} tii[34,74] := {25, 62} tii[34,75] := {38} tii[34,76] := {48, 54} tii[34,77] := {58} tii[34,78] := {44, 91} tii[34,79] := {32, 96} tii[34,80] := {60} tii[34,81] := {75, 83} tii[34,82] := {87} tii[34,83] := {65, 117} tii[34,84] := {113} cell#5 , |C| = 105 special orbit = [7, 4, 4] special rep = [[3, 2], [2]] , dim = 105 cell rep = phi[[3, 2],[2]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[27,1] := {90} tii[27,2] := {104} tii[27,3] := {72} tii[27,4] := {82} tii[27,5] := {47} tii[27,6] := {92} tii[27,7] := {4} tii[27,8] := {85} tii[27,9] := {17} tii[27,10] := {56} tii[27,11] := {93} tii[27,12] := {65} tii[27,13] := {31} tii[27,14] := {98} tii[27,15] := {52} tii[27,16] := {76} tii[27,17] := {89} tii[27,18] := {80} tii[27,19] := {50} tii[27,20] := {99} tii[27,21] := {79} tii[27,22] := {102} tii[27,23] := {67} tii[27,24] := {66} tii[27,25] := {83} tii[27,26] := {60} tii[27,27] := {95} tii[27,28] := {100} tii[27,29] := {103} tii[27,30] := {96} tii[27,31] := {101} tii[27,32] := {40} tii[27,33] := {36} tii[27,34] := {0} tii[27,35] := {57} tii[27,36] := {5} tii[27,37] := {6} tii[27,38] := {39} tii[27,39] := {45} tii[27,40] := {9} tii[27,41] := {15} tii[27,42] := {54} tii[27,43] := {35} tii[27,44] := {24} tii[27,45] := {61} tii[27,46] := {16} tii[27,47] := {46} tii[27,48] := {70} tii[27,49] := {33} tii[27,50] := {29} tii[27,51] := {28} tii[27,52] := {53} tii[27,53] := {58} tii[27,54] := {77} tii[27,55] := {23} tii[27,56] := {63} tii[27,57] := {81} tii[27,58] := {10} tii[27,59] := {74} tii[27,60] := {71} tii[27,61] := {19} tii[27,62] := {62} tii[27,63] := {43} tii[27,64] := {32} tii[27,65] := {64} tii[27,66] := {84} tii[27,67] := {48} tii[27,68] := {49} tii[27,69] := {51} tii[27,70] := {8} tii[27,71] := {44} tii[27,72] := {69} tii[27,73] := {42} tii[27,74] := {75} tii[27,75] := {22} tii[27,76] := {87} tii[27,77] := {30} tii[27,78] := {78} tii[27,79] := {37} tii[27,80] := {91} tii[27,81] := {25} tii[27,82] := {68} tii[27,83] := {94} tii[27,84] := {86} tii[27,85] := {88} tii[27,86] := {73} tii[27,87] := {97} tii[27,88] := {1} tii[27,89] := {3} tii[27,90] := {27} tii[27,91] := {12} tii[27,92] := {7} tii[27,93] := {21} tii[27,94] := {2} tii[27,95] := {26} tii[27,96] := {11} tii[27,97] := {18} tii[27,98] := {14} tii[27,99] := {20} tii[27,100] := {41} tii[27,101] := {13} tii[27,102] := {38} tii[27,103] := {34} tii[27,104] := {59} tii[27,105] := {55} cell#6 , |C| = 35 special orbit = [11, 2, 2] special rep = [[5, 1], [1]] , dim = 35 cell rep = phi[[5, 1],[1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[37,1] := {34} tii[37,2] := {32} tii[37,3] := {28} tii[37,4] := {22} tii[37,5] := {14} tii[37,6] := {11} tii[37,7] := {33} tii[37,8] := {5} tii[37,9] := {31} tii[37,10] := {10} tii[37,11] := {29} tii[37,12] := {16} tii[37,13] := {26} tii[37,14] := {19} tii[37,15] := {23} tii[37,16] := {0} tii[37,17] := {4} tii[37,18] := {30} tii[37,19] := {9} tii[37,20] := {27} tii[37,21] := {15} tii[37,22] := {24} tii[37,23] := {20} tii[37,24] := {3} tii[37,25] := {7} tii[37,26] := {25} tii[37,27] := {12} tii[37,28] := {21} tii[37,29] := {17} tii[37,30] := {2} tii[37,31] := {6} tii[37,32] := {18} tii[37,33] := {13} tii[37,34] := {1} tii[37,35] := {8} cell#7 , |C| = 154 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1, 1],[1]]+phi[[4, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[32,1] := {50, 152} tii[32,2] := {88, 129} tii[32,3] := {104, 124} tii[32,4] := {61, 150} tii[32,5] := {39, 147} tii[32,6] := {76, 115} tii[32,7] := {20, 137} tii[32,8] := {85, 116} tii[32,9] := {33, 121} tii[32,10] := {41, 145} tii[32,11] := {53, 102} tii[32,12] := {79} tii[32,13] := {54, 133} tii[32,14] := {94, 96} tii[32,15] := {32, 122} tii[32,16] := {62, 132} tii[32,17] := {52, 101} tii[32,18] := {78} tii[32,19] := {73, 113} tii[32,20] := {70, 114} tii[32,21] := {51, 103} tii[32,22] := {77} tii[32,23] := {92, 93} tii[32,24] := {80} tii[32,25] := {49, 153} tii[32,26] := {27, 141} tii[32,27] := {26, 142} tii[32,28] := {45, 127} tii[32,29] := {44, 128} tii[32,30] := {67, 109} tii[32,31] := {66, 110} tii[32,32] := {89, 90} tii[32,33] := {9, 151} tii[32,34] := {5, 123} tii[32,35] := {16, 105} tii[32,36] := {25, 140} tii[32,37] := {68, 111} tii[32,38] := {29, 82} tii[32,39] := {43, 126} tii[32,40] := {87, 91} tii[32,41] := {57} tii[32,42] := {69, 108} tii[32,43] := {15, 149} tii[32,44] := {4, 86} tii[32,45] := {28, 139} tii[32,46] := {13, 64} tii[32,47] := {81, 107} tii[32,48] := {37} tii[32,49] := {56, 125} tii[32,50] := {10, 148} tii[32,51] := {2, 42} tii[32,52] := {19} tii[32,53] := {34, 138} tii[32,54] := {6} tii[32,55] := {0, 146} tii[32,56] := {55, 95} tii[32,57] := {8, 136} tii[32,58] := {72, 75} tii[32,59] := {24, 119} tii[32,60] := {48, 99} tii[32,61] := {3, 144} tii[32,62] := {17, 106} tii[32,63] := {12, 135} tii[32,64] := {63, 97} tii[32,65] := {30, 83} tii[32,66] := {36, 117} tii[32,67] := {58} tii[32,68] := {1, 143} tii[32,69] := {14, 65} tii[32,70] := {38} tii[32,71] := {18, 134} tii[32,72] := {21} tii[32,73] := {7, 131} tii[32,74] := {71, 74} tii[32,75] := {23, 120} tii[32,76] := {47, 98} tii[32,77] := {11, 130} tii[32,78] := {31, 84} tii[32,79] := {35, 118} tii[32,80] := {59} tii[32,81] := {40} tii[32,82] := {22, 112} tii[32,83] := {46, 100} tii[32,84] := {60} cell#8 , |C| = 126 special orbit = [7, 2, 2, 2, 2] special rep = [[3, 1, 1], [1, 1]] , dim = 126 cell rep = phi[[3, 1, 1],[1, 1]] TII depth = 4 TII multiplicity polynomial = 126*X TII subcells: tii[24,1] := {124} tii[24,2] := {85} tii[24,3] := {49} tii[24,4] := {116} tii[24,5] := {80} tii[24,6] := {115} tii[24,7] := {36} tii[24,8] := {76} tii[24,9] := {123} tii[24,10] := {112} tii[24,11] := {24} tii[24,12] := {62} tii[24,13] := {64} tii[24,14] := {94} tii[24,15] := {11} tii[24,16] := {30} tii[24,17] := {111} tii[24,18] := {70} tii[24,19] := {22} tii[24,20] := {45} tii[24,21] := {87} tii[24,22] := {41} tii[24,23] := {39} tii[24,24] := {88} tii[24,25] := {71} tii[24,26] := {21} tii[24,27] := {44} tii[24,28] := {60} tii[24,29] := {61} tii[24,30] := {47} tii[24,31] := {35} tii[24,32] := {75} tii[24,33] := {104} tii[24,34] := {17} tii[24,35] := {120} tii[24,36] := {81} tii[24,37] := {33} tii[24,38] := {56} tii[24,39] := {7} tii[24,40] := {107} tii[24,41] := {63} tii[24,42] := {108} tii[24,43] := {42} tii[24,44] := {92} tii[24,45] := {16} tii[24,46] := {59} tii[24,47] := {58} tii[24,48] := {65} tii[24,49] := {38} tii[24,50] := {8} tii[24,51] := {83} tii[24,52] := {84} tii[24,53] := {67} tii[24,54] := {25} tii[24,55] := {74} tii[24,56] := {117} tii[24,57] := {99} tii[24,58] := {52} tii[24,59] := {77} tii[24,60] := {32} tii[24,61] := {102} tii[24,62] := {103} tii[24,63] := {89} tii[24,64] := {55} tii[24,65] := {121} tii[24,66] := {97} tii[24,67] := {125} tii[24,68] := {18} tii[24,69] := {105} tii[24,70] := {34} tii[24,71] := {82} tii[24,72] := {57} tii[24,73] := {122} tii[24,74] := {73} tii[24,75] := {3} tii[24,76] := {101} tii[24,77] := {54} tii[24,78] := {50} tii[24,79] := {9} tii[24,80] := {79} tii[24,81] := {26} tii[24,82] := {118} tii[24,83] := {31} tii[24,84] := {2} tii[24,85] := {98} tii[24,86] := {13} tii[24,87] := {4} tii[24,88] := {0} tii[24,89] := {110} tii[24,90] := {40} tii[24,91] := {43} tii[24,92] := {6} tii[24,93] := {93} tii[24,94] := {20} tii[24,95] := {66} tii[24,96] := {1} tii[24,97] := {109} tii[24,98] := {51} tii[24,99] := {10} tii[24,100] := {12} tii[24,101] := {91} tii[24,102] := {27} tii[24,103] := {14} tii[24,104] := {5} tii[24,105] := {86} tii[24,106] := {19} tii[24,107] := {68} tii[24,108] := {29} tii[24,109] := {119} tii[24,110] := {53} tii[24,111] := {100} tii[24,112] := {78} tii[24,113] := {114} tii[24,114] := {23} tii[24,115] := {72} tii[24,116] := {96} tii[24,117] := {46} tii[24,118] := {28} tii[24,119] := {15} tii[24,120] := {106} tii[24,121] := {37} tii[24,122] := {90} tii[24,123] := {48} tii[24,124] := {113} tii[24,125] := {95} tii[24,126] := {69}