TII subcells for the Spin(9,6) x PSp(14,R) block of Spin15 # cell#0 , |C| = 8 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6],[1]]+phi[[],[7]] TII depth = 1 TII multiplicity polynomial = 6*X+X^2 TII subcells: tii[39,1] := {0} tii[39,2] := {4} tii[39,3] := {1} tii[39,4] := {5} tii[39,5] := {2} tii[39,6] := {6} tii[39,7] := {3, 7} cell#1 , |C| = 8 special orbit = [13, 1, 1] special rep = [[6], [1]] , dim = 7 cell rep = phi[[6],[1]]+phi[[],[7]] TII depth = 1 TII multiplicity polynomial = 6*X+X^2 TII subcells: tii[39,1] := {0} tii[39,2] := {4} tii[39,3] := {1} tii[39,4] := {5} tii[39,5] := {2} tii[39,6] := {6} tii[39,7] := {3, 7} cell#2 , |C| = 28 special orbit = [11, 3, 1] special rep = [[5], [2]] , dim = 21 cell rep = phi[[5],[2]]+phi[[1],[6]] TII depth = 1 TII multiplicity polynomial = 14*X+7*X^2 TII subcells: tii[38,1] := {26} tii[38,2] := {25} tii[38,3] := {20} tii[38,4] := {17} tii[38,5] := {7, 24} tii[38,6] := {12, 27} tii[38,7] := {23} tii[38,8] := {19} tii[38,9] := {13} tii[38,10] := {5} tii[38,11] := {0, 10} tii[38,12] := {22} tii[38,13] := {18} tii[38,14] := {8} tii[38,15] := {3, 15} tii[38,16] := {14} tii[38,17] := {6} tii[38,18] := {1, 11} tii[38,19] := {9} tii[38,20] := {4, 16} tii[38,21] := {2, 21} cell#3 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {23} tii[35,2] := {41} tii[35,3] := {26, 51} tii[35,4] := {40, 54} tii[35,5] := {45, 55} tii[35,6] := {7} tii[35,7] := {25} tii[35,8] := {10, 39} tii[35,9] := {19, 44} tii[35,10] := {13} tii[35,11] := {4} tii[35,12] := {31} tii[35,13] := {16} tii[35,14] := {15, 42} tii[35,15] := {6, 28} tii[35,16] := {27, 48} tii[35,17] := {36} tii[35,18] := {32} tii[35,19] := {11, 46} tii[35,20] := {24, 38} tii[35,21] := {20, 50} tii[35,22] := {18, 49} tii[35,23] := {30, 52} tii[35,24] := {9, 47} tii[35,25] := {35, 53} tii[35,26] := {0} tii[35,27] := {12} tii[35,28] := {3, 21} tii[35,29] := {17} tii[35,30] := {8, 29} tii[35,31] := {1, 34} tii[35,32] := {22} tii[35,33] := {14, 33} tii[35,34] := {5, 37} tii[35,35] := {2, 43} cell#4 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {23} tii[35,2] := {41} tii[35,3] := {26, 51} tii[35,4] := {40, 54} tii[35,5] := {45, 55} tii[35,6] := {7} tii[35,7] := {25} tii[35,8] := {10, 39} tii[35,9] := {19, 44} tii[35,10] := {13} tii[35,11] := {4} tii[35,12] := {31} tii[35,13] := {16} tii[35,14] := {15, 42} tii[35,15] := {6, 28} tii[35,16] := {27, 48} tii[35,17] := {36} tii[35,18] := {32} tii[35,19] := {11, 46} tii[35,20] := {24, 38} tii[35,21] := {20, 50} tii[35,22] := {18, 49} tii[35,23] := {30, 52} tii[35,24] := {9, 47} tii[35,25] := {35, 53} tii[35,26] := {0} tii[35,27] := {12} tii[35,28] := {3, 21} tii[35,29] := {17} tii[35,30] := {8, 29} tii[35,31] := {1, 34} tii[35,32] := {22} tii[35,33] := {14, 33} tii[35,34] := {5, 37} tii[35,35] := {2, 43} cell#5 , |C| = 147 special orbit = [9, 3, 3] special rep = [[4, 1], [2]] , dim = 84 cell rep = phi[[4, 2],[1]]+phi[[4, 1],[2]] TII depth = 4 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[34,1] := {145, 146} tii[34,2] := {141, 142} tii[34,3] := {119, 121} tii[34,4] := {130} tii[34,5] := {10, 12} tii[34,6] := {46, 47} tii[34,7] := {137, 138} tii[34,8] := {14, 17} tii[34,9] := {118, 120} tii[34,10] := {86, 88} tii[34,11] := {54} tii[34,12] := {80} tii[34,13] := {31, 33} tii[34,14] := {143, 144} tii[34,15] := {58, 59} tii[34,16] := {71, 72} tii[34,17] := {23, 24} tii[34,18] := {139, 140} tii[34,19] := {82, 83} tii[34,20] := {126, 127} tii[34,21] := {100, 101} tii[34,22] := {133, 134} tii[34,23] := {105, 106} tii[34,24] := {70} tii[34,25] := {124, 125} tii[34,26] := {94} tii[34,27] := {95, 96} tii[34,28] := {135, 136} tii[34,29] := {73, 74} tii[34,30] := {15, 18} tii[34,31] := {97, 98} tii[34,32] := {128, 129} tii[34,33] := {87, 89} tii[34,34] := {55} tii[34,35] := {115, 116} tii[34,36] := {81} tii[34,37] := {38, 40} tii[34,38] := {108, 110} tii[34,39] := {63, 65} tii[34,40] := {77} tii[34,41] := {91, 93} tii[34,42] := {104} tii[34,43] := {99} tii[34,44] := {117} tii[34,45] := {0, 4} tii[34,46] := {16, 19} tii[34,47] := {3, 7} tii[34,48] := {22} tii[34,49] := {35, 36} tii[34,50] := {60, 61} tii[34,51] := {131, 132} tii[34,52] := {25, 26} tii[34,53] := {84, 85} tii[34,54] := {122, 123} tii[34,55] := {11, 13} tii[34,56] := {111, 112} tii[34,57] := {28} tii[34,58] := {37, 39} tii[34,59] := {62, 64} tii[34,60] := {107, 109} tii[34,61] := {1, 5} tii[34,62] := {90, 92} tii[34,63] := {20} tii[34,64] := {41, 43} tii[34,65] := {29} tii[34,66] := {66, 68} tii[34,67] := {48, 49} tii[34,68] := {32, 34} tii[34,69] := {56} tii[34,70] := {50, 51} tii[34,71] := {8, 9} tii[34,72] := {75, 76} tii[34,73] := {113, 114} tii[34,74] := {102, 103} tii[34,75] := {27} tii[34,76] := {52, 53} tii[34,77] := {45} tii[34,78] := {78, 79} tii[34,79] := {2, 6} tii[34,80] := {21} tii[34,81] := {42, 44} tii[34,82] := {30} tii[34,83] := {67, 69} tii[34,84] := {57} cell#6 , |C| = 27 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5],[1, 1]]+phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[36,1] := {18} tii[36,2] := {6} tii[36,3] := {15} tii[36,4] := {7} tii[36,5] := {16} tii[36,6] := {8, 23} tii[36,7] := {0} tii[36,8] := {11} tii[36,9] := {1} tii[36,10] := {13} tii[36,11] := {3, 21} tii[36,12] := {19} tii[36,13] := {9} tii[36,14] := {17} tii[36,15] := {10, 24} tii[36,16] := {2} tii[36,17] := {14} tii[36,18] := {4, 22} tii[36,19] := {20} tii[36,20] := {12, 25} tii[36,21] := {5, 26} cell#7 , |C| = 56 special orbit = [9, 5, 1] special rep = [[4], [3]] , dim = 35 cell rep = phi[[4],[3]]+phi[[2],[5]] TII depth = 2 TII multiplicity polynomial = 14*X+21*X^2 TII subcells: tii[35,1] := {48} tii[35,2] := {43} tii[35,3] := {20, 52} tii[35,4] := {35, 54} tii[35,5] := {42, 55} tii[35,6] := {37} tii[35,7] := {19} tii[35,8] := {3, 34} tii[35,9] := {9, 41} tii[35,10] := {44} tii[35,11] := {38} tii[35,12] := {24} tii[35,13] := {30} tii[35,14] := {7, 39} tii[35,15] := {22, 36} tii[35,16] := {14, 45} tii[35,17] := {33} tii[35,18] := {25} tii[35,19] := {4, 46} tii[35,20] := {16, 32} tii[35,21] := {10, 49} tii[35,22] := {12, 50} tii[35,23] := {18, 51} tii[35,24] := {6, 47} tii[35,25] := {27, 53} tii[35,26] := {29} tii[35,27] := {21} tii[35,28] := {13, 28} tii[35,29] := {11} tii[35,30] := {5, 17} tii[35,31] := {0, 26} tii[35,32] := {15} tii[35,33] := {8, 23} tii[35,34] := {2, 31} tii[35,35] := {1, 40} cell#8 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {23} tii[30,2] := {30} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {12} tii[30,6] := {20} tii[30,7] := {24} tii[30,8] := {14} tii[30,9] := {5} tii[30,10] := {21} tii[30,11] := {10} tii[30,12] := {27} tii[30,13] := {19} tii[30,14] := {15} tii[30,15] := {25} tii[30,16] := {18} tii[30,17] := {9} tii[30,18] := {29} tii[30,19] := {28} tii[30,20] := {31} tii[30,21] := {26} tii[30,22] := {32} tii[30,23] := {3} tii[30,24] := {7} tii[30,25] := {6} tii[30,26] := {11} tii[30,27] := {2} tii[30,28] := {16} tii[30,29] := {8} tii[30,30] := {13} tii[30,31] := {4} tii[30,32] := {1} tii[30,33] := {17} tii[30,34] := {22} tii[30,35] := {0} cell#9 , |C| = 175 special orbit = [7, 5, 3] special rep = [[3, 1], [3]] , dim = 105 cell rep = phi[[3, 1],[3]]+phi[[2, 1],[4]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[29,1] := {167} tii[29,2] := {144, 173} tii[29,3] := {171, 174} tii[29,4] := {34} tii[29,5] := {43, 88} tii[29,6] := {137} tii[29,7] := {82, 147} tii[29,8] := {91, 125} tii[29,9] := {119, 142} tii[29,10] := {57} tii[29,11] := {59} tii[29,12] := {151} tii[29,13] := {65, 109} tii[29,14] := {123} tii[29,15] := {94, 158} tii[29,16] := {61, 92} tii[29,17] := {112, 140} tii[29,18] := {84, 120} tii[29,19] := {136, 155} tii[29,20] := {78} tii[29,21] := {161} tii[29,22] := {101} tii[29,23] := {87, 128} tii[29,24] := {152} tii[29,25] := {121} tii[29,26] := {46, 130} tii[29,27] := {114, 164} tii[29,28] := {131, 153} tii[29,29] := {139} tii[29,30] := {77, 149} tii[29,31] := {150, 163} tii[29,32] := {108, 143} tii[29,33] := {132, 170} tii[29,34] := {89, 156} tii[29,35] := {146, 162} tii[29,36] := {117, 165} tii[29,37] := {160, 169} tii[29,38] := {157, 168} tii[29,39] := {166, 172} tii[29,40] := {11} tii[29,41] := {5, 40} tii[29,42] := {24, 56} tii[29,43] := {17} tii[29,44] := {35} tii[29,45] := {6} tii[29,46] := {103} tii[29,47] := {12, 47} tii[29,48] := {38, 68} tii[29,49] := {1, 16} tii[29,50] := {31, 64} tii[29,51] := {63, 100} tii[29,52] := {58} tii[29,53] := {25, 69} tii[29,54] := {122} tii[29,55] := {80} tii[29,56] := {18, 90} tii[29,57] := {52, 85} tii[29,58] := {104} tii[29,59] := {13, 49} tii[29,60] := {42, 118} tii[29,61] := {37, 110} tii[29,62] := {73, 106} tii[29,63] := {62, 134} tii[29,64] := {36} tii[29,65] := {19} tii[29,66] := {27, 70} tii[29,67] := {7, 32} tii[29,68] := {54, 86} tii[29,69] := {79} tii[29,70] := {102} tii[29,71] := {138} tii[29,72] := {39} tii[29,73] := {45, 93} tii[29,74] := {26, 111} tii[29,75] := {124} tii[29,76] := {21, 55} tii[29,77] := {76, 107} tii[29,78] := {28, 71} tii[29,79] := {53, 135} tii[29,80] := {81} tii[29,81] := {44, 129} tii[29,82] := {41, 74} tii[29,83] := {97, 126} tii[29,84] := {105} tii[29,85] := {75, 148} tii[29,86] := {67, 113} tii[29,87] := {99, 127} tii[29,88] := {48, 95} tii[29,89] := {66, 145} tii[29,90] := {29, 115} tii[29,91] := {116, 141} tii[29,92] := {98, 159} tii[29,93] := {133, 154} tii[29,94] := {3} tii[29,95] := {0, 10} tii[29,96] := {2, 23} tii[29,97] := {20} tii[29,98] := {8, 33} tii[29,99] := {60} tii[29,100] := {4, 30} tii[29,101] := {22, 50} tii[29,102] := {83} tii[29,103] := {9, 72} tii[29,104] := {14, 51} tii[29,105] := {15, 96} cell#10 , |C| = 70 special orbit = [5, 5, 5] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {39} tii[21,3] := {60} tii[21,4] := {22} tii[21,5] := {46} tii[21,6] := {64} tii[21,7] := {41} tii[21,8] := {52} tii[21,9] := {38} tii[21,10] := {53} tii[21,11] := {66} tii[21,12] := {55} tii[21,13] := {62} tii[21,14] := {58} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {67} tii[21,18] := {21} tii[21,19] := {14} tii[21,20] := {32} tii[21,21] := {3} tii[21,22] := {25} tii[21,23] := {45} tii[21,24] := {11} tii[21,25] := {23} tii[21,26] := {33} tii[21,27] := {16} tii[21,28] := {40} tii[21,29] := {27} tii[21,30] := {51} tii[21,31] := {47} tii[21,32] := {56} tii[21,33] := {8} tii[21,34] := {34} tii[21,35] := {19} tii[21,36] := {30} tii[21,37] := {15} tii[21,38] := {42} tii[21,39] := {24} tii[21,40] := {48} tii[21,41] := {12} tii[21,42] := {37} tii[21,43] := {29} tii[21,44] := {57} tii[21,45] := {54} tii[21,46] := {36} tii[21,47] := {61} tii[21,48] := {31} tii[21,49] := {49} tii[21,50] := {44} tii[21,51] := {59} tii[21,52] := {50} tii[21,53] := {65} tii[21,54] := {2} tii[21,55] := {7} tii[21,56] := {6} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {20} tii[21,61] := {10} tii[21,62] := {26} tii[21,63] := {1} tii[21,64] := {18} tii[21,65] := {35} tii[21,66] := {17} tii[21,67] := {4} tii[21,68] := {28} tii[21,69] := {43} tii[21,70] := {0} cell#11 , |C| = 27 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5],[1, 1]]+phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[36,1] := {20} tii[36,2] := {23} tii[36,3] := {21} tii[36,4] := {24} tii[36,5] := {22} tii[36,6] := {25, 26} tii[36,7] := {16} tii[36,8] := {14} tii[36,9] := {17} tii[36,10] := {15} tii[36,11] := {18, 19} tii[36,12] := {9} tii[36,13] := {11} tii[36,14] := {10} tii[36,15] := {12, 13} tii[36,16] := {5} tii[36,17] := {4} tii[36,18] := {7, 8} tii[36,19] := {1} tii[36,20] := {2, 3} tii[36,21] := {0, 6} cell#12 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {52} tii[33,2] := {63} tii[33,3] := {84} tii[33,4] := {90, 99} tii[33,5] := {97, 103} tii[33,6] := {71} tii[33,7] := {44} tii[33,8] := {53} tii[33,9] := {72} tii[33,10] := {30} tii[33,11] := {50} tii[33,12] := {82, 94} tii[33,13] := {31, 70} tii[33,14] := {91, 101} tii[33,15] := {23} tii[33,16] := {54} tii[33,17] := {7} tii[33,18] := {18} tii[33,19] := {66, 85} tii[33,20] := {8, 41} tii[33,21] := {83, 96} tii[33,22] := {73} tii[33,23] := {57} tii[33,24] := {47, 93} tii[33,25] := {34, 78} tii[33,26] := {69, 100} tii[33,27] := {26, 98} tii[33,28] := {10, 92} tii[33,29] := {48, 102} tii[33,30] := {67, 104} tii[33,31] := {32} tii[33,32] := {19} tii[33,33] := {35} tii[33,34] := {20, 60} tii[33,35] := {33} tii[33,36] := {13} tii[33,37] := {42} tii[33,38] := {29} tii[33,39] := {55} tii[33,40] := {14, 51} tii[33,41] := {43, 79} tii[33,42] := {4} tii[33,43] := {17} tii[33,44] := {74} tii[33,45] := {5, 40} tii[33,46] := {64, 89} tii[33,47] := {38} tii[33,48] := {81, 95} tii[33,49] := {15, 58} tii[33,50] := {6, 75} tii[33,51] := {21} tii[33,52] := {36} tii[33,53] := {22, 61} tii[33,54] := {0} tii[33,55] := {56} tii[33,56] := {12} tii[33,57] := {1, 28} tii[33,58] := {45, 80} tii[33,59] := {27} tii[33,60] := {65, 88} tii[33,61] := {11, 49} tii[33,62] := {3, 68} tii[33,63] := {37} tii[33,64] := {24, 62} tii[33,65] := {39} tii[33,66] := {46, 77} tii[33,67] := {16, 59} tii[33,68] := {9, 76} tii[33,69] := {25, 87} tii[33,70] := {2, 86} cell#13 , |C| = 27 special orbit = [11, 1, 1, 1, 1] special rep = [[5], [1, 1]] , dim = 21 cell rep = phi[[5],[1, 1]]+phi[[],[6, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+6*X^2 TII subcells: tii[36,1] := {18} tii[36,2] := {6} tii[36,3] := {15} tii[36,4] := {7} tii[36,5] := {16} tii[36,6] := {8, 23} tii[36,7] := {0} tii[36,8] := {11} tii[36,9] := {1} tii[36,10] := {13} tii[36,11] := {3, 21} tii[36,12] := {19} tii[36,13] := {9} tii[36,14] := {17} tii[36,15] := {10, 24} tii[36,16] := {2} tii[36,17] := {14} tii[36,18] := {4, 22} tii[36,19] := {20} tii[36,20] := {12, 25} tii[36,21] := {5, 26} cell#14 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {92} tii[33,2] := {54} tii[33,3] := {45} tii[33,4] := {12, 82} tii[33,5] := {28, 93} tii[33,6] := {100} tii[33,7] := {42} tii[33,8] := {90} tii[33,9] := {32} tii[33,10] := {94} tii[33,11] := {91} tii[33,12] := {8, 67} tii[33,13] := {97, 98} tii[33,14] := {19, 89} tii[33,15] := {63} tii[33,16] := {57} tii[33,17] := {78} tii[33,18] := {64} tii[33,19] := {13, 84} tii[33,20] := {80, 81} tii[33,21] := {30, 99} tii[33,22] := {79} tii[33,23] := {53} tii[33,24] := {9, 96} tii[33,25] := {70, 71} tii[33,26] := {21, 102} tii[33,27] := {24, 101} tii[33,28] := {40, 95} tii[33,29] := {41, 103} tii[33,30] := {60, 104} tii[33,31] := {77} tii[33,32] := {58} tii[33,33] := {36} tii[33,34] := {15, 51} tii[33,35] := {75} tii[33,36] := {83} tii[33,37] := {33} tii[33,38] := {76} tii[33,39] := {11} tii[33,40] := {86, 87} tii[33,41] := {3, 26} tii[33,42] := {66} tii[33,43] := {55} tii[33,44] := {25} tii[33,45] := {72, 73} tii[33,46] := {10, 44} tii[33,47] := {34} tii[33,48] := {4, 65} tii[33,49] := {47, 48} tii[33,50] := {27, 68} tii[33,51] := {22} tii[33,52] := {7} tii[33,53] := {0, 17} tii[33,54] := {56} tii[33,55] := {14} tii[33,56] := {43} tii[33,57] := {61, 62} tii[33,58] := {6, 31} tii[33,59] := {23} tii[33,60] := {1, 46} tii[33,61] := {38, 39} tii[33,62] := {18, 59} tii[33,63] := {37} tii[33,64] := {16, 52} tii[33,65] := {35} tii[33,66] := {5, 74} tii[33,67] := {49, 50} tii[33,68] := {29, 69} tii[33,69] := {2, 88} tii[33,70] := {20, 85} cell#15 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {99} tii[28,2] := {38, 145} tii[28,3] := {85, 167} tii[28,4] := {112, 177} tii[28,5] := {117} tii[28,6] := {81} tii[28,7] := {26, 157} tii[28,8] := {93, 122} tii[28,9] := {72, 173} tii[28,10] := {115, 143} tii[28,11] := {98, 181} tii[28,12] := {132} tii[28,13] := {46, 165} tii[28,14] := {118} tii[28,15] := {102} tii[28,16] := {54, 149} tii[28,17] := {94, 178} tii[28,18] := {79, 127} tii[28,19] := {78, 164} tii[28,20] := {116, 184} tii[28,21] := {70, 172} tii[28,22] := {47, 166} tii[28,23] := {114, 183} tii[28,24] := {76, 176} tii[28,25] := {24, 156} tii[28,26] := {131, 186} tii[28,27] := {130, 185} tii[28,28] := {113, 182} tii[28,29] := {144, 187} tii[28,30] := {155, 188} tii[28,31] := {59} tii[28,32] := {27, 104} tii[28,33] := {52, 129} tii[28,34] := {80} tii[28,35] := {58} tii[28,36] := {60} tii[28,37] := {12, 121} tii[28,38] := {71, 103} tii[28,39] := {43, 91} tii[28,40] := {31, 142} tii[28,41] := {97, 128} tii[28,42] := {82} tii[28,43] := {20, 135} tii[28,44] := {62} tii[28,45] := {48, 120} tii[28,46] := {36, 89} tii[28,47] := {42, 152} tii[28,48] := {9, 124} tii[28,49] := {77, 141} tii[28,50] := {29, 134} tii[28,51] := {64, 161} tii[28,52] := {10, 119} tii[28,53] := {50, 151} tii[28,54] := {73, 160} tii[28,55] := {100} tii[28,56] := {83} tii[28,57] := {7, 137} tii[28,58] := {68, 111} tii[28,59] := {18, 154} tii[28,60] := {101} tii[28,61] := {84} tii[28,62] := {61} tii[28,63] := {13, 148} tii[28,64] := {34, 136} tii[28,65] := {57, 110} tii[28,66] := {44, 92} tii[28,67] := {32, 163} tii[28,68] := {5, 139} tii[28,69] := {56, 153} tii[28,70] := {63} tii[28,71] := {17, 147} tii[28,72] := {69, 109} tii[28,73] := {49, 169} tii[28,74] := {6, 133} tii[28,75] := {37, 90} tii[28,76] := {35, 162} tii[28,77] := {21, 106} tii[28,78] := {55, 168} tii[28,79] := {28, 159} tii[28,80] := {53, 171} tii[28,81] := {15, 150} tii[28,82] := {30, 158} tii[28,83] := {33, 140} tii[28,84] := {75, 175} tii[28,85] := {51, 170} tii[28,86] := {11, 146} tii[28,87] := {74, 174} tii[28,88] := {4, 138} tii[28,89] := {96, 180} tii[28,90] := {95, 179} tii[28,91] := {39} tii[28,92] := {22, 66} tii[28,93] := {14, 88} tii[28,94] := {40} tii[28,95] := {23, 67} tii[28,96] := {41} tii[28,97] := {2, 108} tii[28,98] := {45, 87} tii[28,99] := {19, 65} tii[28,100] := {8, 86} tii[28,101] := {25, 107} tii[28,102] := {3, 105} tii[28,103] := {0, 126} tii[28,104] := {16, 125} tii[28,105] := {1, 123} cell#16 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {103} tii[33,2] := {101} tii[33,3] := {90} tii[33,4] := {81, 102} tii[33,5] := {97, 104} tii[33,6] := {98} tii[33,7] := {93} tii[33,8] := {88} tii[33,9] := {74} tii[33,10] := {73} tii[33,11] := {55} tii[33,12] := {62, 95} tii[33,13] := {38, 69} tii[33,14] := {85, 100} tii[33,15] := {79} tii[33,16] := {54} tii[33,17] := {61} tii[33,18] := {44} tii[33,19] := {43, 83} tii[33,20] := {29, 60} tii[33,21] := {68, 92} tii[33,22] := {35} tii[33,23] := {22} tii[33,24] := {27, 64} tii[33,25] := {11, 33} tii[33,26] := {48, 78} tii[33,27] := {14, 57} tii[33,28] := {6, 40} tii[33,29] := {31, 71} tii[33,30] := {51, 52} tii[33,31] := {99} tii[33,32] := {89} tii[33,33] := {75} tii[33,34] := {58, 86} tii[33,35] := {72} tii[33,36] := {53} tii[33,37] := {94} tii[33,38] := {36} tii[33,39] := {82} tii[33,40] := {23, 49} tii[33,41] := {65, 91} tii[33,42] := {34} tii[33,43] := {21} tii[33,44] := {76} tii[33,45] := {10, 32} tii[33,46] := {59, 87} tii[33,47] := {8} tii[33,48] := {66, 96} tii[33,49] := {4, 19} tii[33,50] := {0, 12} tii[33,51] := {80} tii[33,52] := {63} tii[33,53] := {45, 77} tii[33,54] := {42} tii[33,55] := {56} tii[33,56] := {28} tii[33,57] := {16, 41} tii[33,58] := {39, 70} tii[33,59] := {15} tii[33,60] := {46, 84} tii[33,61] := {7, 26} tii[33,62] := {2, 18} tii[33,63] := {37} tii[33,64] := {24, 50} tii[33,65] := {9} tii[33,66] := {30, 67} tii[33,67] := {5, 20} tii[33,68] := {1, 13} tii[33,69] := {17, 47} tii[33,70] := {3, 25} cell#17 , |C| = 98 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1],[1, 1]]+phi[[],[5, 2]] TII depth = 4 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[32,1] := {84} tii[32,2] := {79} tii[32,3] := {64} tii[32,4] := {58} tii[32,5] := {91} tii[32,6] := {66} tii[32,7] := {94} tii[32,8] := {49} tii[32,9] := {92} tii[32,10] := {42} tii[32,11] := {95} tii[32,12] := {93, 97} tii[32,13] := {78} tii[32,14] := {34} tii[32,15] := {73} tii[32,16] := {30} tii[32,17] := {80} tii[32,18] := {74, 89} tii[32,19] := {47} tii[32,20] := {19} tii[32,21] := {55} tii[32,22] := {48, 70} tii[32,23] := {29} tii[32,24] := {21, 45} tii[32,25] := {0} tii[32,26] := {75} tii[32,27] := {4} tii[32,28] := {63} tii[32,29] := {11} tii[32,30] := {51} tii[32,31] := {22} tii[32,32] := {38} tii[32,33] := {7} tii[32,34] := {87} tii[32,35] := {85} tii[32,36] := {16} tii[32,37] := {67} tii[32,38] := {88} tii[32,39] := {27} tii[32,40] := {57} tii[32,41] := {86, 96} tii[32,42] := {43} tii[32,43] := {12} tii[32,44] := {76} tii[32,45] := {23} tii[32,46] := {81} tii[32,47] := {52} tii[32,48] := {77, 90} tii[32,49] := {39} tii[32,50] := {28} tii[32,51] := {69} tii[32,52] := {65, 83} tii[32,53] := {44} tii[32,54] := {53, 72} tii[32,55] := {2} tii[32,56] := {54} tii[32,57] := {8} tii[32,58] := {41} tii[32,59] := {17} tii[32,60] := {31} tii[32,61] := {5} tii[32,62] := {61} tii[32,63] := {13} tii[32,64] := {36} tii[32,65] := {68} tii[32,66] := {26} tii[32,67] := {62, 82} tii[32,68] := {18} tii[32,69] := {56} tii[32,70] := {50, 71} tii[32,71] := {32} tii[32,72] := {37, 60} tii[32,73] := {1} tii[32,74] := {24} tii[32,75] := {6} tii[32,76] := {15} tii[32,77] := {9} tii[32,78] := {40} tii[32,79] := {20} tii[32,80] := {35, 59} tii[32,81] := {25, 46} tii[32,82] := {3} tii[32,83] := {10} tii[32,84] := {14, 33} cell#18 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {52} tii[33,2] := {63} tii[33,3] := {84} tii[33,4] := {90, 99} tii[33,5] := {97, 103} tii[33,6] := {71} tii[33,7] := {44} tii[33,8] := {53} tii[33,9] := {72} tii[33,10] := {30} tii[33,11] := {50} tii[33,12] := {82, 94} tii[33,13] := {31, 70} tii[33,14] := {91, 101} tii[33,15] := {23} tii[33,16] := {54} tii[33,17] := {7} tii[33,18] := {18} tii[33,19] := {66, 85} tii[33,20] := {8, 41} tii[33,21] := {83, 96} tii[33,22] := {73} tii[33,23] := {57} tii[33,24] := {47, 93} tii[33,25] := {34, 78} tii[33,26] := {69, 100} tii[33,27] := {26, 98} tii[33,28] := {10, 92} tii[33,29] := {48, 102} tii[33,30] := {67, 104} tii[33,31] := {32} tii[33,32] := {19} tii[33,33] := {35} tii[33,34] := {20, 60} tii[33,35] := {33} tii[33,36] := {13} tii[33,37] := {42} tii[33,38] := {29} tii[33,39] := {55} tii[33,40] := {14, 51} tii[33,41] := {43, 79} tii[33,42] := {4} tii[33,43] := {17} tii[33,44] := {74} tii[33,45] := {5, 40} tii[33,46] := {64, 89} tii[33,47] := {38} tii[33,48] := {81, 95} tii[33,49] := {15, 58} tii[33,50] := {6, 75} tii[33,51] := {21} tii[33,52] := {36} tii[33,53] := {22, 61} tii[33,54] := {0} tii[33,55] := {56} tii[33,56] := {12} tii[33,57] := {1, 28} tii[33,58] := {45, 80} tii[33,59] := {27} tii[33,60] := {65, 88} tii[33,61] := {11, 49} tii[33,62] := {3, 68} tii[33,63] := {37} tii[33,64] := {24, 62} tii[33,65] := {39} tii[33,66] := {46, 77} tii[33,67] := {16, 59} tii[33,68] := {9, 76} tii[33,69] := {25, 87} tii[33,70] := {2, 86} cell#19 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {99} tii[28,2] := {38, 145} tii[28,3] := {85, 167} tii[28,4] := {112, 177} tii[28,5] := {117} tii[28,6] := {81} tii[28,7] := {26, 157} tii[28,8] := {93, 122} tii[28,9] := {72, 173} tii[28,10] := {115, 143} tii[28,11] := {98, 181} tii[28,12] := {132} tii[28,13] := {46, 165} tii[28,14] := {118} tii[28,15] := {102} tii[28,16] := {54, 149} tii[28,17] := {94, 178} tii[28,18] := {79, 127} tii[28,19] := {78, 164} tii[28,20] := {116, 184} tii[28,21] := {70, 172} tii[28,22] := {47, 166} tii[28,23] := {114, 183} tii[28,24] := {76, 176} tii[28,25] := {24, 156} tii[28,26] := {131, 186} tii[28,27] := {130, 185} tii[28,28] := {113, 182} tii[28,29] := {144, 187} tii[28,30] := {155, 188} tii[28,31] := {59} tii[28,32] := {27, 104} tii[28,33] := {52, 129} tii[28,34] := {80} tii[28,35] := {58} tii[28,36] := {60} tii[28,37] := {12, 121} tii[28,38] := {71, 103} tii[28,39] := {43, 91} tii[28,40] := {31, 142} tii[28,41] := {97, 128} tii[28,42] := {82} tii[28,43] := {20, 135} tii[28,44] := {62} tii[28,45] := {48, 120} tii[28,46] := {36, 89} tii[28,47] := {42, 152} tii[28,48] := {9, 124} tii[28,49] := {77, 141} tii[28,50] := {29, 134} tii[28,51] := {64, 161} tii[28,52] := {10, 119} tii[28,53] := {50, 151} tii[28,54] := {73, 160} tii[28,55] := {100} tii[28,56] := {83} tii[28,57] := {7, 137} tii[28,58] := {68, 111} tii[28,59] := {18, 154} tii[28,60] := {101} tii[28,61] := {84} tii[28,62] := {61} tii[28,63] := {13, 148} tii[28,64] := {34, 136} tii[28,65] := {57, 110} tii[28,66] := {44, 92} tii[28,67] := {32, 163} tii[28,68] := {5, 139} tii[28,69] := {56, 153} tii[28,70] := {63} tii[28,71] := {17, 147} tii[28,72] := {69, 109} tii[28,73] := {49, 169} tii[28,74] := {6, 133} tii[28,75] := {37, 90} tii[28,76] := {35, 162} tii[28,77] := {21, 106} tii[28,78] := {55, 168} tii[28,79] := {28, 159} tii[28,80] := {53, 171} tii[28,81] := {15, 150} tii[28,82] := {30, 158} tii[28,83] := {33, 140} tii[28,84] := {75, 175} tii[28,85] := {51, 170} tii[28,86] := {11, 146} tii[28,87] := {74, 174} tii[28,88] := {4, 138} tii[28,89] := {96, 180} tii[28,90] := {95, 179} tii[28,91] := {39} tii[28,92] := {22, 66} tii[28,93] := {14, 88} tii[28,94] := {40} tii[28,95] := {23, 67} tii[28,96] := {41} tii[28,97] := {2, 108} tii[28,98] := {45, 87} tii[28,99] := {19, 65} tii[28,100] := {8, 86} tii[28,101] := {25, 107} tii[28,102] := {3, 105} tii[28,103] := {0, 126} tii[28,104] := {16, 125} tii[28,105] := {1, 123} cell#20 , |C| = 98 special orbit = [9, 2, 2, 1, 1] special rep = [[4, 1], [1, 1]] , dim = 84 cell rep = phi[[4, 1],[1, 1]]+phi[[],[5, 2]] TII depth = 4 TII multiplicity polynomial = 70*X+14*X^2 TII subcells: tii[32,1] := {84} tii[32,2] := {79} tii[32,3] := {64} tii[32,4] := {58} tii[32,5] := {91} tii[32,6] := {66} tii[32,7] := {94} tii[32,8] := {49} tii[32,9] := {92} tii[32,10] := {42} tii[32,11] := {95} tii[32,12] := {93, 97} tii[32,13] := {78} tii[32,14] := {34} tii[32,15] := {73} tii[32,16] := {30} tii[32,17] := {80} tii[32,18] := {74, 89} tii[32,19] := {47} tii[32,20] := {19} tii[32,21] := {55} tii[32,22] := {48, 70} tii[32,23] := {29} tii[32,24] := {21, 45} tii[32,25] := {0} tii[32,26] := {75} tii[32,27] := {4} tii[32,28] := {63} tii[32,29] := {11} tii[32,30] := {51} tii[32,31] := {22} tii[32,32] := {38} tii[32,33] := {7} tii[32,34] := {87} tii[32,35] := {85} tii[32,36] := {16} tii[32,37] := {67} tii[32,38] := {88} tii[32,39] := {27} tii[32,40] := {57} tii[32,41] := {86, 96} tii[32,42] := {43} tii[32,43] := {12} tii[32,44] := {76} tii[32,45] := {23} tii[32,46] := {81} tii[32,47] := {52} tii[32,48] := {77, 90} tii[32,49] := {39} tii[32,50] := {28} tii[32,51] := {69} tii[32,52] := {65, 83} tii[32,53] := {44} tii[32,54] := {53, 72} tii[32,55] := {2} tii[32,56] := {54} tii[32,57] := {8} tii[32,58] := {41} tii[32,59] := {17} tii[32,60] := {31} tii[32,61] := {5} tii[32,62] := {61} tii[32,63] := {13} tii[32,64] := {36} tii[32,65] := {68} tii[32,66] := {26} tii[32,67] := {62, 82} tii[32,68] := {18} tii[32,69] := {56} tii[32,70] := {50, 71} tii[32,71] := {32} tii[32,72] := {37, 60} tii[32,73] := {1} tii[32,74] := {24} tii[32,75] := {6} tii[32,76] := {15} tii[32,77] := {9} tii[32,78] := {40} tii[32,79] := {20} tii[32,80] := {35, 59} tii[32,81] := {25, 46} tii[32,82] := {3} tii[32,83] := {10} tii[32,84] := {14, 33} cell#21 , |C| = 392 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 2],[1, 1]]+phi[[3, 1],[2, 1]]+phi[[1],[4, 2]]+phi[[],[4, 3]] TII depth = 3 TII multiplicity polynomial = 56*X+140*X^2+14*X^4 TII subcells: tii[26,1] := {345, 346} tii[26,2] := {184, 186} tii[26,3] := {231} tii[26,4] := {382} tii[26,5] := {378, 379} tii[26,6] := {330} tii[26,7] := {309, 311} tii[26,8] := {152, 154} tii[26,9] := {288, 289} tii[26,10] := {203} tii[26,11] := {322, 381} tii[26,12] := {360, 389} tii[26,13] := {387, 388} tii[26,14] := {245} tii[26,15] := {213, 215} tii[26,16] := {374, 376} tii[26,17] := {201, 202} tii[26,18] := {260} tii[26,19] := {383, 384} tii[26,20] := {226, 337} tii[26,21] := {375, 377, 390, 391} tii[26,22] := {295, 362} tii[26,23] := {270, 272} tii[26,24] := {317} tii[26,25] := {313, 314} tii[26,26] := {225, 354} tii[26,27] := {271, 273, 355, 356} tii[26,28] := {294, 373} tii[26,29] := {353} tii[26,30] := {367, 368} tii[26,31] := {76, 77} tii[26,32] := {18, 19} tii[26,33] := {250, 251} tii[26,34] := {140, 141} tii[26,35] := {70} tii[26,36] := {121} tii[26,37] := {124, 125} tii[26,38] := {363} tii[26,39] := {307, 308} tii[26,40] := {282} tii[26,41] := {78, 79} tii[26,42] := {246, 248} tii[26,43] := {7, 8} tii[26,44] := {331} tii[26,45] := {229, 230} tii[26,46] := {254, 255} tii[26,47] := {128, 129} tii[26,48] := {90, 91} tii[26,49] := {274, 358} tii[26,50] := {287} tii[26,51] := {36} tii[26,52] := {205, 206} tii[26,53] := {325, 380} tii[26,54] := {233, 327} tii[26,55] := {73} tii[26,56] := {20, 21} tii[26,57] := {222} tii[26,58] := {303, 305} tii[26,59] := {134, 136} tii[26,60] := {47, 48} tii[26,61] := {167} tii[26,62] := {168, 169} tii[26,63] := {332, 333} tii[26,64] := {217, 323} tii[26,65] := {69} tii[26,66] := {114, 220} tii[26,67] := {94, 95} tii[26,68] := {304, 306, 369, 370} tii[26,69] := {120} tii[26,70] := {277, 357} tii[26,71] := {111} tii[26,72] := {223, 224} tii[26,73] := {160, 290} tii[26,74] := {185, 187, 296, 297} tii[26,75] := {108, 234} tii[26,76] := {177} tii[26,77] := {219, 328} tii[26,78] := {280, 281} tii[26,79] := {182, 183} tii[26,80] := {364} tii[26,81] := {351, 352} tii[26,82] := {4, 5} tii[26,83] := {126, 127} tii[26,84] := {336} tii[26,85] := {62, 63} tii[26,86] := {315, 316} tii[26,87] := {189, 190} tii[26,88] := {24} tii[26,89] := {292, 361} tii[26,90] := {263, 264} tii[26,91] := {59} tii[26,92] := {347, 349} tii[26,93] := {80, 81} tii[26,94] := {13, 14} tii[26,95] := {188} tii[26,96] := {102, 104} tii[26,97] := {365, 366} tii[26,98] := {32, 33} tii[26,99] := {130, 131} tii[26,100] := {286} tii[26,101] := {256, 258} tii[26,102] := {138, 139} tii[26,103] := {133} tii[26,104] := {165, 291} tii[26,105] := {53} tii[26,106] := {348, 350, 385, 386} tii[26,107] := {207, 208} tii[26,108] := {64, 65} tii[26,109] := {232, 326} tii[26,110] := {93, 179} tii[26,111] := {100} tii[26,112] := {238, 329} tii[26,113] := {334, 335} tii[26,114] := {163, 164} tii[26,115] := {88} tii[26,116] := {112, 261} tii[26,117] := {192, 193} tii[26,118] := {275, 359} tii[26,119] := {310, 312, 371, 372} tii[26,120] := {71, 204} tii[26,121] := {149} tii[26,122] := {153, 155, 266, 267} tii[26,123] := {178, 302} tii[26,124] := {236, 237} tii[26,125] := {257, 259, 342, 343} tii[26,126] := {243, 244} tii[26,127] := {30, 31} tii[26,128] := {194} tii[26,129] := {156, 158} tii[26,130] := {60, 61} tii[26,131] := {89} tii[26,132] := {142, 240} tii[26,133] := {106, 107} tii[26,134] := {150} tii[26,135] := {252, 253} tii[26,136] := {86, 87} tii[26,137] := {132} tii[26,138] := {166, 318} tii[26,139] := {173, 293} tii[26,140] := {214, 216, 320, 321} tii[26,141] := {209} tii[26,142] := {147, 148} tii[26,143] := {116, 262} tii[26,144] := {239, 344} tii[26,145] := {157, 159, 268, 269} tii[26,146] := {300, 301} tii[26,147] := {191} tii[26,148] := {174, 319} tii[26,149] := {265} tii[26,150] := {340, 341} tii[26,151] := {41, 42} tii[26,152] := {28, 29} tii[26,153] := {54} tii[26,154] := {45, 46} tii[26,155] := {283} tii[26,156] := {84, 85} tii[26,157] := {228} tii[26,158] := {199, 200} tii[26,159] := {11, 12} tii[26,160] := {145, 146} tii[26,161] := {172, 279} tii[26,162] := {25} tii[26,163] := {49, 50} tii[26,164] := {170} tii[26,165] := {37} tii[26,166] := {117, 221} tii[26,167] := {98, 99} tii[26,168] := {74, 181} tii[26,169] := {43, 44} tii[26,170] := {227} tii[26,171] := {2, 3} tii[26,172] := {82, 83} tii[26,173] := {195, 197} tii[26,174] := {171, 278} tii[26,175] := {9} tii[26,176] := {143, 144} tii[26,177] := {22, 23} tii[26,178] := {109, 110} tii[26,179] := {113} tii[26,180] := {284, 285} tii[26,181] := {218, 324} tii[26,182] := {17} tii[26,183] := {247, 249, 338, 339} tii[26,184] := {72, 162} tii[26,185] := {175, 176} tii[26,186] := {57, 58} tii[26,187] := {196, 198, 298, 299} tii[26,188] := {39, 122} tii[26,189] := {67, 68} tii[26,190] := {161, 276} tii[26,191] := {38} tii[26,192] := {118, 119} tii[26,193] := {66, 180} tii[26,194] := {135, 137, 241, 242} tii[26,195] := {0, 1} tii[26,196] := {6} tii[26,197] := {15, 16} tii[26,198] := {92} tii[26,199] := {10} tii[26,200] := {34, 35} tii[26,201] := {56, 123} tii[26,202] := {27, 101} tii[26,203] := {51, 52} tii[26,204] := {115, 235} tii[26,205] := {26} tii[26,206] := {96, 97} tii[26,207] := {40, 151} tii[26,208] := {103, 105, 211, 212} tii[26,209] := {55} tii[26,210] := {75, 210} cell#22 , |C| = 105 special orbit = [9, 3, 1, 1, 1] special rep = [[4], [2, 1]] , dim = 70 cell rep = phi[[4],[2, 1]]+phi[[1],[5, 1]] TII depth = 2 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[33,1] := {86} tii[33,2] := {79} tii[33,3] := {54} tii[33,4] := {42, 83} tii[33,5] := {67, 92} tii[33,6] := {97} tii[33,7] := {59} tii[33,8] := {101} tii[33,9] := {32} tii[33,10] := {98} tii[33,11] := {102} tii[33,12] := {22, 64} tii[33,13] := {99, 104} tii[33,14] := {47, 77} tii[33,15] := {78} tii[33,16] := {15} tii[33,17] := {69} tii[33,18] := {81} tii[33,19] := {10, 44} tii[33,20] := {70, 95} tii[33,21] := {27, 58} tii[33,22] := {30} tii[33,23] := {40} tii[33,24] := {3, 63} tii[33,25] := {31, 66} tii[33,26] := {13, 75} tii[33,27] := {9, 80} tii[33,28] := {5, 89} tii[33,29] := {28, 90} tii[33,30] := {38, 100} tii[33,31] := {71} tii[33,32] := {53} tii[33,33] := {34} tii[33,34] := {19, 49} tii[33,35] := {93} tii[33,36] := {87} tii[33,37] := {60} tii[33,38] := {94} tii[33,39] := {43} tii[33,40] := {88, 103} tii[33,41] := {24, 56} tii[33,42] := {72} tii[33,43] := {82} tii[33,44] := {35} tii[33,45] := {73, 96} tii[33,46] := {20, 50} tii[33,47] := {62} tii[33,48] := {25, 65} tii[33,49] := {55, 85} tii[33,50] := {36, 91} tii[33,51] := {39} tii[33,52] := {23} tii[33,53] := {11, 37} tii[33,54] := {51} tii[33,55] := {17} tii[33,56] := {61} tii[33,57] := {52, 84} tii[33,58] := {8, 29} tii[33,59] := {41} tii[33,60] := {12, 46} tii[33,61] := {33, 68} tii[33,62] := {18, 76} tii[33,63] := {6} tii[33,64] := {2, 14} tii[33,65] := {21} tii[33,66] := {4, 26} tii[33,67] := {16, 48} tii[33,68] := {7, 57} tii[33,69] := {0, 45} tii[33,70] := {1, 74} cell#23 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {117} tii[28,2] := {158, 159} tii[28,3] := {179, 180} tii[28,4] := {186, 187} tii[28,5] := {89} tii[28,6] := {47} tii[28,7] := {144, 145} tii[28,8] := {92, 93} tii[28,9] := {170, 171} tii[28,10] := {121, 122} tii[28,11] := {181, 182} tii[28,12] := {59} tii[28,13] := {124, 125} tii[28,14] := {37} tii[28,15] := {27} tii[28,16] := {79, 80} tii[28,17] := {160, 161} tii[28,18] := {41, 42} tii[28,19] := {112, 113} tii[28,20] := {175, 176} tii[28,21] := {101, 143} tii[28,22] := {78, 126} tii[28,23] := {148, 172} tii[28,24] := {111, 154} tii[28,25] := {55, 118} tii[28,26] := {168, 183} tii[28,27] := {162, 178} tii[28,28] := {151, 169} tii[28,29] := {177, 185} tii[28,30] := {184, 188} tii[28,31] := {74} tii[28,32] := {119, 120} tii[28,33] := {140, 141} tii[28,34] := {90} tii[28,35] := {28} tii[28,36] := {73} tii[28,37] := {129, 130} tii[28,38] := {63, 64} tii[28,39] := {94, 95} tii[28,40] := {155, 156} tii[28,41] := {98, 99} tii[28,42] := {13} tii[28,43] := {146, 147} tii[28,44] := {7} tii[28,45] := {38, 39} tii[28,46] := {15, 16} tii[28,47] := {166, 167} tii[28,48] := {131, 132} tii[28,49] := {70, 71} tii[28,50] := {21, 62} tii[28,51] := {173, 174} tii[28,52] := {9, 48} tii[28,53] := {45, 100} tii[28,54] := {72, 116} tii[28,55] := {60} tii[28,56] := {46} tii[28,57] := {105, 106} tii[28,58] := {66, 67} tii[28,59] := {136, 137} tii[28,60] := {20} tii[28,61] := {12} tii[28,62] := {32} tii[28,63] := {127, 128} tii[28,64] := {52, 53} tii[28,65] := {23, 24} tii[28,66] := {49, 50} tii[28,67] := {152, 153} tii[28,68] := {107, 108} tii[28,69] := {85, 86} tii[28,70] := {4} tii[28,71] := {33, 77} tii[28,72] := {68, 69} tii[28,73] := {163, 164} tii[28,74] := {18, 61} tii[28,75] := {10, 11} tii[28,76] := {58, 114} tii[28,77] := {2, 22} tii[28,78] := {88, 123} tii[28,79] := {103, 104} tii[28,80] := {134, 135} tii[28,81] := {81, 82} tii[28,82] := {54, 102} tii[28,83] := {56, 57} tii[28,84] := {149, 150} tii[28,85] := {87, 138} tii[28,86] := {36, 91} tii[28,87] := {115, 142} tii[28,88] := {19, 65} tii[28,89] := {133, 165} tii[28,90] := {139, 157} tii[28,91] := {51} tii[28,92] := {75, 76} tii[28,93] := {96, 97} tii[28,94] := {17} tii[28,95] := {30, 31} tii[28,96] := {1} tii[28,97] := {109, 110} tii[28,98] := {43, 44} tii[28,99] := {5, 6} tii[28,100] := {0, 14} tii[28,101] := {25, 26} tii[28,102] := {3, 29} tii[28,103] := {83, 84} tii[28,104] := {34, 35} tii[28,105] := {8, 40} cell#24 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {387} tii[26,2] := {350} tii[26,3] := {252, 417} tii[26,4] := {70, 416} tii[26,5] := {362} tii[26,6] := {130, 412} tii[26,7] := {293} tii[26,8] := {314} tii[26,9] := {207} tii[26,10] := {208, 404} tii[26,11] := {74, 227, 383, 424} tii[26,12] := {122, 290, 400, 426} tii[26,13] := {379} tii[26,14] := {129, 368} tii[26,15] := {271} tii[26,16] := {351} tii[26,17] := {184} tii[26,18] := {160, 384} tii[26,19] := {319} tii[26,20] := {60, 226, 320, 406} tii[26,21] := {282, 344} tii[26,22] := {101, 289, 345, 420} tii[26,23] := {299} tii[26,24] := {119, 396} tii[26,25] := {257} tii[26,26] := {24, 230, 300, 364} tii[26,27] := {215, 297} tii[26,28] := {51, 265, 343, 391} tii[26,29] := {139, 413} tii[26,30] := {99, 175, 397, 422} tii[26,31] := {107} tii[26,32] := {177} tii[26,33] := {331} tii[26,34] := {251} tii[26,35] := {112, 275} tii[26,36] := {164, 329} tii[26,37] := {152} tii[26,38] := {42, 402} tii[26,39] := {363} tii[26,40] := {91, 393} tii[26,41] := {203} tii[26,42] := {248} tii[26,43] := {223} tii[26,44] := {29, 380} tii[26,45] := {159} tii[26,46] := {332} tii[26,47] := {249} tii[26,48] := {279} tii[26,49] := {45, 182, 356, 418} tii[26,50] := {47, 355} tii[26,51] := {131, 318} tii[26,52] := {296} tii[26,53] := {81, 244, 377, 425} tii[26,54] := {32, 83, 324, 376} tii[26,55] := {195, 361} tii[26,56] := {270} tii[26,57] := {59, 369} tii[26,58] := {272} tii[26,59] := {321} tii[26,60] := {225} tii[26,61] := {33, 340} tii[26,62] := {118} tii[26,63] := {229} tii[26,64] := {23, 136, 323, 407} tii[26,65] := {113, 354} tii[26,66] := {20, 64, 304, 367} tii[26,67] := {288} tii[26,68] := {187, 264} tii[26,69] := {165, 386} tii[26,70] := {50, 198, 348, 421} tii[26,71] := {158, 381} tii[26,72] := {138} tii[26,73] := {10, 167, 281, 394} tii[26,74] := {98, 174} tii[26,75] := {5, 125, 240, 373} tii[26,76] := {211, 405} tii[26,77] := {26, 218, 313, 414} tii[26,78] := {38, 267, 292, 423} tii[26,79] := {109} tii[26,80] := {53, 403} tii[26,81] := {330} tii[26,82] := {176} tii[26,83] := {154} tii[26,84] := {76, 382} tii[26,85] := {231} tii[26,86] := {294} tii[26,87] := {204} tii[26,88] := {93, 274} tii[26,89] := {56, 124, 357, 399} tii[26,90] := {253} tii[26,91] := {145, 328} tii[26,92] := {315} tii[26,93] := {111} tii[26,94] := {224} tii[26,95] := {92, 336} tii[26,96] := {276} tii[26,97] := {277} tii[26,98] := {180} tii[26,99] := {156} tii[26,100] := {94, 395} tii[26,101] := {250} tii[26,102] := {137} tii[26,103] := {62, 301} tii[26,104] := {34, 183, 278, 388} tii[26,105] := {75, 317} tii[26,106] := {234, 308} tii[26,107] := {209} tii[26,108] := {241} tii[26,109] := {71, 146, 372, 410} tii[26,110] := {44, 103, 259, 334} tii[26,111] := {123, 360} tii[26,112] := {65, 245, 309, 409} tii[26,113] := {232} tii[26,114] := {116} tii[26,115] := {117, 353} tii[26,116] := {18, 213, 233, 370} tii[26,117] := {168} tii[26,118] := {54, 190, 358, 419} tii[26,119] := {191, 268} tii[26,120] := {8, 169, 192, 342} tii[26,121] := {163, 385} tii[26,122] := {126, 212} tii[26,123] := {36, 262, 269, 398} tii[26,124] := {162} tii[26,125] := {148, 246} tii[26,126] := {57, 247, 311, 415} tii[26,127] := {178} tii[26,128] := {95, 339} tii[26,129] := {228} tii[26,130] := {134} tii[26,131] := {46, 273} tii[26,132] := {72, 147, 303, 366} tii[26,133] := {193} tii[26,134] := {82, 327} tii[26,135] := {214} tii[26,136] := {96} tii[26,137] := {78, 316} tii[26,138] := {11, 186, 256, 338} tii[26,139] := {41, 189, 283, 389} tii[26,140] := {170, 255} tii[26,141] := {121, 359} tii[26,142] := {144} tii[26,143] := {6, 143, 216, 305} tii[26,144] := {27, 222, 306, 375} tii[26,145] := {127, 220} tii[26,146] := {39, 202, 349, 401} tii[26,147] := {49, 337} tii[26,148] := {16, 188, 260, 333} tii[26,149] := {80, 374} tii[26,150] := {68, 151, 378, 411} tii[26,151] := {84} tii[26,152] := {114} tii[26,153] := {87, 166} tii[26,154] := {155} tii[26,155] := {14, 352} tii[26,156] := {205} tii[26,157] := {25, 322} tii[26,158] := {295} tii[26,159] := {132} tii[26,160] := {254} tii[26,161] := {17, 52, 284, 347} tii[26,162] := {108, 196} tii[26,163] := {157} tii[26,164] := {12, 280} tii[26,165] := {85, 238} tii[26,166] := {7, 28, 239, 312} tii[26,167] := {210} tii[26,168] := {2, 40, 199, 291} tii[26,169] := {73} tii[26,170] := {61, 371} tii[26,171] := {179} tii[26,172] := {115} tii[26,173] := {206} tii[26,174] := {43, 102, 341, 392} tii[26,175] := {153, 243} tii[26,176] := {161} tii[26,177] := {181} tii[26,178] := {77} tii[26,179] := {19, 302} tii[26,180] := {185} tii[26,181] := {30, 140, 325, 408} tii[26,182] := {106, 287} tii[26,183] := {142, 221} tii[26,184] := {9, 37, 261, 335} tii[26,185] := {120} tii[26,186] := {242} tii[26,187] := {104, 201} tii[26,188] := {4, 58, 219, 310} tii[26,189] := {48} tii[26,190] := {15, 97, 285, 390} tii[26,191] := {86, 326} tii[26,192] := {79} tii[26,193] := {0, 88, 200, 346} tii[26,194] := {67, 150} tii[26,195] := {133} tii[26,196] := {110, 197} tii[26,197] := {135} tii[26,198] := {35, 258} tii[26,199] := {69, 237} tii[26,200] := {194} tii[26,201] := {22, 66, 217, 298} tii[26,202] := {13, 90, 171, 266} tii[26,203] := {63} tii[26,204] := {21, 141, 235, 365} tii[26,205] := {55, 286} tii[26,206] := {100} tii[26,207] := {3, 128, 149, 307} tii[26,208] := {89, 173} tii[26,209] := {31, 236} tii[26,210] := {1, 105, 172, 263} cell#25 , |C| = 70 special orbit = [5, 5, 5] special rep = [[2, 2], [3]] , dim = 70 cell rep = phi[[2, 2],[3]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[21,1] := {69} tii[21,2] := {39} tii[21,3] := {60} tii[21,4] := {22} tii[21,5] := {46} tii[21,6] := {64} tii[21,7] := {41} tii[21,8] := {52} tii[21,9] := {38} tii[21,10] := {53} tii[21,11] := {66} tii[21,12] := {55} tii[21,13] := {62} tii[21,14] := {58} tii[21,15] := {68} tii[21,16] := {63} tii[21,17] := {67} tii[21,18] := {21} tii[21,19] := {14} tii[21,20] := {32} tii[21,21] := {3} tii[21,22] := {25} tii[21,23] := {45} tii[21,24] := {11} tii[21,25] := {23} tii[21,26] := {33} tii[21,27] := {16} tii[21,28] := {40} tii[21,29] := {27} tii[21,30] := {51} tii[21,31] := {47} tii[21,32] := {56} tii[21,33] := {8} tii[21,34] := {34} tii[21,35] := {19} tii[21,36] := {30} tii[21,37] := {15} tii[21,38] := {42} tii[21,39] := {24} tii[21,40] := {48} tii[21,41] := {12} tii[21,42] := {37} tii[21,43] := {29} tii[21,44] := {57} tii[21,45] := {54} tii[21,46] := {36} tii[21,47] := {61} tii[21,48] := {31} tii[21,49] := {49} tii[21,50] := {44} tii[21,51] := {59} tii[21,52] := {50} tii[21,53] := {65} tii[21,54] := {2} tii[21,55] := {7} tii[21,56] := {6} tii[21,57] := {13} tii[21,58] := {9} tii[21,59] := {5} tii[21,60] := {20} tii[21,61] := {10} tii[21,62] := {26} tii[21,63] := {1} tii[21,64] := {18} tii[21,65] := {35} tii[21,66] := {17} tii[21,67] := {4} tii[21,68] := {28} tii[21,69] := {43} tii[21,70] := {0} cell#26 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {155} tii[28,2] := {129, 181} tii[28,3] := {158, 187} tii[28,4] := {170, 188} tii[28,5] := {139} tii[28,6] := {93} tii[28,7] := {106, 174} tii[28,8] := {47, 130} tii[28,9] := {144, 183} tii[28,10] := {66, 147} tii[28,11] := {159, 186} tii[28,12] := {124} tii[28,13] := {82, 169} tii[28,14] := {102} tii[28,15] := {79} tii[28,16] := {39, 142} tii[28,17] := {125, 182} tii[28,18] := {56, 101} tii[28,19] := {57, 154} tii[28,20] := {146, 185} tii[28,21] := {67, 156} tii[28,22] := {45, 141} tii[28,23] := {107, 176} tii[28,24] := {63, 153} tii[28,25] := {29, 122} tii[28,26] := {133, 180} tii[28,27] := {83, 165} tii[28,28] := {61, 152} tii[28,29] := {111, 173} tii[28,30] := {136, 160} tii[28,31] := {118} tii[28,32] := {70, 149} tii[28,33] := {91, 162} tii[28,34] := {140} tii[28,35] := {68} tii[28,36] := {119} tii[28,37] := {85, 164} tii[28,38] := {28, 109} tii[28,39] := {98, 134} tii[28,40] := {105, 172} tii[28,41] := {44, 128} tii[28,42] := {54} tii[28,43] := {108, 175} tii[28,44] := {35} tii[28,45] := {14, 97} tii[28,46] := {20, 51} tii[28,47] := {127, 179} tii[28,48] := {86, 166} tii[28,49] := {26, 116} tii[28,50] := {8, 71} tii[28,51] := {145, 184} tii[28,52] := {2, 50} tii[28,53] := {18, 92} tii[28,54] := {7, 65} tii[28,55] := {117} tii[28,56] := {94} tii[28,57] := {59, 148} tii[28,58] := {72, 112} tii[28,59] := {81, 161} tii[28,60] := {78} tii[28,61] := {55} tii[28,62] := {69} tii[28,63] := {84, 163} tii[28,64] := {22, 121} tii[28,65] := {37, 76} tii[28,66] := {48, 89} tii[28,67] := {104, 171} tii[28,68] := {60, 150} tii[28,69] := {38, 138} tii[28,70] := {36} tii[28,71] := {13, 96} tii[28,72] := {31, 110} tii[28,73] := {126, 178} tii[28,74] := {4, 74} tii[28,75] := {21, 53} tii[28,76] := {25, 115} tii[28,77] := {10, 33} tii[28,78] := {12, 90} tii[28,79] := {58, 157} tii[28,80] := {80, 168} tii[28,81] := {40, 143} tii[28,82] := {27, 120} tii[28,83] := {23, 123} tii[28,84] := {103, 177} tii[28,85] := {43, 137} tii[28,86] := {15, 99} tii[28,87] := {24, 114} tii[28,88] := {6, 77} tii[28,89] := {87, 167} tii[28,90] := {42, 135} tii[28,91] := {95} tii[28,92] := {73, 113} tii[28,93] := {49, 132} tii[28,94] := {46} tii[28,95] := {30, 64} tii[28,96] := {19} tii[28,97] := {62, 151} tii[28,98] := {16, 88} tii[28,99] := {9, 34} tii[28,100] := {3, 17} tii[28,101] := {5, 75} tii[28,102] := {0, 32} tii[28,103] := {41, 131} tii[28,104] := {11, 100} tii[28,105] := {1, 52} cell#27 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {272} tii[20,2] := {281} tii[20,3] := {76, 306} tii[20,4] := {249} tii[20,5] := {168} tii[20,6] := {260} tii[20,7] := {124, 313} tii[20,8] := {159, 314} tii[20,9] := {75, 279} tii[20,10] := {222} tii[20,11] := {167} tii[20,12] := {235} tii[20,13] := {79, 236} tii[20,14] := {123, 301} tii[20,15] := {117, 257} tii[20,16] := {158, 308} tii[20,17] := {250} tii[20,18] := {226} tii[20,19] := {223} tii[20,20] := {138, 284} tii[20,21] := {200, 243} tii[20,22] := {177, 295} tii[20,23] := {254} tii[20,24] := {231, 271} tii[20,25] := {104} tii[20,26] := {197} tii[20,27] := {154} tii[20,28] := {189} tii[20,29] := {51, 296} tii[20,30] := {133} tii[20,31] := {139} tii[20,32] := {137} tii[20,33] := {225} tii[20,34] := {95, 309} tii[20,35] := {29, 261} tii[20,36] := {183} tii[20,37] := {176} tii[20,38] := {128, 312} tii[20,39] := {44, 277} tii[20,40] := {216} tii[20,41] := {163} tii[20,42] := {33, 289} tii[20,43] := {252} tii[20,44] := {194} tii[20,45] := {20, 274} tii[20,46] := {111} tii[20,47] := {34, 184} tii[20,48] := {70, 307} tii[20,49] := {210} tii[20,50] := {232} tii[20,51] := {10, 255} tii[20,52] := {31, 288} tii[20,53] := {64, 208} tii[20,54] := {242} tii[20,55] := {99, 311} tii[20,56] := {234} tii[20,57] := {141} tii[20,58] := {56, 298} tii[20,59] := {114, 162} tii[20,60] := {42, 286} tii[20,61] := {267} tii[20,62] := {91, 304} tii[20,63] := {122, 292} tii[20,64] := {103} tii[20,65] := {46, 282} tii[20,66] := {196} tii[20,67] := {107} tii[20,68] := {153} tii[20,69] := {66, 293} tii[20,70] := {146} tii[20,71] := {188} tii[20,72] := {132} tii[20,73] := {52, 273} tii[20,74] := {57, 297} tii[20,75] := {224} tii[20,76] := {55, 211} tii[20,77] := {164} tii[20,78] := {140} tii[20,79] := {80} tii[20,80] := {37, 251} tii[20,81] := {96, 299} tii[20,82] := {182} tii[20,83] := {38, 285} tii[20,84] := {90, 233} tii[20,85] := {203} tii[20,86] := {73, 303} tii[20,87] := {118} tii[20,88] := {23, 229} tii[20,89] := {50, 268} tii[20,90] := {215} tii[20,91] := {129, 305} tii[20,92] := {35, 199} tii[20,93] := {106} tii[20,94] := {209} tii[20,95] := {81, 283} tii[20,96] := {169} tii[20,97] := {98, 310} tii[20,98] := {25, 172} tii[20,99] := {65, 221} tii[20,100] := {63, 265} tii[20,101] := {145} tii[20,102] := {241} tii[20,103] := {142, 192} tii[20,104] := {119, 294} tii[20,105] := {94, 191} tii[20,106] := {151, 276} tii[20,107] := {102} tii[20,108] := {58, 259} tii[20,109] := {195} tii[20,110] := {134} tii[20,111] := {152} tii[20,112] := {39, 238} tii[20,113] := {74, 275} tii[20,114] := {173} tii[20,115] := {187} tii[20,116] := {198} tii[20,117] := {105} tii[20,118] := {181} tii[20,119] := {109, 262} tii[20,120] := {61, 212} tii[20,121] := {97, 290} tii[20,122] := {171, 220} tii[20,123] := {214} tii[20,124] := {144} tii[20,125] := {87, 240} tii[20,126] := {148, 278} tii[20,127] := {149, 190} tii[20,128] := {180, 256} tii[20,129] := {166} tii[20,130] := {113, 266} tii[20,131] := {205} tii[20,132] := {207, 246} tii[20,133] := {69} tii[20,134] := {92} tii[20,135] := {82} tii[20,136] := {16, 237} tii[20,137] := {108} tii[20,138] := {59} tii[20,139] := {147} tii[20,140] := {27, 258} tii[20,141] := {100} tii[20,142] := {136} tii[20,143] := {6, 228} tii[20,144] := {127} tii[20,145] := {15, 248} tii[20,146] := {2, 202} tii[20,147] := {175} tii[20,148] := {8, 219} tii[20,149] := {36, 280} tii[20,150] := {110} tii[20,151] := {54} tii[20,152] := {22, 263} tii[20,153] := {49, 291} tii[20,154] := {84} tii[20,155] := {130} tii[20,156] := {89} tii[20,157] := {19, 170} tii[20,158] := {165} tii[20,159] := {9, 253} tii[20,160] := {77} tii[20,161] := {112} tii[20,162] := {71, 302} tii[20,163] := {17, 239} tii[20,164] := {156} tii[20,165] := {43, 193} tii[20,166] := {115} tii[20,167] := {3, 230} tii[20,168] := {18, 270} tii[20,169] := {204} tii[20,170] := {11, 143} tii[20,171] := {1, 206} tii[20,172] := {68, 160} tii[20,173] := {14, 245} tii[20,174] := {53} tii[20,175] := {48, 300} tii[20,176] := {185} tii[20,177] := {88} tii[20,178] := {24, 157} tii[20,179] := {26, 269} tii[20,180] := {93, 131} tii[20,181] := {83} tii[20,182] := {60} tii[20,183] := {101} tii[20,184] := {135} tii[20,185] := {21, 227} tii[20,186] := {30, 264} tii[20,187] := {85} tii[20,188] := {126} tii[20,189] := {174} tii[20,190] := {12, 201} tii[20,191] := {32, 247} tii[20,192] := {4, 178} tii[20,193] := {28, 218} tii[20,194] := {78} tii[20,195] := {41, 186} tii[20,196] := {62} tii[20,197] := {72, 287} tii[20,198] := {155} tii[20,199] := {116} tii[20,200] := {13, 150} tii[20,201] := {45, 244} tii[20,202] := {121, 161} tii[20,203] := {125} tii[20,204] := {67, 217} tii[20,205] := {47} tii[20,206] := {7, 213} tii[20,207] := {86} tii[20,208] := {0, 179} tii[20,209] := {40} tii[20,210] := {5, 120} cell#28 , |C| = 175 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 2, 2],[1]]+phi[[2, 1],[2, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+35*X^2 TII subcells: tii[17,1] := {116, 117} tii[17,2] := {129} tii[17,3] := {151, 152} tii[17,4] := {158} tii[17,5] := {166} tii[17,6] := {172} tii[17,7] := {171} tii[17,8] := {174} tii[17,9] := {16, 17} tii[17,10] := {94, 95} tii[17,11] := {109} tii[17,12] := {65, 66} tii[17,13] := {40} tii[17,14] := {61} tii[17,15] := {114, 115} tii[17,16] := {128} tii[17,17] := {104, 105} tii[17,18] := {73} tii[17,19] := {143} tii[17,20] := {121} tii[17,21] := {101} tii[17,22] := {160} tii[17,23] := {142} tii[17,24] := {162} tii[17,25] := {136} tii[17,26] := {27, 28} tii[17,27] := {86, 87} tii[17,28] := {57} tii[17,29] := {82} tii[17,30] := {34, 35} tii[17,31] := {134, 135} tii[17,32] := {97, 98} tii[17,33] := {54, 55} tii[17,34] := {157} tii[17,35] := {124, 125} tii[17,36] := {96} tii[17,37] := {145} tii[17,38] := {70} tii[17,39] := {79, 80} tii[17,40] := {167} tii[17,41] := {138} tii[17,42] := {123} tii[17,43] := {91} tii[17,44] := {89} tii[17,45] := {144} tii[17,46] := {156} tii[17,47] := {131} tii[17,48] := {112} tii[17,49] := {168} tii[17,50] := {153} tii[17,51] := {161} tii[17,52] := {149} tii[17,53] := {140, 141} tii[17,54] := {118} tii[17,55] := {155} tii[17,56] := {139} tii[17,57] := {165} tii[17,58] := {126} tii[17,59] := {159} tii[17,60] := {173} tii[17,61] := {164} tii[17,62] := {147} tii[17,63] := {169} tii[17,64] := {170} tii[17,65] := {8, 9} tii[17,66] := {46, 47} tii[17,67] := {23} tii[17,68] := {2, 3} tii[17,69] := {43} tii[17,70] := {5} tii[17,71] := {39} tii[17,72] := {63, 64} tii[17,73] := {22} tii[17,74] := {78} tii[17,75] := {60} tii[17,76] := {77} tii[17,77] := {20, 21} tii[17,78] := {6, 7} tii[17,79] := {75, 76} tii[17,80] := {37, 38} tii[17,81] := {50} tii[17,82] := {12} tii[17,83] := {58, 59} tii[17,84] := {71} tii[17,85] := {84, 85} tii[17,86] := {69} tii[17,87] := {56} tii[17,88] := {127} tii[17,89] := {29, 30} tii[17,90] := {26} tii[17,91] := {100} tii[17,92] := {90} tii[17,93] := {148} tii[17,94] := {110} tii[17,95] := {36} tii[17,96] := {81} tii[17,97] := {48, 49} tii[17,98] := {133} tii[17,99] := {99} tii[17,100] := {83} tii[17,101] := {88} tii[17,102] := {52} tii[17,103] := {130} tii[17,104] := {111} tii[17,105] := {150} tii[17,106] := {119} tii[17,107] := {14, 15} tii[17,108] := {25} tii[17,109] := {44, 45} tii[17,110] := {106, 107} tii[17,111] := {74} tii[17,112] := {42} tii[17,113] := {67, 68} tii[17,114] := {122} tii[17,115] := {102} tii[17,116] := {53} tii[17,117] := {120} tii[17,118] := {103} tii[17,119] := {108} tii[17,120] := {146} tii[17,121] := {72} tii[17,122] := {51} tii[17,123] := {132} tii[17,124] := {113} tii[17,125] := {137} tii[17,126] := {163} tii[17,127] := {93} tii[17,128] := {154} tii[17,129] := {0, 1} tii[17,130] := {4} tii[17,131] := {10} tii[17,132] := {18, 19} tii[17,133] := {13} tii[17,134] := {31, 32} tii[17,135] := {11} tii[17,136] := {62} tii[17,137] := {33} tii[17,138] := {24} tii[17,139] := {92} tii[17,140] := {41} cell#29 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {105} tii[28,2] := {93, 145} tii[28,3] := {128, 167} tii[28,4] := {144, 177} tii[28,5] := {125} tii[28,6] := {86} tii[28,7] := {72, 157} tii[28,8] := {33, 116} tii[28,9] := {110, 173} tii[28,10] := {54, 141} tii[28,11] := {130, 181} tii[28,12] := {142} tii[28,13] := {46, 165} tii[28,14] := {126} tii[28,15] := {104} tii[28,16] := {6, 149} tii[28,17] := {87, 178} tii[28,18] := {118, 119} tii[28,19] := {20, 164} tii[28,20] := {112, 184} tii[28,21] := {71, 172} tii[28,22] := {45, 166} tii[28,23] := {109, 183} tii[28,24] := {67, 176} tii[28,25] := {66, 156} tii[28,26] := {129, 186} tii[28,27] := {127, 185} tii[28,28] := {108, 182} tii[28,29] := {143, 187} tii[28,30] := {155, 188} tii[28,31] := {59} tii[28,32] := {23, 95} tii[28,33] := {42, 124} tii[28,34] := {85} tii[28,35] := {58} tii[28,36] := {61} tii[28,37] := {47, 115} tii[28,38] := {13, 94} tii[28,39] := {36, 81} tii[28,40] := {69, 140} tii[28,41] := {31, 123} tii[28,42] := {84} tii[28,43] := {73, 133} tii[28,44] := {57} tii[28,45] := {5, 114} tii[28,46] := {75, 76} tii[28,47] := {92, 152} tii[28,48] := {50, 120} tii[28,49] := {18, 139} tii[28,50] := {21, 132} tii[28,51] := {111, 161} tii[28,52] := {38, 113} tii[28,53] := {39, 151} tii[28,54] := {63, 160} tii[28,55] := {107} tii[28,56] := {88} tii[28,57] := {24, 135} tii[28,58] := {65, 103} tii[28,59] := {43, 154} tii[28,60] := {106} tii[28,61] := {83} tii[28,62] := {62} tii[28,63] := {48, 148} tii[28,64] := {3, 134} tii[28,65] := {98, 99} tii[28,66] := {37, 82} tii[28,67] := {70, 163} tii[28,68] := {27, 137} tii[28,69] := {11, 153} tii[28,70] := {60} tii[28,71] := {12, 147} tii[28,72] := {14, 102} tii[28,73] := {91, 169} tii[28,74] := {28, 131} tii[28,75] := {79, 80} tii[28,76] := {29, 162} tii[28,77] := {53, 97} tii[28,78] := {49, 168} tii[28,79] := {25, 159} tii[28,80] := {44, 171} tii[28,81] := {9, 150} tii[28,82] := {22, 158} tii[28,83] := {2, 138} tii[28,84] := {68, 175} tii[28,85] := {41, 170} tii[28,86] := {40, 146} tii[28,87] := {64, 174} tii[28,88] := {19, 136} tii[28,89] := {90, 180} tii[28,90] := {89, 179} tii[28,91] := {34} tii[28,92] := {15, 55} tii[28,93] := {7, 78} tii[28,94] := {35} tii[28,95] := {16, 56} tii[28,96] := {32} tii[28,97] := {26, 101} tii[28,98] := {4, 77} tii[28,99] := {51, 52} tii[28,100] := {30, 74} tii[28,101] := {1, 100} tii[28,102] := {17, 96} tii[28,103] := {8, 122} tii[28,104] := {0, 121} tii[28,105] := {10, 117} cell#30 , |C| = 427 special orbit = [7, 3, 3, 1, 1] special rep = [[3, 1], [2, 1]] , dim = 210 cell rep = phi[[3, 1],[2, 1]]+phi[[3],[2, 2]]+phi[[1, 1],[4, 1]]+phi[[1],[4, 2]] TII depth = 3 TII multiplicity polynomial = 91*X+70*X^2+49*X^4 TII subcells: tii[26,1] := {365} tii[26,2] := {309} tii[26,3] := {194, 341} tii[26,4] := {157, 414} tii[26,5] := {394} tii[26,6] := {187, 409} tii[26,7] := {385} tii[26,8] := {260} tii[26,9] := {336} tii[26,10] := {143, 299} tii[26,11] := {263, 264, 371, 424} tii[26,12] := {322, 323, 393, 426} tii[26,13] := {412} tii[26,14] := {91, 350} tii[26,15] := {308} tii[26,16] := {421} tii[26,17] := {242} tii[26,18] := {97, 340} tii[26,19] := {413} tii[26,20] := {164, 165, 289, 400} tii[26,21] := {422, 423} tii[26,22] := {227, 228, 324, 418} tii[26,23] := {349} tii[26,24] := {142, 375} tii[26,25] := {329} tii[26,26] := {72, 191, 262, 399} tii[26,27] := {357, 358} tii[26,28] := {130, 231, 321, 417} tii[26,29] := {188, 398} tii[26,30] := {222, 223, 386, 420} tii[26,31] := {54} tii[26,32] := {57} tii[26,33] := {287} tii[26,34] := {193} tii[26,35] := {60, 116} tii[26,36] := {101, 178} tii[26,37] := {89} tii[26,38] := {107, 396} tii[26,39] := {330} tii[26,40] := {138, 384} tii[26,41] := {137} tii[26,42] := {352} tii[26,43] := {69} tii[26,44] := {67, 367} tii[26,45] := {293} tii[26,46] := {292} tii[26,47] := {189} tii[26,48] := {216} tii[26,49] := {213, 214, 334, 415} tii[26,50] := {52, 333} tii[26,51] := {71, 153} tii[26,52] := {250} tii[26,53] := {277, 278, 362, 425} tii[26,54] := {76, 77, 294, 361} tii[26,55] := {129, 206} tii[26,56] := {110} tii[26,57] := {93, 351} tii[26,58] := {383} tii[26,59] := {267} tii[26,60] := {162} tii[26,61] := {55, 311} tii[26,62] := {244} tii[26,63] := {366} tii[26,64] := {166, 167, 291, 401} tii[26,65] := {61, 204} tii[26,66] := {80, 81, 271, 347} tii[26,67] := {225} tii[26,68] := {388, 389} tii[26,69] := {102, 256} tii[26,70] := {229, 230, 326, 419} tii[26,71] := {96, 253} tii[26,72] := {288} tii[26,73] := {117, 212, 246, 374} tii[26,74] := {318, 319} tii[26,75] := {85, 160, 198, 344} tii[26,76] := {149, 302} tii[26,77] := {179, 276, 285, 405} tii[26,78] := {235, 236, 314, 382} tii[26,79] := {135} tii[26,80] := {108, 397} tii[26,81] := {368} tii[26,82] := {35} tii[26,83] := {186} tii[26,84] := {88, 370} tii[26,85] := {168} tii[26,86] := {335} tii[26,87] := {239} tii[26,88] := {36, 104} tii[26,89] := {120, 121, 337, 392} tii[26,90] := {296} tii[26,91] := {86, 156} tii[26,92] := {408} tii[26,93] := {208} tii[26,94] := {68} tii[26,95] := {56, 307} tii[26,96] := {215} tii[26,97] := {395} tii[26,98] := {112} tii[26,99] := {261} tii[26,100] := {136, 387} tii[26,101] := {354} tii[26,102] := {192} tii[26,103] := {23, 265} tii[26,104] := {114, 115, 241, 372} tii[26,105] := {28, 152} tii[26,106] := {410, 411} tii[26,107] := {320} tii[26,108] := {174} tii[26,109] := {169, 170, 356, 406} tii[26,110] := {41, 42, 218, 303} tii[26,111] := {63, 205} tii[26,112] := {176, 177, 279, 403} tii[26,113] := {369} tii[26,114] := {240} tii[26,115] := {59, 202} tii[26,116] := {73, 163, 195, 339} tii[26,117] := {238} tii[26,118] := {219, 220, 338, 416} tii[26,119] := {390, 391} tii[26,120] := {47, 111, 146, 300} tii[26,121] := {100, 254} tii[26,122] := {272, 273} tii[26,123] := {131, 226, 237, 379} tii[26,124] := {297} tii[26,125] := {363, 364} tii[26,126] := {183, 184, 268, 348} tii[26,127] := {109} tii[26,128] := {53, 310} tii[26,129] := {266} tii[26,130] := {161} tii[26,131] := {8, 203} tii[26,132] := {78, 79, 270, 346} tii[26,133] := {224} tii[26,134] := {32, 255} tii[26,135] := {286} tii[26,136] := {139} tii[26,137] := {27, 252} tii[26,138] := {37, 144, 211, 373} tii[26,139] := {124, 125, 247, 377} tii[26,140] := {316, 317} tii[26,141] := {62, 301} tii[26,142] := {199} tii[26,143] := {15, 98, 159, 343} tii[26,144] := {87, 185, 275, 404} tii[26,145] := {280, 281} tii[26,146] := {133, 134, 313, 381} tii[26,147] := {58, 298} tii[26,148] := {46, 145, 209, 376} tii[26,149] := {99, 345} tii[26,150] := {181, 182, 355, 407} tii[26,151] := {25} tii[26,152] := {9} tii[26,153] := {0, 20} tii[26,154] := {92} tii[26,155] := {34, 332} tii[26,156] := {140} tii[26,157] := {24, 290} tii[26,158] := {243} tii[26,159] := {29} tii[26,160] := {200} tii[26,161] := {43, 44, 248, 325} tii[26,162] := {10, 50} tii[26,163] := {95} tii[26,164] := {6, 245} tii[26,165] := {30, 84} tii[26,166] := {16, 17, 197, 284} tii[26,167] := {148} tii[26,168] := {3, 39, 150, 234} tii[26,169] := {158} tii[26,170] := {90, 353} tii[26,171] := {38} tii[26,172] := {210} tii[26,173] := {312} tii[26,174] := {122, 123, 315, 380} tii[26,175] := {13, 66} tii[26,176] := {274} tii[26,177] := {113} tii[26,178] := {190} tii[26,179] := {26, 269} tii[26,180] := {331} tii[26,181] := {171, 172, 295, 402} tii[26,182] := {45, 106} tii[26,183] := {359, 360} tii[26,184] := {48, 49, 221, 306} tii[26,185] := {251} tii[26,186] := {175} tii[26,187] := {327, 328} tii[26,188] := {21, 75, 180, 258} tii[26,189] := {141} tii[26,190] := {126, 127, 249, 378} tii[26,191] := {31, 155} tii[26,192] := {201} tii[26,193] := {51, 119, 151, 305} tii[26,194] := {282, 283} tii[26,195] := {12} tii[26,196] := {2, 33} tii[26,197] := {70} tii[26,198] := {7, 217} tii[26,199] := {14, 65} tii[26,200] := {128} tii[26,201] := {18, 19, 173, 259} tii[26,202] := {4, 40, 132, 207} tii[26,203] := {94} tii[26,204] := {82, 83, 196, 342} tii[26,205] := {11, 105} tii[26,206] := {147} tii[26,207] := {22, 74, 103, 257} tii[26,208] := {232, 233} tii[26,209] := {1, 154} tii[26,210] := {5, 64, 118, 304} cell#31 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {244} tii[20,2] := {271} tii[20,3] := {165, 298} tii[20,4] := {216} tii[20,5] := {139} tii[20,6] := {249} tii[20,7] := {235, 312} tii[20,8] := {264, 314} tii[20,9] := {94, 266} tii[20,10] := {184} tii[20,11] := {123} tii[20,12] := {272} tii[20,13] := {42, 232} tii[20,14] := {172, 300} tii[20,15] := {76, 262} tii[20,16] := {209, 309} tii[20,17] := {215} tii[20,18] := {288} tii[20,19] := {185} tii[20,20] := {234, 269} tii[20,21] := {164, 224} tii[20,22] := {261, 292} tii[20,23] := {299} tii[20,24] := {296, 311} tii[20,25] := {64} tii[20,26] := {175} tii[20,27] := {135} tii[20,28] := {179} tii[20,29] := {129, 284} tii[20,30] := {86} tii[20,31] := {104} tii[20,32] := {99} tii[20,33] := {191} tii[20,34] := {205, 307} tii[20,35] := {68, 258} tii[20,36] := {154} tii[20,37] := {144} tii[20,38] := {240, 313} tii[20,39] := {110, 283} tii[20,40] := {194} tii[20,41] := {117} tii[20,42] := {95, 267} tii[20,43] := {221} tii[20,44] := {151} tii[20,45] := {67, 246} tii[20,46] := {72} tii[20,47] := {15, 169} tii[20,48] := {173, 301} tii[20,49] := {188} tii[20,50] := {192} tii[20,51] := {36, 231} tii[20,52] := {109, 277} tii[20,53] := {32, 208} tii[20,54] := {225} tii[20,55] := {210, 310} tii[20,56] := {218} tii[20,57] := {101} tii[20,58] := {203, 287} tii[20,59] := {81, 146} tii[20,60] := {167, 274} tii[20,61] := {252} tii[20,62] := {238, 305} tii[20,63] := {260, 294} tii[20,64] := {56} tii[20,65] := {98, 281} tii[20,66] := {156} tii[20,67] := {69} tii[20,68] := {122} tii[20,69] := {143, 297} tii[20,70] := {111} tii[20,71] := {161} tii[20,72] := {85} tii[20,73] := {65, 243} tii[20,74] := {132, 285} tii[20,75] := {190} tii[20,76] := {23, 201} tii[20,77] := {119} tii[20,78] := {89} tii[20,79] := {53} tii[20,80] := {41, 217} tii[20,81] := {134, 286} tii[20,82] := {153} tii[20,83] := {93, 280} tii[20,84] := {47, 239} tii[20,85] := {159} tii[20,86] := {177, 303} tii[20,87] := {84} tii[20,88] := {18, 198} tii[20,89] := {75, 254} tii[20,90] := {193} tii[20,91] := {178, 304} tii[20,92] := {11, 171} tii[20,93] := {70} tii[20,94] := {186} tii[20,95] := {170, 270} tii[20,96] := {121} tii[20,97] := {206, 308} tii[20,98] := {3, 149} tii[20,99] := {27, 211} tii[20,100] := {130, 251} tii[20,101] := {112} tii[20,102] := {223} tii[20,103] := {96, 162} tii[20,104] := {207, 293} tii[20,105] := {46, 181} tii[20,106] := {236, 279} tii[20,107] := {118} tii[20,108] := {66, 245} tii[20,109] := {155} tii[20,110] := {87} tii[20,111] := {189} tii[20,112] := {37, 230} tii[20,113] := {108, 276} tii[20,114] := {126} tii[20,115] := {226} tii[20,116] := {152} tii[20,117] := {58} tii[20,118] := {219} tii[20,119] := {202, 248} tii[20,120] := {20, 213} tii[20,121] := {140, 289} tii[20,122] := {131, 195} tii[20,123] := {253} tii[20,124] := {91} tii[20,125] := {166, 222} tii[20,126] := {237, 278} tii[20,127] := {103, 163} tii[20,128] := {259, 295} tii[20,129] := {247} tii[20,130] := {199, 250} tii[20,131] := {275} tii[20,132] := {282, 306} tii[20,133] := {22} tii[20,134] := {51} tii[20,135] := {40} tii[20,136] := {43, 233} tii[20,137] := {82} tii[20,138] := {28} tii[20,139] := {116} tii[20,140] := {77, 263} tii[20,141] := {80} tii[20,142] := {100} tii[20,143] := {24, 204} tii[20,144] := {107} tii[20,145] := {49, 241} tii[20,146] := {8, 183} tii[20,147] := {145} tii[20,148] := {73, 212} tii[20,149] := {97, 268} tii[20,150] := {57} tii[20,151] := {30} tii[20,152] := {61, 257} tii[20,153] := {142, 291} tii[20,154] := {35} tii[20,155] := {92} tii[20,156] := {55} tii[20,157] := {7, 133} tii[20,158] := {120} tii[20,159] := {44, 220} tii[20,160] := {45} tii[20,161] := {63} tii[20,162] := {176, 302} tii[20,163] := {38, 242} tii[20,164] := {125} tii[20,165] := {16, 180} tii[20,166] := {78} tii[20,167] := {19, 200} tii[20,168] := {79, 255} tii[20,169] := {160} tii[20,170] := {2, 114} tii[20,171] := {13, 174} tii[20,172] := {31, 147} tii[20,173] := {105, 229} tii[20,174] := {26} tii[20,175] := {141, 290} tii[20,176] := {157} tii[20,177] := {48} tii[20,178] := {6, 148} tii[20,179] := {137, 256} tii[20,180] := {54, 113} tii[20,181] := {33} tii[20,182] := {17} tii[20,183] := {60} tii[20,184] := {88} tii[20,185] := {25, 187} tii[20,186] := {62, 265} tii[20,187] := {39} tii[20,188] := {90} tii[20,189] := {127} tii[20,190] := {9, 168} tii[20,191] := {50, 227} tii[20,192] := {5, 138} tii[20,193] := {74, 197} tii[20,194] := {34} tii[20,195] := {10, 182} tii[20,196] := {29} tii[20,197] := {106, 273} tii[20,198] := {124} tii[20,199] := {59} tii[20,200] := {1, 115} tii[20,201] := {102, 228} tii[20,202] := {71, 128} tii[20,203] := {158} tii[20,204] := {136, 196} tii[20,205] := {12} tii[20,206] := {21, 214} tii[20,207] := {52} tii[20,208] := {4, 150} tii[20,209] := {14} tii[20,210] := {0, 83} cell#32 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {244} tii[20,2] := {271} tii[20,3] := {165, 298} tii[20,4] := {216} tii[20,5] := {139} tii[20,6] := {249} tii[20,7] := {235, 312} tii[20,8] := {264, 314} tii[20,9] := {94, 266} tii[20,10] := {184} tii[20,11] := {123} tii[20,12] := {272} tii[20,13] := {42, 232} tii[20,14] := {172, 300} tii[20,15] := {76, 262} tii[20,16] := {209, 309} tii[20,17] := {215} tii[20,18] := {288} tii[20,19] := {185} tii[20,20] := {234, 269} tii[20,21] := {164, 224} tii[20,22] := {261, 292} tii[20,23] := {299} tii[20,24] := {296, 311} tii[20,25] := {64} tii[20,26] := {175} tii[20,27] := {135} tii[20,28] := {179} tii[20,29] := {129, 284} tii[20,30] := {86} tii[20,31] := {104} tii[20,32] := {99} tii[20,33] := {191} tii[20,34] := {205, 307} tii[20,35] := {68, 258} tii[20,36] := {154} tii[20,37] := {144} tii[20,38] := {240, 313} tii[20,39] := {110, 283} tii[20,40] := {194} tii[20,41] := {117} tii[20,42] := {95, 267} tii[20,43] := {221} tii[20,44] := {151} tii[20,45] := {67, 246} tii[20,46] := {72} tii[20,47] := {15, 169} tii[20,48] := {173, 301} tii[20,49] := {188} tii[20,50] := {192} tii[20,51] := {36, 231} tii[20,52] := {109, 277} tii[20,53] := {32, 208} tii[20,54] := {225} tii[20,55] := {210, 310} tii[20,56] := {218} tii[20,57] := {101} tii[20,58] := {203, 287} tii[20,59] := {81, 146} tii[20,60] := {167, 274} tii[20,61] := {252} tii[20,62] := {238, 305} tii[20,63] := {260, 294} tii[20,64] := {56} tii[20,65] := {98, 281} tii[20,66] := {156} tii[20,67] := {69} tii[20,68] := {122} tii[20,69] := {143, 297} tii[20,70] := {111} tii[20,71] := {161} tii[20,72] := {85} tii[20,73] := {65, 243} tii[20,74] := {132, 285} tii[20,75] := {190} tii[20,76] := {23, 201} tii[20,77] := {119} tii[20,78] := {89} tii[20,79] := {53} tii[20,80] := {41, 217} tii[20,81] := {134, 286} tii[20,82] := {153} tii[20,83] := {93, 280} tii[20,84] := {47, 239} tii[20,85] := {159} tii[20,86] := {177, 303} tii[20,87] := {84} tii[20,88] := {18, 198} tii[20,89] := {75, 254} tii[20,90] := {193} tii[20,91] := {178, 304} tii[20,92] := {11, 171} tii[20,93] := {70} tii[20,94] := {186} tii[20,95] := {170, 270} tii[20,96] := {121} tii[20,97] := {206, 308} tii[20,98] := {3, 149} tii[20,99] := {27, 211} tii[20,100] := {130, 251} tii[20,101] := {112} tii[20,102] := {223} tii[20,103] := {96, 162} tii[20,104] := {207, 293} tii[20,105] := {46, 181} tii[20,106] := {236, 279} tii[20,107] := {118} tii[20,108] := {66, 245} tii[20,109] := {155} tii[20,110] := {87} tii[20,111] := {189} tii[20,112] := {37, 230} tii[20,113] := {108, 276} tii[20,114] := {126} tii[20,115] := {226} tii[20,116] := {152} tii[20,117] := {58} tii[20,118] := {219} tii[20,119] := {202, 248} tii[20,120] := {20, 213} tii[20,121] := {140, 289} tii[20,122] := {131, 195} tii[20,123] := {253} tii[20,124] := {91} tii[20,125] := {166, 222} tii[20,126] := {237, 278} tii[20,127] := {103, 163} tii[20,128] := {259, 295} tii[20,129] := {247} tii[20,130] := {199, 250} tii[20,131] := {275} tii[20,132] := {282, 306} tii[20,133] := {22} tii[20,134] := {51} tii[20,135] := {40} tii[20,136] := {43, 233} tii[20,137] := {82} tii[20,138] := {28} tii[20,139] := {116} tii[20,140] := {77, 263} tii[20,141] := {80} tii[20,142] := {100} tii[20,143] := {24, 204} tii[20,144] := {107} tii[20,145] := {49, 241} tii[20,146] := {8, 183} tii[20,147] := {145} tii[20,148] := {73, 212} tii[20,149] := {97, 268} tii[20,150] := {57} tii[20,151] := {30} tii[20,152] := {61, 257} tii[20,153] := {142, 291} tii[20,154] := {35} tii[20,155] := {92} tii[20,156] := {55} tii[20,157] := {7, 133} tii[20,158] := {120} tii[20,159] := {44, 220} tii[20,160] := {45} tii[20,161] := {63} tii[20,162] := {176, 302} tii[20,163] := {38, 242} tii[20,164] := {125} tii[20,165] := {16, 180} tii[20,166] := {78} tii[20,167] := {19, 200} tii[20,168] := {79, 255} tii[20,169] := {160} tii[20,170] := {2, 114} tii[20,171] := {13, 174} tii[20,172] := {31, 147} tii[20,173] := {105, 229} tii[20,174] := {26} tii[20,175] := {141, 290} tii[20,176] := {157} tii[20,177] := {48} tii[20,178] := {6, 148} tii[20,179] := {137, 256} tii[20,180] := {54, 113} tii[20,181] := {33} tii[20,182] := {17} tii[20,183] := {60} tii[20,184] := {88} tii[20,185] := {25, 187} tii[20,186] := {62, 265} tii[20,187] := {39} tii[20,188] := {90} tii[20,189] := {127} tii[20,190] := {9, 168} tii[20,191] := {50, 227} tii[20,192] := {5, 138} tii[20,193] := {74, 197} tii[20,194] := {34} tii[20,195] := {10, 182} tii[20,196] := {29} tii[20,197] := {106, 273} tii[20,198] := {124} tii[20,199] := {59} tii[20,200] := {1, 115} tii[20,201] := {102, 228} tii[20,202] := {71, 128} tii[20,203] := {158} tii[20,204] := {136, 196} tii[20,205] := {12} tii[20,206] := {21, 214} tii[20,207] := {52} tii[20,208] := {4, 150} tii[20,209] := {14} tii[20,210] := {0, 83} cell#33 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {46} tii[31,2] := {30} tii[31,3] := {41} tii[31,4] := {31} tii[31,5] := {42, 43} tii[31,6] := {25} tii[31,7] := {33} tii[31,8] := {26} tii[31,9] := {37, 38} tii[31,10] := {47} tii[31,11] := {32} tii[31,12] := {44, 45} tii[31,13] := {27} tii[31,14] := {39, 40} tii[31,15] := {48, 49} tii[31,16] := {10} tii[31,17] := {16} tii[31,18] := {11} tii[31,19] := {21, 22} tii[31,20] := {34} tii[31,21] := {15} tii[31,22] := {28, 29} tii[31,23] := {12} tii[31,24] := {23, 24} tii[31,25] := {35, 36} tii[31,26] := {17} tii[31,27] := {5} tii[31,28] := {13, 14} tii[31,29] := {4} tii[31,30] := {8, 9} tii[31,31] := {19, 20} tii[31,32] := {0} tii[31,33] := {2, 3} tii[31,34] := {6, 7} tii[31,35] := {1, 18} cell#34 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {69} tii[25,2] := {118} tii[25,3] := {123, 150} tii[25,4] := {146, 159} tii[25,5] := {59} tii[25,6] := {97} tii[25,7] := {35} tii[25,8] := {51} tii[25,9] := {113, 141} tii[25,10] := {36, 84} tii[25,11] := {135, 158} tii[25,12] := {121} tii[25,13] := {100} tii[25,14] := {124, 156} tii[25,15] := {71, 132} tii[25,16] := {147, 165} tii[25,17] := {114, 162} tii[25,18] := {87, 153} tii[25,19] := {136, 169} tii[25,20] := {149, 171} tii[25,21] := {38} tii[25,22] := {74} tii[25,23] := {19} tii[25,24] := {32} tii[25,25] := {88, 125} tii[25,26] := {20, 58} tii[25,27] := {116, 148} tii[25,28] := {5} tii[25,29] := {98} tii[25,30] := {76} tii[25,31] := {15} tii[25,32] := {101, 140} tii[25,33] := {47, 106} tii[25,34] := {6, 34} tii[25,35] := {133, 157} tii[25,36] := {33} tii[25,37] := {89, 154} tii[25,38] := {63, 138} tii[25,39] := {14, 56} tii[25,40] := {117, 163} tii[25,41] := {7, 80} tii[25,42] := {134, 167} tii[25,43] := {120} tii[25,44] := {99} tii[25,45] := {78, 155} tii[25,46] := {72, 131} tii[25,47] := {108, 164} tii[25,48] := {77} tii[25,49] := {64, 161} tii[25,50] := {41, 152} tii[25,51] := {49, 107} tii[25,52] := {92, 168} tii[25,53] := {27, 127} tii[25,54] := {115, 170} tii[25,55] := {42, 166} tii[25,56] := {23, 160} tii[25,57] := {66, 172} tii[25,58] := {9, 151} tii[25,59] := {90, 173} tii[25,60] := {111, 174} tii[25,61] := {45} tii[25,62] := {68} tii[25,63] := {46, 94} tii[25,64] := {16} tii[25,65] := {93} tii[25,66] := {31} tii[25,67] := {70, 119} tii[25,68] := {17, 57} tii[25,69] := {54} tii[25,70] := {95, 137} tii[25,71] := {28, 82} tii[25,72] := {18, 103} tii[25,73] := {0} tii[25,74] := {75} tii[25,75] := {12} tii[25,76] := {1, 26} tii[25,77] := {60, 110} tii[25,78] := {25} tii[25,79] := {79} tii[25,80] := {86, 130} tii[25,81] := {11, 44} tii[25,82] := {48, 109} tii[25,83] := {2, 65} tii[25,84] := {37, 128} tii[25,85] := {43} tii[25,86] := {96, 145} tii[25,87] := {24, 67} tii[25,88] := {61, 143} tii[25,89] := {10, 91} tii[25,90] := {4, 112} tii[25,91] := {52} tii[25,92] := {39, 85} tii[25,93] := {55} tii[25,94] := {62, 105} tii[25,95] := {29, 83} tii[25,96] := {21, 104} tii[25,97] := {53} tii[25,98] := {73, 129} tii[25,99] := {30, 81} tii[25,100] := {40, 126} tii[25,101] := {13, 102} tii[25,102] := {8, 122} tii[25,103] := {50, 144} tii[25,104] := {22, 142} tii[25,105] := {3, 139} cell#35 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {69} tii[25,2] := {118} tii[25,3] := {123, 150} tii[25,4] := {146, 159} tii[25,5] := {59} tii[25,6] := {97} tii[25,7] := {35} tii[25,8] := {51} tii[25,9] := {113, 141} tii[25,10] := {36, 84} tii[25,11] := {135, 158} tii[25,12] := {121} tii[25,13] := {100} tii[25,14] := {124, 156} tii[25,15] := {71, 132} tii[25,16] := {147, 165} tii[25,17] := {114, 162} tii[25,18] := {87, 153} tii[25,19] := {136, 169} tii[25,20] := {149, 171} tii[25,21] := {38} tii[25,22] := {74} tii[25,23] := {19} tii[25,24] := {32} tii[25,25] := {88, 125} tii[25,26] := {20, 58} tii[25,27] := {116, 148} tii[25,28] := {5} tii[25,29] := {98} tii[25,30] := {76} tii[25,31] := {15} tii[25,32] := {101, 140} tii[25,33] := {47, 106} tii[25,34] := {6, 34} tii[25,35] := {133, 157} tii[25,36] := {33} tii[25,37] := {89, 154} tii[25,38] := {63, 138} tii[25,39] := {14, 56} tii[25,40] := {117, 163} tii[25,41] := {7, 80} tii[25,42] := {134, 167} tii[25,43] := {120} tii[25,44] := {99} tii[25,45] := {78, 155} tii[25,46] := {72, 131} tii[25,47] := {108, 164} tii[25,48] := {77} tii[25,49] := {64, 161} tii[25,50] := {41, 152} tii[25,51] := {49, 107} tii[25,52] := {92, 168} tii[25,53] := {27, 127} tii[25,54] := {115, 170} tii[25,55] := {42, 166} tii[25,56] := {23, 160} tii[25,57] := {66, 172} tii[25,58] := {9, 151} tii[25,59] := {90, 173} tii[25,60] := {111, 174} tii[25,61] := {45} tii[25,62] := {68} tii[25,63] := {46, 94} tii[25,64] := {16} tii[25,65] := {93} tii[25,66] := {31} tii[25,67] := {70, 119} tii[25,68] := {17, 57} tii[25,69] := {54} tii[25,70] := {95, 137} tii[25,71] := {28, 82} tii[25,72] := {18, 103} tii[25,73] := {0} tii[25,74] := {75} tii[25,75] := {12} tii[25,76] := {1, 26} tii[25,77] := {60, 110} tii[25,78] := {25} tii[25,79] := {79} tii[25,80] := {86, 130} tii[25,81] := {11, 44} tii[25,82] := {48, 109} tii[25,83] := {2, 65} tii[25,84] := {37, 128} tii[25,85] := {43} tii[25,86] := {96, 145} tii[25,87] := {24, 67} tii[25,88] := {61, 143} tii[25,89] := {10, 91} tii[25,90] := {4, 112} tii[25,91] := {52} tii[25,92] := {39, 85} tii[25,93] := {55} tii[25,94] := {62, 105} tii[25,95] := {29, 83} tii[25,96] := {21, 104} tii[25,97] := {53} tii[25,98] := {73, 129} tii[25,99] := {30, 81} tii[25,100] := {40, 126} tii[25,101] := {13, 102} tii[25,102] := {8, 122} tii[25,103] := {50, 144} tii[25,104] := {22, 142} tii[25,105] := {3, 139} cell#36 , |C| = 50 special orbit = [9, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1]] , dim = 35 cell rep = phi[[4],[1, 1, 1]]+phi[[],[5, 1, 1]] TII depth = 1 TII multiplicity polynomial = 20*X+15*X^2 TII subcells: tii[31,1] := {43} tii[31,2] := {46} tii[31,3] := {44} tii[31,4] := {47} tii[31,5] := {45, 49} tii[31,6] := {39} tii[31,7] := {36} tii[31,8] := {40} tii[31,9] := {37, 48} tii[31,10] := {28} tii[31,11] := {33} tii[31,12] := {29, 42} tii[31,13] := {23} tii[31,14] := {20, 35} tii[31,15] := {13, 38} tii[31,16] := {31} tii[31,17] := {26} tii[31,18] := {32} tii[31,19] := {27, 41} tii[31,20] := {18} tii[31,21] := {22} tii[31,22] := {19, 34} tii[31,23] := {16} tii[31,24] := {12, 25} tii[31,25] := {6, 30} tii[31,26] := {10} tii[31,27] := {15} tii[31,28] := {11, 24} tii[31,29] := {7} tii[31,30] := {5, 17} tii[31,31] := {3, 21} tii[31,32] := {4} tii[31,33] := {2, 8} tii[31,34] := {1, 14} tii[31,35] := {0, 9} cell#37 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {122} tii[25,2] := {143} tii[25,3] := {161, 162} tii[25,4] := {173, 174} tii[25,5] := {144} tii[25,6] := {119} tii[25,7] := {124} tii[25,8] := {92} tii[25,9] := {147, 148} tii[25,10] := {120, 121} tii[25,11] := {168, 169} tii[25,12] := {85} tii[25,13] := {51} tii[25,14] := {132, 133} tii[25,15] := {75, 76} tii[25,16] := {159, 160} tii[25,17] := {145, 146} tii[25,18] := {125, 126} tii[25,19] := {166, 167} tii[25,20] := {171, 172} tii[25,21] := {123} tii[25,22] := {84} tii[25,23] := {94} tii[25,24] := {61} tii[25,25] := {130, 131} tii[25,26] := {88, 89} tii[25,27] := {157, 158} tii[25,28] := {63} tii[25,29] := {53} tii[25,30] := {26} tii[25,31] := {36} tii[25,32] := {101, 102} tii[25,33] := {46, 47} tii[25,34] := {59, 60} tii[25,35] := {141, 142} tii[25,36] := {25} tii[25,37] := {128, 129} tii[25,38] := {97, 98} tii[25,39] := {44, 45} tii[25,40] := {155, 156} tii[25,41] := {69, 70} tii[25,42] := {163, 164} tii[25,43] := {27} tii[25,44] := {11} tii[25,45] := {67, 68} tii[25,46] := {23, 24} tii[25,47] := {116, 117} tii[25,48] := {5} tii[25,49] := {99, 100} tii[25,50] := {64, 65} tii[25,51] := {14, 15} tii[25,52] := {139, 140} tii[25,53] := {29, 30} tii[25,54] := {149, 150} tii[25,55] := {66, 127} tii[25,56] := {38, 96} tii[25,57] := {115, 154} tii[25,58] := {18, 83} tii[25,59] := {134, 165} tii[25,60] := {151, 170} tii[25,61] := {93} tii[25,62] := {81} tii[25,63] := {107, 108} tii[25,64] := {95} tii[25,65] := {118} tii[25,66] := {62} tii[25,67] := {135, 136} tii[25,68] := {90, 91} tii[25,69] := {50} tii[25,70] := {152, 153} tii[25,71] := {73, 74} tii[25,72] := {103, 104} tii[25,73] := {37} tii[25,74] := {82} tii[25,75] := {17} tii[25,76] := {34, 35} tii[25,77] := {109, 110} tii[25,78] := {10} tii[25,79] := {33} tii[25,80] := {137, 138} tii[25,81] := {21, 22} tii[25,82] := {57, 58} tii[25,83] := {40, 41} tii[25,84] := {86, 87} tii[25,85] := {1} tii[25,86] := {113, 114} tii[25,87] := {8, 9} tii[25,88] := {105, 106} tii[25,89] := {19, 20} tii[25,90] := {6, 39} tii[25,91] := {52} tii[25,92] := {77, 78} tii[25,93] := {16} tii[25,94] := {111, 112} tii[25,95] := {31, 32} tii[25,96] := {55, 56} tii[25,97] := {0} tii[25,98] := {79, 80} tii[25,99] := {3, 4} tii[25,100] := {71, 72} tii[25,101] := {12, 13} tii[25,102] := {2, 28} tii[25,103] := {48, 49} tii[25,104] := {42, 43} tii[25,105] := {7, 54} cell#38 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {150} tii[25,2] := {82} tii[25,3] := {75, 138} tii[25,4] := {108, 158} tii[25,5] := {167} tii[25,6] := {70} tii[25,7] := {147} tii[25,8] := {159} tii[25,9] := {54, 125} tii[25,10] := {148, 173} tii[25,11] := {97, 146} tii[25,12] := {100} tii[25,13] := {121} tii[25,14] := {87, 152} tii[25,15] := {101, 156} tii[25,16] := {133, 166} tii[25,17] := {122, 168} tii[25,18] := {81, 171} tii[25,19] := {155, 172} tii[25,20] := {169, 174} tii[25,21] := {149} tii[25,22] := {37} tii[25,23] := {115} tii[25,24] := {136} tii[25,25] := {26, 91} tii[25,26] := {116, 163} tii[25,27] := {64, 114} tii[25,28] := {79} tii[25,29] := {68} tii[25,30] := {84} tii[25,31] := {104} tii[25,32] := {53, 123} tii[25,33] := {69, 132} tii[25,34] := {80, 141} tii[25,35] := {96, 144} tii[25,36] := {74} tii[25,37] := {85, 151} tii[25,38] := {48, 161} tii[25,39] := {49, 109} tii[25,40] := {131, 162} tii[25,41] := {27, 135} tii[25,42] := {153, 170} tii[25,43] := {35} tii[25,44] := {50} tii[25,45] := {25, 89} tii[25,46] := {36, 95} tii[25,47] := {63, 112} tii[25,48] := {24} tii[25,49] := {51, 120} tii[25,50] := {21, 139} tii[25,51] := {16, 65} tii[25,52] := {94, 140} tii[25,53] := {7, 78} tii[25,54] := {124, 160} tii[25,55] := {23, 102} tii[25,56] := {9, 129} tii[25,57] := {62, 130} tii[25,58] := {4, 99} tii[25,59] := {90, 154} tii[25,60] := {126, 127} tii[25,61] := {119} tii[25,62] := {88} tii[25,63] := {58, 110} tii[25,64] := {117} tii[25,65] := {55} tii[25,66] := {137} tii[25,67] := {29, 77} tii[25,68] := {118, 164} tii[25,69] := {105} tii[25,70] := {42, 106} tii[25,71] := {83, 142} tii[25,72] := {56, 157} tii[25,73] := {46} tii[25,74] := {39} tii[25,75] := {73} tii[25,76] := {47, 107} tii[25,77] := {19, 66} tii[25,78] := {41} tii[25,79] := {86} tii[25,80] := {30, 93} tii[25,81] := {22, 76} tii[25,82] := {71, 134} tii[25,83] := {12, 103} tii[25,84] := {40, 145} tii[25,85] := {20} tii[25,86] := {60, 128} tii[25,87] := {10, 43} tii[25,88] := {57, 165} tii[25,89] := {5, 72} tii[25,90] := {1, 44} tii[25,91] := {17} tii[25,92] := {8, 33} tii[25,93] := {52} tii[25,94] := {14, 61} tii[25,95] := {38, 98} tii[25,96] := {18, 113} tii[25,97] := {11} tii[25,98] := {31, 92} tii[25,99] := {6, 32} tii[25,100] := {28, 143} tii[25,101] := {3, 45} tii[25,102] := {0, 34} tii[25,103] := {15, 59} tii[25,104] := {13, 111} tii[25,105] := {2, 67} cell#39 , |C| = 140 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {101} tii[23,2] := {58} tii[23,3] := {56} tii[23,4] := {119} tii[23,5] := {53} tii[23,6] := {99} tii[23,7] := {44} tii[23,8] := {115} tii[23,9] := {100, 129} tii[23,10] := {74} tii[23,11] := {66} tii[23,12] := {85} tii[23,13] := {75, 111} tii[23,14] := {87} tii[23,15] := {60, 109} tii[23,16] := {130} tii[23,17] := {31} tii[23,18] := {117} tii[23,19] := {25} tii[23,20] := {128} tii[23,21] := {118, 136} tii[23,22] := {112} tii[23,23] := {50} tii[23,24] := {45} tii[23,25] := {61} tii[23,26] := {121} tii[23,27] := {51, 91} tii[23,28] := {113, 135} tii[23,29] := {131} tii[23,30] := {64} tii[23,31] := {38, 90} tii[23,32] := {120, 138} tii[23,33] := {114, 139} tii[23,34] := {71} tii[23,35] := {26} tii[23,36] := {84} tii[23,37] := {72, 110} tii[23,38] := {104} tii[23,39] := {40} tii[23,40] := {21, 67} tii[23,41] := {81, 125} tii[23,42] := {73, 132} tii[23,43] := {62} tii[23,44] := {37, 89} tii[23,45] := {30, 106} tii[23,46] := {3} tii[23,47] := {83} tii[23,48] := {9} tii[23,49] := {65} tii[23,50] := {22} tii[23,51] := {46} tii[23,52] := {4} tii[23,53] := {79} tii[23,54] := {10} tii[23,55] := {41} tii[23,56] := {97} tii[23,57] := {27} tii[23,58] := {80, 116} tii[23,59] := {20} tii[23,60] := {77} tii[23,61] := {36} tii[23,62] := {59, 98} tii[23,63] := {42, 78} tii[23,64] := {94} tii[23,65] := {1} tii[23,66] := {34} tii[23,67] := {103} tii[23,68] := {7} tii[23,69] := {95, 127} tii[23,70] := {19} tii[23,71] := {122} tii[23,72] := {11} tii[23,73] := {63} tii[23,74] := {102, 134} tii[23,75] := {28} tii[23,76] := {54, 92} tii[23,77] := {96, 137} tii[23,78] := {35, 70} tii[23,79] := {105} tii[23,80] := {23} tii[23,81] := {82, 126} tii[23,82] := {47} tii[23,83] := {76, 133} tii[23,84] := {43, 93} tii[23,85] := {55, 124} tii[23,86] := {0} tii[23,87] := {17} tii[23,88] := {2} tii[23,89] := {8} tii[23,90] := {5} tii[23,91] := {39} tii[23,92] := {14} tii[23,93] := {32, 68} tii[23,94] := {18, 49} tii[23,95] := {86} tii[23,96] := {12} tii[23,97] := {57, 108} tii[23,98] := {29} tii[23,99] := {24, 69} tii[23,100] := {52, 123} tii[23,101] := {33, 107} tii[23,102] := {6} tii[23,103] := {15} tii[23,104] := {13, 48} tii[23,105] := {16, 88} cell#40 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {173} tii[20,2] := {270} tii[20,3] := {189, 251} tii[20,4] := {209} tii[20,5] := {97} tii[20,6] := {289} tii[20,7] := {253, 291} tii[20,8] := {282, 303} tii[20,9] := {188, 268} tii[20,10] := {242} tii[20,11] := {180} tii[20,12] := {301} tii[20,13] := {112, 214} tii[20,14] := {252, 295} tii[20,15] := {161, 237} tii[20,16] := {281, 306} tii[20,17] := {267} tii[20,18] := {309} tii[20,19] := {241} tii[20,20] := {293, 294} tii[20,21] := {257, 258} tii[20,22] := {304, 305} tii[20,23] := {312} tii[20,24] := {313, 314} tii[20,25] := {32} tii[20,26] := {62} tii[20,27] := {94} tii[20,28] := {147} tii[20,29] := {149, 223} tii[20,30] := {56} tii[20,31] := {61} tii[20,32] := {18} tii[20,33] := {96} tii[20,34] := {224, 273} tii[20,35] := {75, 153} tii[20,36] := {133} tii[20,37] := {42} tii[20,38] := {262, 292} tii[20,39] := {120, 187} tii[20,40] := {186} tii[20,41] := {90} tii[20,42] := {109, 210} tii[20,43] := {134} tii[20,44] := {57} tii[20,45] := {73, 178} tii[20,46] := {95} tii[20,47] := {46, 135} tii[20,48] := {190, 256} tii[20,49] := {175} tii[20,50] := {104} tii[20,51] := {50, 140} tii[20,52] := {118, 204} tii[20,53] := {82, 165} tii[20,54] := {219} tii[20,55] := {236, 285} tii[20,56] := {212} tii[20,57] := {131} tii[20,58] := {226, 227} tii[20,59] := {157, 158} tii[20,60] := {196, 197} tii[20,61] := {247} tii[20,62] := {264, 265} tii[20,63] := {286, 287} tii[20,64] := {91} tii[20,65] := {113, 192} tii[20,66] := {137} tii[20,67] := {37} tii[20,68] := {176} tii[20,69] := {162, 222} tii[20,70] := {70} tii[20,71] := {220} tii[20,72] := {130} tii[20,73] := {150, 243} tii[20,74] := {152, 228} tii[20,75] := {177} tii[20,76] := {74, 179} tii[20,77] := {92} tii[20,78] := {136} tii[20,79] := {19} tii[20,80] := {111, 216} tii[20,81] := {225, 277} tii[20,82] := {213} tii[20,83] := {115, 193} tii[20,84] := {119, 205} tii[20,85] := {145} tii[20,86] := {201, 250} tii[20,87] := {43} tii[20,88] := {78, 183} tii[20,89] := {160, 240} tii[20,90] := {248} tii[20,91] := {263, 298} tii[20,92] := {49, 139} tii[20,93] := {35} tii[20,94] := {244} tii[20,95] := {254, 255} tii[20,96] := {174} tii[20,97] := {230, 274} tii[20,98] := {30, 103} tii[20,99] := {85, 171} tii[20,100] := {231, 232} tii[20,101] := {68} tii[20,102] := {271} tii[20,103] := {198, 199} tii[20,104] := {283, 284} tii[20,105] := {126, 127} tii[20,106] := {299, 300} tii[20,107] := {172} tii[20,108] := {151, 246} tii[20,109] := {215} tii[20,110] := {132} tii[20,111] := {245} tii[20,112] := {116, 217} tii[20,113] := {200, 266} tii[20,114] := {185} tii[20,115] := {272} tii[20,116] := {211} tii[20,117] := {93} tii[20,118] := {269} tii[20,119] := {275, 276} tii[20,120] := {80, 182} tii[20,121] := {229, 280} tii[20,122] := {234, 235} tii[20,123] := {290} tii[20,124] := {146} tii[20,125] := {259, 260} tii[20,126] := {296, 297} tii[20,127] := {206, 207} tii[20,128] := {307, 308} tii[20,129] := {288} tii[20,130] := {278, 279} tii[20,131] := {302} tii[20,132] := {310, 311} tii[20,133] := {7} tii[20,134] := {24} tii[20,135] := {17} tii[20,136] := {47, 114} tii[20,137] := {6} tii[20,138] := {8} tii[20,139] := {23} tii[20,140] := {83, 148} tii[20,141] := {41} tii[20,142] := {16} tii[20,143] := {26, 99} tii[20,144] := {63} tii[20,145] := {55, 129} tii[20,146] := {12, 65} tii[20,147] := {40} tii[20,148] := {88, 89} tii[20,149] := {110, 191} tii[20,150] := {36} tii[20,151] := {5} tii[20,152] := {77, 154} tii[20,153] := {159, 221} tii[20,154] := {20} tii[20,155] := {69} tii[20,156] := {22} tii[20,157] := {25, 98} tii[20,158] := {34} tii[20,159] := {48, 138} tii[20,160] := {15} tii[20,161] := {9} tii[20,162] := {194, 249} tii[20,163] := {51, 117} tii[20,164] := {101} tii[20,165] := {54, 128} tii[20,166] := {39} tii[20,167] := {29, 102} tii[20,168] := {84, 170} tii[20,169] := {67} tii[20,170] := {11, 64} tii[20,171] := {13, 71} tii[20,172] := {86, 87} tii[20,173] := {124, 125} tii[20,174] := {33} tii[20,175] := {155, 233} tii[20,176] := {142} tii[20,177] := {66} tii[20,178] := {27, 100} tii[20,179] := {163, 164} tii[20,180] := {122, 123} tii[20,181] := {60} tii[20,182] := {38} tii[20,183] := {107} tii[20,184] := {59} tii[20,185] := {76, 181} tii[20,186] := {79, 156} tii[20,187] := {21} tii[20,188] := {143} tii[20,189] := {106} tii[20,190] := {53, 144} tii[20,191] := {121, 208} tii[20,192] := {31, 108} tii[20,193] := {168, 169} tii[20,194] := {58} tii[20,195] := {52, 141} tii[20,196] := {10} tii[20,197] := {195, 261} tii[20,198] := {184} tii[20,199] := {105} tii[20,200] := {14, 72} tii[20,201] := {202, 203} tii[20,202] := {166, 167} tii[20,203] := {218} tii[20,204] := {238, 239} tii[20,205] := {0} tii[20,206] := {28, 81} tii[20,207] := {2} tii[20,208] := {3, 45} tii[20,209] := {1} tii[20,210] := {4, 44} cell#41 , |C| = 175 special orbit = [5, 4, 4, 1, 1] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2],[2, 1]]+phi[[1],[3, 3]] TII depth = 4 TII multiplicity polynomial = 105*X+35*X^2 TII subcells: tii[18,1] := {143} tii[18,2] := {76} tii[18,3] := {156} tii[18,4] := {137} tii[18,5] := {116} tii[18,6] := {165} tii[18,7] := {161} tii[18,8] := {127, 150} tii[18,9] := {148, 162} tii[18,10] := {170} tii[18,11] := {172} tii[18,12] := {171, 174} tii[18,13] := {30} tii[18,14] := {92} tii[18,15] := {15} tii[18,16] := {56} tii[18,17] := {47} tii[18,18] := {120} tii[18,19] := {25} tii[18,20] := {110} tii[18,21] := {51} tii[18,22] := {74} tii[18,23] := {66} tii[18,24] := {75} tii[18,25] := {128} tii[18,26] := {136} tii[18,27] := {88} tii[18,28] := {57} tii[18,29] := {89, 118} tii[18,30] := {46, 81} tii[18,31] := {112} tii[18,32] := {113, 140} tii[18,33] := {149} tii[18,34] := {144, 163} tii[18,35] := {29} tii[18,36] := {68} tii[18,37] := {41} tii[18,38] := {130} tii[18,39] := {72} tii[18,40] := {95} tii[18,41] := {38} tii[18,42] := {86} tii[18,43] := {96} tii[18,44] := {60} tii[18,45] := {23} tii[18,46] := {145} tii[18,47] := {109, 135} tii[18,48] := {108} tii[18,49] := {151} tii[18,50] := {79} tii[18,51] := {77} tii[18,52] := {43} tii[18,53] := {133, 153} tii[18,54] := {132} tii[18,55] := {105} tii[18,56] := {65, 104} tii[18,57] := {99} tii[18,58] := {91, 119} tii[18,59] := {160} tii[18,60] := {69, 102} tii[18,61] := {123} tii[18,62] := {157, 168} tii[18,63] := {115, 141} tii[18,64] := {131, 155} tii[18,65] := {106} tii[18,66] := {97} tii[18,67] := {158} tii[18,68] := {126} tii[18,69] := {85, 124} tii[18,70] := {147} tii[18,71] := {167} tii[18,72] := {134} tii[18,73] := {107, 138} tii[18,74] := {166, 173} tii[18,75] := {152} tii[18,76] := {159, 169} tii[18,77] := {9} tii[18,78] := {6} tii[18,79] := {18} tii[18,80] := {2} tii[18,81] := {13} tii[18,82] := {32} tii[18,83] := {10} tii[18,84] := {55} tii[18,85] := {50} tii[18,86] := {24} tii[18,87] := {73} tii[18,88] := {16, 44} tii[18,89] := {22} tii[18,90] := {40} tii[18,91] := {7} tii[18,92] := {33} tii[18,93] := {11} tii[18,94] := {59} tii[18,95] := {26} tii[18,96] := {21} tii[18,97] := {82} tii[18,98] := {70} tii[18,99] := {39} tii[18,100] := {71, 100} tii[18,101] := {78} tii[18,102] := {4} tii[18,103] := {36} tii[18,104] := {31, 62} tii[18,105] := {103} tii[18,106] := {93} tii[18,107] := {94, 125} tii[18,108] := {48, 80} tii[18,109] := {14} tii[18,110] := {111, 142} tii[18,111] := {19, 45} tii[18,112] := {98} tii[18,113] := {122} tii[18,114] := {67, 101} tii[18,115] := {129, 154} tii[18,116] := {17} tii[18,117] := {52} tii[18,118] := {37} tii[18,119] := {12} tii[18,120] := {90} tii[18,121] := {58} tii[18,122] := {54} tii[18,123] := {27} tii[18,124] := {49, 83} tii[18,125] := {114} tii[18,126] := {35, 64} tii[18,127] := {117} tii[18,128] := {87, 121} tii[18,129] := {61} tii[18,130] := {139} tii[18,131] := {53, 84} tii[18,132] := {146, 164} tii[18,133] := {0} tii[18,134] := {3} tii[18,135] := {1} tii[18,136] := {20} tii[18,137] := {5} tii[18,138] := {8, 28} tii[18,139] := {42} tii[18,140] := {34, 63} cell#42 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {127} tii[25,2] := {118} tii[25,3] := {75, 158} tii[25,4] := {100, 169} tii[25,5] := {151} tii[25,6] := {89} tii[25,7] := {162} tii[25,8] := {152} tii[25,9] := {47, 137} tii[25,10] := {164, 165} tii[25,11] := {70, 160} tii[25,12] := {117} tii[25,13] := {101} tii[25,14] := {26, 157} tii[25,15] := {123, 124} tii[25,16] := {44, 168} tii[25,17] := {46, 167} tii[25,18] := {67, 163} tii[25,19] := {68, 173} tii[25,20] := {92, 174} tii[25,21] := {134} tii[25,22] := {61} tii[25,23] := {153} tii[25,24] := {135} tii[25,25] := {25, 113} tii[25,26] := {154, 155} tii[25,27] := {42, 140} tii[25,28] := {129} tii[25,29] := {88} tii[25,30] := {71} tii[25,31] := {112} tii[25,32] := {10, 136} tii[25,33] := {93, 94} tii[25,34] := {132, 133} tii[25,35] := {23, 159} tii[25,36] := {85} tii[25,37] := {24, 156} tii[25,38] := {39, 143} tii[25,39] := {110, 111} tii[25,40] := {40, 170} tii[25,41] := {83, 131} tii[25,42] := {63, 172} tii[25,43] := {72} tii[25,44] := {58} tii[25,45] := {2, 120} tii[25,46] := {79, 80} tii[25,47] := {8, 149} tii[25,48] := {34} tii[25,49] := {9, 144} tii[25,50] := {20, 130} tii[25,51] := {53, 54} tii[25,52] := {21, 166} tii[25,53] := {32, 77} tii[25,54] := {37, 171} tii[25,55] := {6, 119} tii[25,56] := {14, 105} tii[25,57] := {15, 150} tii[25,58] := {4, 76} tii[25,59] := {28, 161} tii[25,60] := {11, 141} tii[25,61] := {103} tii[25,62] := {74} tii[25,63] := {51, 98} tii[25,64] := {142} tii[25,65] := {90} tii[25,66] := {128} tii[25,67] := {64, 116} tii[25,68] := {147, 148} tii[25,69] := {104} tii[25,70] := {52, 139} tii[25,71] := {125, 126} tii[25,72] := {99, 146} tii[25,73] := {102} tii[25,74] := {62} tii[25,75] := {84} tii[25,76] := {108, 109} tii[25,77] := {38, 87} tii[25,78] := {59} tii[25,79] := {73} tii[25,80] := {29, 115} tii[25,81] := {81, 82} tii[25,82] := {96, 97} tii[25,83] := {57, 107} tii[25,84] := {69, 122} tii[25,85] := {35} tii[25,86] := {13, 138} tii[25,87] := {55, 56} tii[25,88] := {43, 145} tii[25,89] := {33, 78} tii[25,90] := {17, 49} tii[25,91] := {36} tii[25,92] := {19, 60} tii[25,93] := {45} tii[25,94] := {12, 86} tii[25,95] := {65, 66} tii[25,96] := {41, 91} tii[25,97] := {18} tii[25,98] := {3, 114} tii[25,99] := {30, 31} tii[25,100] := {22, 121} tii[25,101] := {16, 50} tii[25,102] := {5, 27} tii[25,103] := {0, 95} tii[25,104] := {7, 106} tii[25,105] := {1, 48} cell#43 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {62} tii[19,2] := {92} tii[19,3] := {108} tii[19,4] := {76} tii[19,5] := {49} tii[19,6] := {103} tii[19,7] := {74} tii[19,8] := {115} tii[19,9] := {88} tii[19,10] := {77} tii[19,11] := {112} tii[19,12] := {98} tii[19,13] := {59} tii[19,14] := {120} tii[19,15] := {116} tii[19,16] := {109} tii[19,17] := {123} tii[19,18] := {124} tii[19,19] := {61} tii[19,20] := {31} tii[19,21] := {91} tii[19,22] := {56} tii[19,23] := {107} tii[19,24] := {75} tii[19,25] := {63} tii[19,26] := {18} tii[19,27] := {102} tii[19,28] := {85} tii[19,29] := {42} tii[19,30] := {41} tii[19,31] := {114} tii[19,32] := {30} tii[19,33] := {110} tii[19,34] := {15} tii[19,35] := {99} tii[19,36] := {55} tii[19,37] := {118} tii[19,38] := {67} tii[19,39] := {121} tii[19,40] := {60} tii[19,41] := {44} tii[19,42] := {90} tii[19,43] := {69} tii[19,44] := {26} tii[19,45] := {106} tii[19,46] := {29} tii[19,47] := {101} tii[19,48] := {89} tii[19,49] := {54} tii[19,50] := {14} tii[19,51] := {113} tii[19,52] := {66} tii[19,53] := {11} tii[19,54] := {117} tii[19,55] := {111} tii[19,56] := {100} tii[19,57] := {119} tii[19,58] := {94} tii[19,59] := {122} tii[19,60] := {125} tii[19,61] := {33} tii[19,62] := {58} tii[19,63] := {48} tii[19,64] := {32} tii[19,65] := {36} tii[19,66] := {73} tii[19,67] := {57} tii[19,68] := {46} tii[19,69] := {84} tii[19,70] := {28} tii[19,71] := {71} tii[19,72] := {80} tii[19,73] := {65} tii[19,74] := {10} tii[19,75] := {25} tii[19,76] := {53} tii[19,77] := {87} tii[19,78] := {16} tii[19,79] := {64} tii[19,80] := {38} tii[19,81] := {7} tii[19,82] := {97} tii[19,83] := {39} tii[19,84] := {86} tii[19,85] := {43} tii[19,86] := {50} tii[19,87] := {34} tii[19,88] := {95} tii[19,89] := {9} tii[19,90] := {105} tii[19,91] := {3} tii[19,92] := {24} tii[19,93] := {1} tii[19,94] := {35} tii[19,95] := {104} tii[19,96] := {52} tii[19,97] := {47} tii[19,98] := {72} tii[19,99] := {37} tii[19,100] := {45} tii[19,101] := {22} tii[19,102] := {83} tii[19,103] := {70} tii[19,104] := {27} tii[19,105] := {19} tii[19,106] := {79} tii[19,107] := {17} tii[19,108] := {13} tii[19,109] := {96} tii[19,110] := {40} tii[19,111] := {8} tii[19,112] := {12} tii[19,113] := {93} tii[19,114] := {51} tii[19,115] := {5} tii[19,116] := {2} tii[19,117] := {68} tii[19,118] := {82} tii[19,119] := {78} tii[19,120] := {81} tii[19,121] := {21} tii[19,122] := {23} tii[19,123] := {20} tii[19,124] := {6} tii[19,125] := {4} tii[19,126] := {0} cell#44 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {66} tii[19,2] := {90} tii[19,3] := {107} tii[19,4] := {85} tii[19,5] := {46} tii[19,6] := {103} tii[19,7] := {61} tii[19,8] := {115} tii[19,9] := {97} tii[19,10] := {83} tii[19,11] := {113} tii[19,12] := {94} tii[19,13] := {93} tii[19,14] := {120} tii[19,15] := {118} tii[19,16] := {111} tii[19,17] := {124} tii[19,18] := {125} tii[19,19] := {65} tii[19,20] := {24} tii[19,21] := {89} tii[19,22] := {40} tii[19,23] := {106} tii[19,24] := {84} tii[19,25] := {64} tii[19,26] := {10} tii[19,27] := {102} tii[19,28] := {77} tii[19,29] := {76} tii[19,30] := {22} tii[19,31] := {114} tii[19,32] := {23} tii[19,33] := {112} tii[19,34] := {37} tii[19,35] := {101} tii[19,36] := {38} tii[19,37] := {119} tii[19,38] := {55} tii[19,39] := {123} tii[19,40] := {73} tii[19,41] := {54} tii[19,42] := {100} tii[19,43] := {72} tii[19,44] := {71} tii[19,45] := {110} tii[19,46] := {35} tii[19,47] := {108} tii[19,48] := {98} tii[19,49] := {53} tii[19,50] := {52} tii[19,51] := {117} tii[19,52] := {70} tii[19,53] := {34} tii[19,54] := {121} tii[19,55] := {99} tii[19,56] := {86} tii[19,57] := {109} tii[19,58] := {69} tii[19,59] := {116} tii[19,60] := {122} tii[19,61] := {26} tii[19,62] := {43} tii[19,63] := {48} tii[19,64] := {25} tii[19,65] := {31} tii[19,66] := {63} tii[19,67] := {42} tii[19,68] := {45} tii[19,69] := {79} tii[19,70] := {58} tii[19,71] := {59} tii[19,72] := {75} tii[19,73] := {68} tii[19,74] := {2} tii[19,75] := {8} tii[19,76] := {51} tii[19,77] := {82} tii[19,78] := {9} tii[19,79] := {67} tii[19,80] := {29} tii[19,81] := {19} tii[19,82] := {96} tii[19,83] := {20} tii[19,84] := {81} tii[19,85] := {80} tii[19,86] := {36} tii[19,87] := {60} tii[19,88] := {92} tii[19,89] := {6} tii[19,90] := {105} tii[19,91] := {15} tii[19,92] := {16} tii[19,93] := {4} tii[19,94] := {28} tii[19,95] := {104} tii[19,96] := {11} tii[19,97] := {47} tii[19,98] := {62} tii[19,99] := {30} tii[19,100] := {44} tii[19,101] := {12} tii[19,102] := {78} tii[19,103] := {57} tii[19,104] := {56} tii[19,105] := {39} tii[19,106] := {74} tii[19,107] := {18} tii[19,108] := {3} tii[19,109] := {95} tii[19,110] := {33} tii[19,111] := {32} tii[19,112] := {21} tii[19,113] := {91} tii[19,114] := {50} tii[19,115] := {17} tii[19,116] := {5} tii[19,117] := {27} tii[19,118] := {88} tii[19,119] := {87} tii[19,120] := {49} tii[19,121] := {14} tii[19,122] := {13} tii[19,123] := {41} tii[19,124] := {0} tii[19,125] := {7} tii[19,126] := {1} cell#45 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {322} tii[15,2] := {307, 381} tii[15,3] := {128, 415} tii[15,4] := {373} tii[15,5] := {281} tii[15,6] := {256, 427} tii[15,7] := {131, 225, 445, 493} tii[15,8] := {186, 289, 483, 523} tii[15,9] := {417} tii[15,10] := {207, 465} tii[15,11] := {376} tii[15,12] := {77, 325, 355, 492} tii[15,13] := {318, 436} tii[15,14] := {121, 389, 411, 522} tii[15,15] := {253, 490} tii[15,16] := {197, 313, 456, 520} tii[15,17] := {170, 453} tii[15,18] := {321} tii[15,19] := {206, 467} tii[15,20] := {228} tii[15,21] := {95, 278, 480, 515} tii[15,22] := {141, 342, 508, 537} tii[15,23] := {146, 485} tii[15,24] := {371} tii[15,25] := {182} tii[15,26] := {109, 457} tii[15,27] := {158, 496} tii[15,28] := {323} tii[15,29] := {51, 302, 377, 459} tii[15,30] := {66, 254, 446, 530} tii[15,31] := {70, 160, 414, 500} tii[15,32] := {265, 388} tii[15,33] := {85, 362, 437, 502} tii[15,34] := {101, 314, 484, 546} tii[15,35] := {223} tii[15,36] := {50, 305, 404, 540} tii[15,37] := {201, 513} tii[15,38] := {29, 247, 349, 527} tii[15,39] := {172, 287} tii[15,40] := {149, 260, 488, 535} tii[15,41] := {84, 365, 452, 550} tii[15,42] := {115, 407, 482, 551} tii[15,43] := {416} tii[15,44] := {117, 517} tii[15,45] := {375} tii[15,46] := {32, 353, 420, 491} tii[15,47] := {317, 435} tii[15,48] := {55, 409, 472, 521} tii[15,49] := {326} tii[15,50] := {22, 303, 401, 511} tii[15,51] := {152, 529} tii[15,52] := {11, 243, 350, 486} tii[15,53] := {107, 211, 510, 545} tii[15,54] := {266, 390} tii[15,55] := {38, 363, 449, 533} tii[15,56] := {240, 428} tii[15,57] := {59, 406, 481, 541} tii[15,58] := {200, 539} tii[15,59] := {145, 259, 526, 549} tii[15,60] := {124, 308, 525, 552} tii[15,61] := {92} tii[15,62] := {229} tii[15,63] := {110, 178} tii[15,64] := {161, 238} tii[15,65] := {127} tii[15,66] := {93, 372} tii[15,67] := {280} tii[15,68] := {174} tii[15,69] := {230} tii[15,70] := {150, 224} tii[15,71] := {96, 177, 403, 460} tii[15,72] := {65, 324} tii[15,73] := {234} tii[15,74] := {209, 288} tii[15,75] := {142, 237, 451, 503} tii[15,76] := {39, 100, 295, 395} tii[15,77] := {199, 272} tii[15,78] := {76, 222, 357, 424} tii[15,79] := {276} tii[15,80] := {258, 336} tii[15,81] := {46, 171, 300, 387} tii[15,82] := {219, 340} tii[15,83] := {120, 286, 413, 477} tii[15,84] := {155, 333, 367, 442} tii[15,85] := {105, 454} tii[15,86] := {168} tii[15,87] := {94, 374} tii[15,88] := {332} tii[15,89] := {137} tii[15,90] := {74, 419} tii[15,91] := {220} tii[15,92] := {41, 202, 402, 514} tii[15,93] := {111, 277} tii[15,94] := {61, 140, 348, 441} tii[15,95] := {44, 118, 368, 471} tii[15,96] := {284} tii[15,97] := {68, 261, 450, 536} tii[15,98] := {162, 341} tii[15,99] := {31, 251, 356, 528} tii[15,100] := {330} tii[15,101] := {175} tii[15,102] := {151, 328} tii[15,103] := {58, 273, 306, 461} tii[15,104] := {176} tii[15,105] := {49, 378} tii[15,106] := {91, 184, 399, 470} tii[15,107] := {270, 394} tii[15,108] := {16, 194, 296, 509} tii[15,109] := {210, 391} tii[15,110] := {129, 236} tii[15,111] := {54, 311, 412, 544} tii[15,112] := {235} tii[15,113] := {35, 217, 249, 434} tii[15,114] := {89, 338, 366, 504} tii[15,115] := {28, 83, 319, 439} tii[15,116] := {80, 358, 448, 547} tii[15,117] := {227, 346} tii[15,118] := {14, 114, 293, 466} tii[15,119] := {126, 315, 382, 478} tii[15,120] := {19, 301, 304, 512} tii[15,121] := {221} tii[15,122] := {113, 379} tii[15,123] := {47, 267, 299, 469} tii[15,124] := {9, 244, 245, 487} tii[15,125] := {164, 438} tii[15,126] := {34, 361, 364, 534} tii[15,127] := {169, 285} tii[15,128] := {144, 334} tii[15,129] := {53, 405, 408, 542} tii[15,130] := {156, 263, 426, 505} tii[15,131] := {3, 191, 214, 463} tii[15,132] := {73, 360, 444, 532} tii[15,133] := {216} tii[15,134] := {279} tii[15,135] := {130, 418} tii[15,136] := {173} tii[15,137] := {78, 331} tii[15,138] := {233} tii[15,139] := {90, 185, 398, 475} tii[15,140] := {122, 396} tii[15,141] := {112, 380} tii[15,142] := {75, 421} tii[15,143] := {132} tii[15,144] := {36, 252, 329, 423} tii[15,145] := {274} tii[15,146] := {62, 232, 443, 499} tii[15,147] := {163, 440} tii[15,148] := {45, 119, 369, 474} tii[15,149] := {218, 339} tii[15,150] := {187} tii[15,151] := {21, 198, 269, 386} tii[15,152] := {60, 312, 393, 476} tii[15,153] := {26, 154, 347, 497} tii[15,154] := {180, 290} tii[15,155] := {88, 262, 429, 506} tii[15,156] := {271} tii[15,157] := {97} tii[15,158] := {12, 250, 354, 489} tii[15,159] := {79, 422} tii[15,160] := {40, 208, 400, 518} tii[15,161] := {30, 246, 320, 432} tii[15,162] := {215, 337} tii[15,163] := {6, 193, 298, 455} tii[15,164] := {143} tii[15,165] := {123, 473} tii[15,166] := {23, 310, 410, 519} tii[15,167] := {192, 383} tii[15,168] := {15, 203, 316, 516} tii[15,169] := {136, 239} tii[15,170] := {116, 212, 464, 524} tii[15,171] := {37, 359, 447, 531} tii[15,172] := {2, 166, 241, 425} tii[15,173] := {148, 335} tii[15,174] := {57, 309, 479, 543} tii[15,175] := {52, 458} tii[15,176] := {18, 297, 370, 468} tii[15,177] := {86, 501} tii[15,178] := {5, 213, 294, 462} tii[15,179] := {81, 165, 495, 538} tii[15,180] := {87, 257, 507, 548} tii[15,181] := {64} tii[15,182] := {43, 103} tii[15,183] := {133} tii[15,184] := {42, 275} tii[15,185] := {71, 139} tii[15,186] := {188} tii[15,187] := {24, 69, 248, 343} tii[15,188] := {13, 99, 204, 292} tii[15,189] := {134} tii[15,190] := {33, 327} tii[15,191] := {104, 183} tii[15,192] := {63, 138, 352, 433} tii[15,193] := {189} tii[15,194] := {17, 56, 268, 392} tii[15,195] := {27, 135, 255, 345} tii[15,196] := {7, 82, 242, 430} tii[15,197] := {181, 291} tii[15,198] := {4, 108, 196, 385} tii[15,199] := {67} tii[15,200] := {25, 159, 351, 498} tii[15,201] := {72, 231} tii[15,202] := {102} tii[15,203] := {8, 153, 264, 494} tii[15,204] := {20, 179, 205, 397} tii[15,205] := {98, 190} tii[15,206] := {1, 147, 167, 431} tii[15,207] := {106, 282} tii[15,208] := {48, 283} tii[15,209] := {10, 157, 226, 344} tii[15,210] := {0, 125, 195, 384} cell#46 , |C| = 140 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {101} tii[23,2] := {58} tii[23,3] := {56} tii[23,4] := {119} tii[23,5] := {53} tii[23,6] := {99} tii[23,7] := {44} tii[23,8] := {115} tii[23,9] := {100, 129} tii[23,10] := {74} tii[23,11] := {66} tii[23,12] := {85} tii[23,13] := {75, 111} tii[23,14] := {87} tii[23,15] := {60, 109} tii[23,16] := {130} tii[23,17] := {31} tii[23,18] := {117} tii[23,19] := {25} tii[23,20] := {128} tii[23,21] := {118, 136} tii[23,22] := {112} tii[23,23] := {50} tii[23,24] := {45} tii[23,25] := {61} tii[23,26] := {121} tii[23,27] := {51, 91} tii[23,28] := {113, 135} tii[23,29] := {131} tii[23,30] := {64} tii[23,31] := {38, 90} tii[23,32] := {120, 138} tii[23,33] := {114, 139} tii[23,34] := {71} tii[23,35] := {26} tii[23,36] := {84} tii[23,37] := {72, 110} tii[23,38] := {104} tii[23,39] := {40} tii[23,40] := {21, 67} tii[23,41] := {81, 125} tii[23,42] := {73, 132} tii[23,43] := {62} tii[23,44] := {37, 89} tii[23,45] := {30, 106} tii[23,46] := {3} tii[23,47] := {83} tii[23,48] := {9} tii[23,49] := {65} tii[23,50] := {22} tii[23,51] := {46} tii[23,52] := {4} tii[23,53] := {79} tii[23,54] := {10} tii[23,55] := {41} tii[23,56] := {97} tii[23,57] := {27} tii[23,58] := {80, 116} tii[23,59] := {20} tii[23,60] := {77} tii[23,61] := {36} tii[23,62] := {59, 98} tii[23,63] := {42, 78} tii[23,64] := {94} tii[23,65] := {1} tii[23,66] := {34} tii[23,67] := {103} tii[23,68] := {7} tii[23,69] := {95, 127} tii[23,70] := {19} tii[23,71] := {122} tii[23,72] := {11} tii[23,73] := {63} tii[23,74] := {102, 134} tii[23,75] := {28} tii[23,76] := {54, 92} tii[23,77] := {96, 137} tii[23,78] := {35, 70} tii[23,79] := {105} tii[23,80] := {23} tii[23,81] := {82, 126} tii[23,82] := {47} tii[23,83] := {76, 133} tii[23,84] := {43, 93} tii[23,85] := {55, 124} tii[23,86] := {0} tii[23,87] := {17} tii[23,88] := {2} tii[23,89] := {8} tii[23,90] := {5} tii[23,91] := {39} tii[23,92] := {14} tii[23,93] := {32, 68} tii[23,94] := {18, 49} tii[23,95] := {86} tii[23,96] := {12} tii[23,97] := {57, 108} tii[23,98] := {29} tii[23,99] := {24, 69} tii[23,100] := {52, 123} tii[23,101] := {33, 107} tii[23,102] := {6} tii[23,103] := {15} tii[23,104] := {13, 48} tii[23,105] := {16, 88} cell#47 , |C| = 175 special orbit = [5, 4, 4, 1, 1] special rep = [[2, 2], [2, 1]] , dim = 140 cell rep = phi[[2, 2],[2, 1]]+phi[[1],[3, 3]] TII depth = 4 TII multiplicity polynomial = 105*X+35*X^2 TII subcells: tii[18,1] := {143} tii[18,2] := {76} tii[18,3] := {156} tii[18,4] := {137} tii[18,5] := {116} tii[18,6] := {165} tii[18,7] := {161} tii[18,8] := {127, 150} tii[18,9] := {148, 162} tii[18,10] := {170} tii[18,11] := {172} tii[18,12] := {171, 174} tii[18,13] := {30} tii[18,14] := {92} tii[18,15] := {15} tii[18,16] := {56} tii[18,17] := {47} tii[18,18] := {120} tii[18,19] := {25} tii[18,20] := {110} tii[18,21] := {51} tii[18,22] := {74} tii[18,23] := {66} tii[18,24] := {75} tii[18,25] := {128} tii[18,26] := {136} tii[18,27] := {88} tii[18,28] := {57} tii[18,29] := {89, 118} tii[18,30] := {46, 81} tii[18,31] := {112} tii[18,32] := {113, 140} tii[18,33] := {149} tii[18,34] := {144, 163} tii[18,35] := {29} tii[18,36] := {68} tii[18,37] := {41} tii[18,38] := {130} tii[18,39] := {72} tii[18,40] := {95} tii[18,41] := {38} tii[18,42] := {86} tii[18,43] := {96} tii[18,44] := {60} tii[18,45] := {23} tii[18,46] := {145} tii[18,47] := {109, 135} tii[18,48] := {108} tii[18,49] := {151} tii[18,50] := {79} tii[18,51] := {77} tii[18,52] := {43} tii[18,53] := {133, 153} tii[18,54] := {132} tii[18,55] := {105} tii[18,56] := {65, 104} tii[18,57] := {99} tii[18,58] := {91, 119} tii[18,59] := {160} tii[18,60] := {69, 102} tii[18,61] := {123} tii[18,62] := {157, 168} tii[18,63] := {115, 141} tii[18,64] := {131, 155} tii[18,65] := {106} tii[18,66] := {97} tii[18,67] := {158} tii[18,68] := {126} tii[18,69] := {85, 124} tii[18,70] := {147} tii[18,71] := {167} tii[18,72] := {134} tii[18,73] := {107, 138} tii[18,74] := {166, 173} tii[18,75] := {152} tii[18,76] := {159, 169} tii[18,77] := {9} tii[18,78] := {6} tii[18,79] := {18} tii[18,80] := {2} tii[18,81] := {13} tii[18,82] := {32} tii[18,83] := {10} tii[18,84] := {55} tii[18,85] := {50} tii[18,86] := {24} tii[18,87] := {73} tii[18,88] := {16, 44} tii[18,89] := {22} tii[18,90] := {40} tii[18,91] := {7} tii[18,92] := {33} tii[18,93] := {11} tii[18,94] := {59} tii[18,95] := {26} tii[18,96] := {21} tii[18,97] := {82} tii[18,98] := {70} tii[18,99] := {39} tii[18,100] := {71, 100} tii[18,101] := {78} tii[18,102] := {4} tii[18,103] := {36} tii[18,104] := {31, 62} tii[18,105] := {103} tii[18,106] := {93} tii[18,107] := {94, 125} tii[18,108] := {48, 80} tii[18,109] := {14} tii[18,110] := {111, 142} tii[18,111] := {19, 45} tii[18,112] := {98} tii[18,113] := {122} tii[18,114] := {67, 101} tii[18,115] := {129, 154} tii[18,116] := {17} tii[18,117] := {52} tii[18,118] := {37} tii[18,119] := {12} tii[18,120] := {90} tii[18,121] := {58} tii[18,122] := {54} tii[18,123] := {27} tii[18,124] := {49, 83} tii[18,125] := {114} tii[18,126] := {35, 64} tii[18,127] := {117} tii[18,128] := {87, 121} tii[18,129] := {61} tii[18,130] := {139} tii[18,131] := {53, 84} tii[18,132] := {146, 164} tii[18,133] := {0} tii[18,134] := {3} tii[18,135] := {1} tii[18,136] := {20} tii[18,137] := {5} tii[18,138] := {8, 28} tii[18,139] := {42} tii[18,140] := {34, 63} cell#48 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {322} tii[15,2] := {307, 381} tii[15,3] := {128, 415} tii[15,4] := {373} tii[15,5] := {281} tii[15,6] := {256, 427} tii[15,7] := {131, 225, 445, 493} tii[15,8] := {186, 289, 483, 523} tii[15,9] := {417} tii[15,10] := {207, 465} tii[15,11] := {376} tii[15,12] := {77, 325, 355, 492} tii[15,13] := {318, 436} tii[15,14] := {121, 389, 411, 522} tii[15,15] := {253, 490} tii[15,16] := {197, 313, 456, 520} tii[15,17] := {170, 453} tii[15,18] := {321} tii[15,19] := {206, 467} tii[15,20] := {228} tii[15,21] := {95, 278, 480, 515} tii[15,22] := {141, 342, 508, 537} tii[15,23] := {146, 485} tii[15,24] := {371} tii[15,25] := {182} tii[15,26] := {109, 457} tii[15,27] := {158, 496} tii[15,28] := {323} tii[15,29] := {51, 302, 377, 459} tii[15,30] := {66, 254, 446, 530} tii[15,31] := {70, 160, 414, 500} tii[15,32] := {265, 388} tii[15,33] := {85, 362, 437, 502} tii[15,34] := {101, 314, 484, 546} tii[15,35] := {223} tii[15,36] := {50, 305, 404, 540} tii[15,37] := {201, 513} tii[15,38] := {29, 247, 349, 527} tii[15,39] := {172, 287} tii[15,40] := {149, 260, 488, 535} tii[15,41] := {84, 365, 452, 550} tii[15,42] := {115, 407, 482, 551} tii[15,43] := {416} tii[15,44] := {117, 517} tii[15,45] := {375} tii[15,46] := {32, 353, 420, 491} tii[15,47] := {317, 435} tii[15,48] := {55, 409, 472, 521} tii[15,49] := {326} tii[15,50] := {22, 303, 401, 511} tii[15,51] := {152, 529} tii[15,52] := {11, 243, 350, 486} tii[15,53] := {107, 211, 510, 545} tii[15,54] := {266, 390} tii[15,55] := {38, 363, 449, 533} tii[15,56] := {240, 428} tii[15,57] := {59, 406, 481, 541} tii[15,58] := {200, 539} tii[15,59] := {145, 259, 526, 549} tii[15,60] := {124, 308, 525, 552} tii[15,61] := {92} tii[15,62] := {229} tii[15,63] := {110, 178} tii[15,64] := {161, 238} tii[15,65] := {127} tii[15,66] := {93, 372} tii[15,67] := {280} tii[15,68] := {174} tii[15,69] := {230} tii[15,70] := {150, 224} tii[15,71] := {96, 177, 403, 460} tii[15,72] := {65, 324} tii[15,73] := {234} tii[15,74] := {209, 288} tii[15,75] := {142, 237, 451, 503} tii[15,76] := {39, 100, 295, 395} tii[15,77] := {199, 272} tii[15,78] := {76, 222, 357, 424} tii[15,79] := {276} tii[15,80] := {258, 336} tii[15,81] := {46, 171, 300, 387} tii[15,82] := {219, 340} tii[15,83] := {120, 286, 413, 477} tii[15,84] := {155, 333, 367, 442} tii[15,85] := {105, 454} tii[15,86] := {168} tii[15,87] := {94, 374} tii[15,88] := {332} tii[15,89] := {137} tii[15,90] := {74, 419} tii[15,91] := {220} tii[15,92] := {41, 202, 402, 514} tii[15,93] := {111, 277} tii[15,94] := {61, 140, 348, 441} tii[15,95] := {44, 118, 368, 471} tii[15,96] := {284} tii[15,97] := {68, 261, 450, 536} tii[15,98] := {162, 341} tii[15,99] := {31, 251, 356, 528} tii[15,100] := {330} tii[15,101] := {175} tii[15,102] := {151, 328} tii[15,103] := {58, 273, 306, 461} tii[15,104] := {176} tii[15,105] := {49, 378} tii[15,106] := {91, 184, 399, 470} tii[15,107] := {270, 394} tii[15,108] := {16, 194, 296, 509} tii[15,109] := {210, 391} tii[15,110] := {129, 236} tii[15,111] := {54, 311, 412, 544} tii[15,112] := {235} tii[15,113] := {35, 217, 249, 434} tii[15,114] := {89, 338, 366, 504} tii[15,115] := {28, 83, 319, 439} tii[15,116] := {80, 358, 448, 547} tii[15,117] := {227, 346} tii[15,118] := {14, 114, 293, 466} tii[15,119] := {126, 315, 382, 478} tii[15,120] := {19, 301, 304, 512} tii[15,121] := {221} tii[15,122] := {113, 379} tii[15,123] := {47, 267, 299, 469} tii[15,124] := {9, 244, 245, 487} tii[15,125] := {164, 438} tii[15,126] := {34, 361, 364, 534} tii[15,127] := {169, 285} tii[15,128] := {144, 334} tii[15,129] := {53, 405, 408, 542} tii[15,130] := {156, 263, 426, 505} tii[15,131] := {3, 191, 214, 463} tii[15,132] := {73, 360, 444, 532} tii[15,133] := {216} tii[15,134] := {279} tii[15,135] := {130, 418} tii[15,136] := {173} tii[15,137] := {78, 331} tii[15,138] := {233} tii[15,139] := {90, 185, 398, 475} tii[15,140] := {122, 396} tii[15,141] := {112, 380} tii[15,142] := {75, 421} tii[15,143] := {132} tii[15,144] := {36, 252, 329, 423} tii[15,145] := {274} tii[15,146] := {62, 232, 443, 499} tii[15,147] := {163, 440} tii[15,148] := {45, 119, 369, 474} tii[15,149] := {218, 339} tii[15,150] := {187} tii[15,151] := {21, 198, 269, 386} tii[15,152] := {60, 312, 393, 476} tii[15,153] := {26, 154, 347, 497} tii[15,154] := {180, 290} tii[15,155] := {88, 262, 429, 506} tii[15,156] := {271} tii[15,157] := {97} tii[15,158] := {12, 250, 354, 489} tii[15,159] := {79, 422} tii[15,160] := {40, 208, 400, 518} tii[15,161] := {30, 246, 320, 432} tii[15,162] := {215, 337} tii[15,163] := {6, 193, 298, 455} tii[15,164] := {143} tii[15,165] := {123, 473} tii[15,166] := {23, 310, 410, 519} tii[15,167] := {192, 383} tii[15,168] := {15, 203, 316, 516} tii[15,169] := {136, 239} tii[15,170] := {116, 212, 464, 524} tii[15,171] := {37, 359, 447, 531} tii[15,172] := {2, 166, 241, 425} tii[15,173] := {148, 335} tii[15,174] := {57, 309, 479, 543} tii[15,175] := {52, 458} tii[15,176] := {18, 297, 370, 468} tii[15,177] := {86, 501} tii[15,178] := {5, 213, 294, 462} tii[15,179] := {81, 165, 495, 538} tii[15,180] := {87, 257, 507, 548} tii[15,181] := {64} tii[15,182] := {43, 103} tii[15,183] := {133} tii[15,184] := {42, 275} tii[15,185] := {71, 139} tii[15,186] := {188} tii[15,187] := {24, 69, 248, 343} tii[15,188] := {13, 99, 204, 292} tii[15,189] := {134} tii[15,190] := {33, 327} tii[15,191] := {104, 183} tii[15,192] := {63, 138, 352, 433} tii[15,193] := {189} tii[15,194] := {17, 56, 268, 392} tii[15,195] := {27, 135, 255, 345} tii[15,196] := {7, 82, 242, 430} tii[15,197] := {181, 291} tii[15,198] := {4, 108, 196, 385} tii[15,199] := {67} tii[15,200] := {25, 159, 351, 498} tii[15,201] := {72, 231} tii[15,202] := {102} tii[15,203] := {8, 153, 264, 494} tii[15,204] := {20, 179, 205, 397} tii[15,205] := {98, 190} tii[15,206] := {1, 147, 167, 431} tii[15,207] := {106, 282} tii[15,208] := {48, 283} tii[15,209] := {10, 157, 226, 344} tii[15,210] := {0, 125, 195, 384} cell#49 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {100} tii[28,2] := {30, 146} tii[28,3] := {67, 163} tii[28,4] := {87, 176} tii[28,5] := {122} tii[28,6] := {78} tii[28,7] := {22, 160} tii[28,8] := {66, 111} tii[28,9] := {58, 171} tii[28,10] := {95, 127} tii[28,11] := {75, 181} tii[28,12] := {139} tii[28,13] := {42, 170} tii[28,14] := {120} tii[28,15] := {130} tii[28,16] := {33, 148} tii[28,17] := {83, 178} tii[28,18] := {121, 152} tii[28,19] := {61, 158} tii[28,20] := {99, 184} tii[28,21] := {63, 177} tii[28,22] := {81, 169} tii[28,23] := {104, 183} tii[28,24] := {105, 174} tii[28,25] := {64, 173} tii[28,26] := {119, 186} tii[28,27] := {123, 185} tii[28,28] := {136, 182} tii[28,29] := {137, 187} tii[28,30] := {150, 188} tii[28,31] := {53} tii[28,32] := {17, 91} tii[28,33] := {29, 108} tii[28,34] := {80} tii[28,35] := {51} tii[28,36] := {57} tii[28,37] := {4, 112} tii[28,38] := {45, 90} tii[28,39] := {38, 73} tii[28,40] := {13, 128} tii[28,41] := {70, 107} tii[28,42] := {76} tii[28,43] := {15, 131} tii[28,44] := {88} tii[28,45] := {26, 110} tii[28,46] := {77, 116} tii[28,47] := {28, 142} tii[28,48] := {5, 113} tii[28,49] := {48, 125} tii[28,50] := {44, 129} tii[28,51] := {47, 154} tii[28,52] := {31, 140} tii[28,53] := {71, 141} tii[28,54] := {86, 153} tii[28,55] := {103} tii[28,56] := {82} tii[28,57] := {2, 133} tii[28,58] := {59, 97} tii[28,59] := {8, 145} tii[28,60] := {101} tii[28,61] := {109} tii[28,62] := {55} tii[28,63] := {9, 149} tii[28,64] := {14, 132} tii[28,65] := {102, 138} tii[28,66] := {37, 72} tii[28,67] := {21, 159} tii[28,68] := {3, 135} tii[28,69] := {40, 144} tii[28,70] := {89} tii[28,71] := {32, 147} tii[28,72] := {46, 93} tii[28,73] := {39, 165} tii[28,74] := {23, 155} tii[28,75] := {79, 117} tii[28,76] := {62, 156} tii[28,77] := {56, 126} tii[28,78] := {74, 164} tii[28,79] := {24, 162} tii[28,80] := {41, 168} tii[28,81] := {11, 151} tii[28,82] := {54, 161} tii[28,83] := {20, 134} tii[28,84] := {60, 175} tii[28,85] := {85, 167} tii[28,86] := {43, 166} tii[28,87] := {98, 172} tii[28,88] := {25, 157} tii[28,89] := {84, 180} tii[28,90] := {118, 179} tii[28,91] := {36} tii[28,92] := {19, 50} tii[28,93] := {7, 69} tii[28,94] := {34} tii[28,95] := {18, 49} tii[28,96] := {65} tii[28,97] := {1, 94} tii[28,98] := {27, 68} tii[28,99] := {52, 96} tii[28,100] := {35, 106} tii[28,101] := {12, 92} tii[28,102] := {16, 124} tii[28,103] := {0, 115} tii[28,104] := {6, 114} tii[28,105] := {10, 143} cell#50 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {106} tii[25,2] := {48} tii[25,3] := {44, 98} tii[25,4] := {71, 124} tii[25,5] := {136} tii[25,6] := {41} tii[25,7] := {104} tii[25,8] := {125} tii[25,9] := {28, 86} tii[25,10] := {105, 154} tii[25,11] := {61, 103} tii[25,12] := {66} tii[25,13] := {81} tii[25,14] := {54, 113} tii[25,15] := {67, 119} tii[25,16] := {92, 133} tii[25,17] := {83, 139} tii[25,18] := {47, 152} tii[25,19] := {117, 153} tii[25,20] := {142, 165} tii[25,21] := {155} tii[25,22] := {17} tii[25,23] := {134} tii[25,24] := {147} tii[25,25] := {10, 56} tii[25,26] := {135, 168} tii[25,27] := {36, 74} tii[25,28] := {120} tii[25,29] := {38} tii[25,30] := {50} tii[25,31] := {140} tii[25,32] := {27, 84} tii[25,33] := {39, 91} tii[25,34] := {121, 161} tii[25,35] := {60, 101} tii[25,36] := {157} tii[25,37] := {52, 108} tii[25,38] := {24, 127} tii[25,39] := {137, 170} tii[25,40] := {90, 128} tii[25,41] := {122, 173} tii[25,42] := {114, 149} tii[25,43] := {63} tii[25,44] := {80} tii[25,45] := {9, 112} tii[25,46] := {64, 118} tii[25,47] := {35, 131} tii[25,48] := {110} tii[25,49] := {25, 138} tii[25,50] := {8, 150} tii[25,51] := {77, 144} tii[25,52] := {59, 151} tii[25,53] := {65, 158} tii[25,54] := {85, 163} tii[25,55] := {51, 156} tii[25,56] := {23, 166} tii[25,57] := {89, 167} tii[25,58] := {16, 171} tii[25,59] := {115, 172} tii[25,60] := {126, 174} tii[25,61] := {79} tii[25,62] := {55} tii[25,63] := {32, 72} tii[25,64] := {75} tii[25,65] := {29} tii[25,66] := {97} tii[25,67] := {12, 45} tii[25,68] := {76, 129} tii[25,69] := {69} tii[25,70] := {22, 70} tii[25,71] := {49, 99} tii[25,72] := {30, 123} tii[25,73] := {94} tii[25,74] := {20} tii[25,75] := {109} tii[25,76] := {95, 146} tii[25,77] := {7, 37} tii[25,78] := {141} tii[25,79] := {53} tii[25,80] := {13, 58} tii[25,81] := {107, 160} tii[25,82] := {42, 93} tii[25,83] := {96, 169} tii[25,84] := {21, 102} tii[25,85] := {111} tii[25,86] := {33, 88} tii[25,87] := {78, 145} tii[25,88] := {31, 132} tii[25,89] := {68, 159} tii[25,90] := {43, 164} tii[25,91] := {5} tii[25,92] := {0, 15} tii[25,93] := {26} tii[25,94] := {2, 34} tii[25,95] := {18, 62} tii[25,96] := {6, 73} tii[25,97] := {82} tii[25,98] := {14, 57} tii[25,99] := {46, 116} tii[25,100] := {11, 100} tii[25,101] := {40, 143} tii[25,102] := {19, 148} tii[25,103] := {3, 87} tii[25,104] := {1, 130} tii[25,105] := {4, 162} cell#51 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {76} tii[19,2] := {101} tii[19,3] := {110} tii[19,4] := {73} tii[19,5] := {29} tii[19,6] := {95} tii[19,7] := {47} tii[19,8] := {109} tii[19,9] := {90} tii[19,10] := {71} tii[19,11] := {107} tii[19,12] := {86} tii[19,13] := {85} tii[19,14] := {116} tii[19,15] := {113} tii[19,16] := {104} tii[19,17] := {120} tii[19,18] := {122} tii[19,19] := {51} tii[19,20] := {13} tii[19,21] := {78} tii[19,22] := {25} tii[19,23] := {100} tii[19,24] := {72} tii[19,25] := {50} tii[19,26] := {3} tii[19,27] := {94} tii[19,28] := {65} tii[19,29] := {64} tii[19,30] := {10} tii[19,31] := {108} tii[19,32] := {11} tii[19,33] := {105} tii[19,34] := {20} tii[19,35] := {92} tii[19,36] := {21} tii[19,37] := {114} tii[19,38] := {38} tii[19,39] := {118} tii[19,40] := {89} tii[19,41] := {70} tii[19,42] := {106} tii[19,43] := {84} tii[19,44] := {83} tii[19,45] := {115} tii[19,46] := {49} tii[19,47] := {112} tii[19,48] := {103} tii[19,49] := {63} tii[19,50] := {62} tii[19,51] := {119} tii[19,52] := {80} tii[19,53] := {79} tii[19,54] := {121} tii[19,55] := {117} tii[19,56] := {111} tii[19,57] := {123} tii[19,58] := {102} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {36} tii[19,62] := {56} tii[19,63] := {57} tii[19,64] := {12} tii[19,65] := {39} tii[19,66] := {75} tii[19,67] := {23} tii[19,68] := {27} tii[19,69] := {91} tii[19,70] := {42} tii[19,71] := {43} tii[19,72] := {60} tii[19,73] := {53} tii[19,74] := {2} tii[19,75] := {7} tii[19,76] := {33} tii[19,77] := {69} tii[19,78] := {8} tii[19,79] := {52} tii[19,80] := {14} tii[19,81] := {16} tii[19,82] := {88} tii[19,83] := {17} tii[19,84] := {68} tii[19,85] := {67} tii[19,86] := {32} tii[19,87] := {46} tii[19,88] := {82} tii[19,89] := {18} tii[19,90] := {99} tii[19,91] := {34} tii[19,92] := {35} tii[19,93] := {54} tii[19,94] := {55} tii[19,95] := {97} tii[19,96] := {74} tii[19,97] := {30} tii[19,98] := {48} tii[19,99] := {15} tii[19,100] := {28} tii[19,101] := {5} tii[19,102] := {66} tii[19,103] := {45} tii[19,104] := {44} tii[19,105] := {24} tii[19,106] := {61} tii[19,107] := {26} tii[19,108] := {1} tii[19,109] := {87} tii[19,110] := {41} tii[19,111] := {40} tii[19,112] := {9} tii[19,113] := {81} tii[19,114] := {59} tii[19,115] := {58} tii[19,116] := {37} tii[19,117] := {77} tii[19,118] := {98} tii[19,119] := {96} tii[19,120] := {93} tii[19,121] := {19} tii[19,122] := {4} tii[19,123] := {22} tii[19,124] := {0} tii[19,125] := {6} tii[19,126] := {31} cell#52 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {187} tii[20,2] := {208} tii[20,3] := {72, 284} tii[20,4] := {222} tii[20,5] := {173} tii[20,6] := {241} tii[20,7] := {136, 308} tii[20,8] := {180, 314} tii[20,9] := {132, 283} tii[20,10] := {256} tii[20,11] := {240} tii[20,12] := {269} tii[20,13] := {152, 268} tii[20,14] := {205, 307} tii[20,15] := {198, 298} tii[20,16] := {247, 313} tii[20,17] := {281} tii[20,18] := {291} tii[20,19] := {290} tii[20,20] := {262, 306} tii[20,21] := {282, 309} tii[20,22] := {285, 312} tii[20,23] := {305} tii[20,24] := {310, 311} tii[20,25] := {19} tii[20,26] := {92} tii[20,27] := {52} tii[20,28] := {83} tii[20,29] := {47, 259} tii[20,30] := {37} tii[20,31] := {138} tii[20,32] := {41} tii[20,33] := {120} tii[20,34] := {105, 294} tii[20,35] := {14, 192} tii[20,36] := {76} tii[20,37] := {68} tii[20,38] := {146, 304} tii[20,39] := {33, 220} tii[20,40] := {113} tii[20,41] := {60} tii[20,42] := {71, 224} tii[20,43] := {153} tii[20,44] := {88} tii[20,45] := {48, 189} tii[20,46] := {172} tii[20,47] := {89, 204} tii[20,48] := {137, 271} tii[20,49] := {104} tii[20,50] := {125} tii[20,51] := {36, 159} tii[20,52] := {81, 216} tii[20,53] := {126, 248} tii[20,54] := {145} tii[20,55] := {181, 289} tii[20,56] := {134} tii[20,57] := {203} tii[20,58] := {164, 242} tii[20,59] := {188, 250} tii[20,60] := {130, 210} tii[20,61] := {178} tii[20,62] := {201, 266} tii[20,63] := {235, 236} tii[20,64] := {62} tii[20,65] := {29, 229} tii[20,66] := {155} tii[20,67] := {66} tii[20,68] := {106} tii[20,69] := {56, 255} tii[20,70] := {96} tii[20,71] := {147} tii[20,72] := {86} tii[20,73] := {100, 258} tii[20,74] := {50, 261} tii[20,75] := {190} tii[20,76] := {119, 239} tii[20,77] := {118} tii[20,78] := {207} tii[20,79] := {75} tii[20,80] := {73, 225} tii[20,81] := {170, 293} tii[20,82] := {135} tii[20,83] := {30, 231} tii[20,84] := {163, 276} tii[20,85] := {162} tii[20,86] := {80, 279} tii[20,87] := {112} tii[20,88] := {59, 194} tii[20,89] := {111, 251} tii[20,90] := {179} tii[20,91] := {214, 303} tii[20,92] := {91, 206} tii[20,93] := {103} tii[20,94] := {168} tii[20,95] := {199, 270} tii[20,96] := {238} tii[20,97] := {108, 297} tii[20,98] := {63, 176} tii[20,99] := {128, 249} tii[20,100] := {165, 244} tii[20,101] := {143} tii[20,102] := {212} tii[20,103] := {223, 277} tii[20,104] := {234, 288} tii[20,105] := {156, 218} tii[20,106] := {264, 265} tii[20,107] := {116} tii[20,108] := {101, 260} tii[20,109] := {227} tii[20,110] := {151} tii[20,111] := {169} tii[20,112] := {85, 230} tii[20,113] := {144, 278} tii[20,114] := {197} tii[20,115] := {213} tii[20,116] := {267} tii[20,117] := {167} tii[20,118] := {202} tii[20,119] := {232, 292} tii[20,120] := {117, 243} tii[20,121] := {175, 296} tii[20,122] := {257, 299} tii[20,123] := {246} tii[20,124] := {211} tii[20,125] := {200, 272} tii[20,126] := {263, 302} tii[20,127] := {228, 280} tii[20,128] := {286, 287} tii[20,129] := {237} tii[20,130] := {233, 295} tii[20,131] := {275} tii[20,132] := {300, 301} tii[20,133] := {3} tii[20,134] := {7} tii[20,135] := {10} tii[20,136] := {5, 158} tii[20,137] := {21} tii[20,138] := {4} tii[20,139] := {45} tii[20,140] := {17, 186} tii[20,141] := {18} tii[20,142] := {40} tii[20,143] := {13, 122} tii[20,144] := {32} tii[20,145] := {34, 150} tii[20,146] := {8, 93} tii[20,147] := {67} tii[20,148] := {46, 115} tii[20,149] := {28, 226} tii[20,150] := {23} tii[20,151] := {51} tii[20,152] := {15, 195} tii[20,153] := {55, 252} tii[20,154] := {11} tii[20,155] := {35} tii[20,156] := {82} tii[20,157] := {65, 171} tii[20,158] := {64} tii[20,159] := {27, 157} tii[20,160] := {74} tii[20,161] := {26} tii[20,162] := {78, 274} tii[20,163] := {6, 160} tii[20,164] := {54} tii[20,165] := {95, 215} tii[20,166] := {110} tii[20,167] := {20, 123} tii[20,168] := {57, 185} tii[20,169] := {94} tii[20,170] := {38, 141} tii[20,171] := {9, 97} tii[20,172] := {121, 183} tii[20,173] := {70, 149} tii[20,174] := {102} tii[20,175] := {109, 245} tii[20,176] := {77} tii[20,177] := {142} tii[20,178] := {61, 174} tii[20,179] := {98, 182} tii[20,180] := {154, 219} tii[20,181] := {42} tii[20,182] := {25} tii[20,183] := {58} tii[20,184] := {90} tii[20,185] := {49, 193} tii[20,186] := {16, 196} tii[20,187] := {44} tii[20,188] := {79} tii[20,189] := {127} tii[20,190] := {39, 161} tii[20,191] := {84, 221} tii[20,192] := {22, 129} tii[20,193] := {99, 184} tii[20,194] := {133} tii[20,195] := {87, 209} tii[20,196] := {53} tii[20,197] := {140, 273} tii[20,198] := {107} tii[20,199] := {177} tii[20,200] := {43, 148} tii[20,201] := {131, 217} tii[20,202] := {191, 254} tii[20,203] := {139} tii[20,204] := {166, 253} tii[20,205] := {0} tii[20,206] := {1, 124} tii[20,207] := {12} tii[20,208] := {2, 69} tii[20,209] := {31} tii[20,210] := {24, 114} cell#53 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {54} tii[19,2] := {85} tii[19,3] := {102} tii[19,4] := {69} tii[19,5] := {43} tii[19,6] := {96} tii[19,7] := {66} tii[19,8] := {110} tii[19,9] := {83} tii[19,10] := {71} tii[19,11] := {108} tii[19,12] := {92} tii[19,13] := {52} tii[19,14] := {116} tii[19,15] := {112} tii[19,16] := {104} tii[19,17] := {119} tii[19,18] := {122} tii[19,19] := {53} tii[19,20] := {25} tii[19,21] := {84} tii[19,22] := {48} tii[19,23] := {101} tii[19,24] := {68} tii[19,25] := {55} tii[19,26] := {12} tii[19,27] := {95} tii[19,28] := {77} tii[19,29] := {35} tii[19,30] := {33} tii[19,31] := {109} tii[19,32] := {24} tii[19,33] := {106} tii[19,34] := {10} tii[19,35] := {94} tii[19,36] := {47} tii[19,37] := {114} tii[19,38] := {59} tii[19,39] := {118} tii[19,40] := {82} tii[19,41] := {70} tii[19,42] := {107} tii[19,43] := {91} tii[19,44] := {51} tii[19,45] := {115} tii[19,46] := {56} tii[19,47] := {113} tii[19,48] := {105} tii[19,49] := {78} tii[19,50] := {36} tii[19,51] := {120} tii[19,52] := {88} tii[19,53] := {34} tii[19,54] := {123} tii[19,55] := {117} tii[19,56] := {111} tii[19,57] := {121} tii[19,58] := {103} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {27} tii[19,62] := {50} tii[19,63] := {42} tii[19,64] := {26} tii[19,65] := {29} tii[19,66] := {65} tii[19,67] := {49} tii[19,68] := {40} tii[19,69] := {76} tii[19,70] := {22} tii[19,71] := {63} tii[19,72] := {73} tii[19,73] := {58} tii[19,74] := {4} tii[19,75] := {18} tii[19,76] := {45} tii[19,77] := {80} tii[19,78] := {11} tii[19,79] := {57} tii[19,80] := {31} tii[19,81] := {3} tii[19,82] := {90} tii[19,83] := {32} tii[19,84] := {79} tii[19,85] := {37} tii[19,86] := {44} tii[19,87] := {28} tii[19,88] := {87} tii[19,89] := {23} tii[19,90] := {100} tii[19,91] := {9} tii[19,92] := {46} tii[19,93] := {7} tii[19,94] := {60} tii[19,95] := {97} tii[19,96] := {67} tii[19,97] := {41} tii[19,98] := {64} tii[19,99] := {30} tii[19,100] := {39} tii[19,101] := {16} tii[19,102] := {75} tii[19,103] := {62} tii[19,104] := {21} tii[19,105] := {13} tii[19,106] := {72} tii[19,107] := {38} tii[19,108] := {6} tii[19,109] := {89} tii[19,110] := {61} tii[19,111] := {20} tii[19,112] := {5} tii[19,113] := {86} tii[19,114] := {74} tii[19,115] := {19} tii[19,116] := {8} tii[19,117] := {81} tii[19,118] := {99} tii[19,119] := {98} tii[19,120] := {93} tii[19,121] := {15} tii[19,122] := {17} tii[19,123] := {14} tii[19,124] := {1} tii[19,125] := {0} tii[19,126] := {2} cell#54 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {39} tii[19,2] := {74} tii[19,3] := {91} tii[19,4] := {62} tii[19,5] := {55} tii[19,6] := {93} tii[19,7] := {76} tii[19,8] := {107} tii[19,9] := {81} tii[19,10] := {92} tii[19,11] := {108} tii[19,12] := {112} tii[19,13] := {82} tii[19,14] := {117} tii[19,15] := {118} tii[19,16] := {122} tii[19,17] := {123} tii[19,18] := {125} tii[19,19] := {52} tii[19,20] := {43} tii[19,21] := {86} tii[19,22] := {68} tii[19,23] := {102} tii[19,24] := {71} tii[19,25] := {84} tii[19,26] := {23} tii[19,27] := {104} tii[19,28] := {105} tii[19,29] := {72} tii[19,30] := {46} tii[19,31] := {114} tii[19,32] := {42} tii[19,33] := {115} tii[19,34] := {31} tii[19,35] := {120} tii[19,36] := {70} tii[19,37] := {121} tii[19,38] := {80} tii[19,39] := {124} tii[19,40] := {50} tii[19,41] := {64} tii[19,42] := {85} tii[19,43] := {88} tii[19,44] := {51} tii[19,45] := {100} tii[19,46] := {41} tii[19,47] := {103} tii[19,48] := {110} tii[19,49] := {69} tii[19,50] := {30} tii[19,51] := {111} tii[19,52] := {79} tii[19,53] := {15} tii[19,54] := {119} tii[19,55] := {83} tii[19,56] := {96} tii[19,57] := {97} tii[19,58] := {78} tii[19,59] := {109} tii[19,60] := {94} tii[19,61] := {10} tii[19,62] := {19} tii[19,63] := {24} tii[19,64] := {34} tii[19,65] := {11} tii[19,66] := {36} tii[19,67] := {57} tii[19,68] := {54} tii[19,69] := {56} tii[19,70] := {40} tii[19,71] := {77} tii[19,72] := {90} tii[19,73] := {44} tii[19,74] := {9} tii[19,75] := {28} tii[19,76] := {26} tii[19,77] := {58} tii[19,78] := {22} tii[19,79] := {73} tii[19,80] := {35} tii[19,81] := {14} tii[19,82] := {75} tii[19,83] := {48} tii[19,84] := {98} tii[19,85] := {63} tii[19,86] := {61} tii[19,87] := {45} tii[19,88] := {106} tii[19,89] := {8} tii[19,90] := {95} tii[19,91] := {5} tii[19,92] := {29} tii[19,93] := {1} tii[19,94] := {38} tii[19,95] := {116} tii[19,96] := {20} tii[19,97] := {32} tii[19,98] := {49} tii[19,99] := {17} tii[19,100] := {65} tii[19,101] := {27} tii[19,102] := {67} tii[19,103] := {89} tii[19,104] := {53} tii[19,105] := {33} tii[19,106] := {101} tii[19,107] := {21} tii[19,108] := {12} tii[19,109] := {87} tii[19,110] := {47} tii[19,111] := {13} tii[19,112] := {16} tii[19,113] := {113} tii[19,114] := {60} tii[19,115] := {6} tii[19,116] := {2} tii[19,117] := {37} tii[19,118] := {66} tii[19,119] := {99} tii[19,120] := {59} tii[19,121] := {4} tii[19,122] := {18} tii[19,123] := {25} tii[19,124] := {3} tii[19,125] := {7} tii[19,126] := {0} cell#55 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {304} tii[15,2] := {144, 344} tii[15,3] := {85, 419} tii[15,4] := {366} tii[15,5] := {249} tii[15,6] := {113, 396} tii[15,7] := {171, 172, 307, 476} tii[15,8] := {233, 234, 357, 515} tii[15,9] := {418} tii[15,10] := {164, 442} tii[15,11] := {362} tii[15,12] := {94, 220, 284, 475} tii[15,13] := {400, 401} tii[15,14] := {152, 273, 352, 514} tii[15,15] := {217, 474} tii[15,16] := {260, 261, 436, 513} tii[15,17] := {131, 464} tii[15,18] := {421} tii[15,19] := {72, 443} tii[15,20] := {309} tii[15,21] := {228, 229, 368, 507} tii[15,22] := {293, 294, 412, 532} tii[15,23] := {110, 496} tii[15,24] := {463} tii[15,25] := {281} tii[15,26] := {68, 461} tii[15,27] := {112, 481} tii[15,28] := {417} tii[15,29] := {54, 162, 341, 506} tii[15,30] := {192, 193, 339, 526} tii[15,31] := {99, 100, 485, 486} tii[15,32] := {448, 449} tii[15,33] := {105, 209, 408, 531} tii[15,34] := {268, 269, 389, 543} tii[15,35] := {338} tii[15,36] := {246, 247, 391, 536} tii[15,37] := {160, 504} tii[15,38] := {186, 187, 432, 521} tii[15,39] := {385, 386} tii[15,40] := {200, 201, 473, 529} tii[15,41] := {330, 331, 433, 549} tii[15,42] := {374, 375, 469, 551} tii[15,43] := {495} tii[15,44] := {163, 510} tii[15,45] := {460} tii[15,46] := {93, 219, 392, 525} tii[15,47] := {483, 484} tii[15,48] := {151, 271, 455, 542} tii[15,49] := {435} tii[15,50] := {138, 277, 367, 535} tii[15,51] := {216, 524} tii[15,52] := {87, 302, 322, 520} tii[15,53] := {258, 259, 502, 541} tii[15,54] := {470, 471} tii[15,55] := {204, 323, 434, 548} tii[15,56] := {498, 499} tii[15,57] := {251, 376, 468, 550} tii[15,58] := {276, 534} tii[15,59] := {320, 321, 519, 547} tii[15,60] := {370, 371, 518, 552} tii[15,61] := {49} tii[15,62] := {195} tii[15,63] := {53, 122} tii[15,64] := {104, 180} tii[15,65] := {86} tii[15,66] := {48, 363} tii[15,67] := {250} tii[15,68] := {137} tii[15,69] := {194} tii[15,70] := {23, 173} tii[15,71] := {120, 121, 248, 438} tii[15,72] := {22, 308} tii[15,73] := {203} tii[15,74] := {66, 235} tii[15,75] := {178, 179, 297, 491} tii[15,76] := {43, 44, 257, 358} tii[15,77] := {52, 226} tii[15,78] := {77, 170, 197, 394} tii[15,79] := {243} tii[15,80] := {103, 291} tii[15,81] := {45, 119, 147, 349} tii[15,82] := {289, 290} tii[15,83] := {129, 232, 240, 457} tii[15,84] := {181, 182, 288, 415} tii[15,85] := {69, 462} tii[15,86] := {132} tii[15,87] := {47, 369} tii[15,88] := {310} tii[15,89] := {221} tii[15,90] := {36, 416} tii[15,91] := {189} tii[15,92] := {140, 141, 280, 505} tii[15,93] := {17, 230} tii[15,94] := {79, 80, 319, 413} tii[15,95] := {62, 63, 446, 447} tii[15,96] := {265} tii[15,97] := {206, 207, 333, 530} tii[15,98] := {40, 295} tii[15,99] := {190, 191, 337, 522} tii[15,100] := {303} tii[15,101] := {136} tii[15,102] := {38, 285} tii[15,103] := {55, 165, 227, 439} tii[15,104] := {278} tii[15,105] := {15, 364} tii[15,106] := {126, 127, 256, 451} tii[15,107] := {347, 348} tii[15,108] := {133, 134, 383, 500} tii[15,109] := {75, 353} tii[15,110] := {324, 325} tii[15,111] := {266, 267, 384, 539} tii[15,112] := {202} tii[15,113] := {34, 116, 169, 407} tii[15,114] := {106, 215, 292, 492} tii[15,115] := {30, 31, 403, 404} tii[15,116] := {311, 312, 427, 544} tii[15,117] := {298, 299} tii[15,118] := {56, 57, 356, 444} tii[15,119] := {156, 157, 345, 459} tii[15,120] := {139, 245, 279, 503} tii[15,121] := {336} tii[15,122] := {71, 342} tii[15,123] := {65, 167, 224, 450} tii[15,124] := {88, 185, 326, 472} tii[15,125] := {118, 409} tii[15,126] := {205, 327, 329, 528} tii[15,127] := {381, 382} tii[15,128] := {424, 425} tii[15,129] := {252, 373, 379, 537} tii[15,130] := {212, 213, 395, 493} tii[15,131] := {59, 130, 272, 440} tii[15,132] := {315, 316, 422, 527} tii[15,133] := {184} tii[15,134] := {372} tii[15,135] := {84, 423} tii[15,136] := {244} tii[15,137] := {3, 287} tii[15,138] := {328} tii[15,139] := {124, 125, 380, 458} tii[15,140] := {18, 355} tii[15,141] := {16, 343} tii[15,142] := {35, 420} tii[15,143] := {188} tii[15,144] := {24, 114, 286, 477} tii[15,145] := {365} tii[15,146] := {175, 176, 318, 489} tii[15,147] := {39, 410} tii[15,148] := {60, 61, 452, 453} tii[15,149] := {405, 406} tii[15,150] := {264} tii[15,151] := {13, 73, 225, 454} tii[15,152] := {67, 159, 354, 516} tii[15,153] := {95, 96, 411, 482} tii[15,154] := {359, 360} tii[15,155] := {108, 109, 397, 494} tii[15,156] := {390} tii[15,157] := {161} tii[15,158] := {92, 218, 306, 523} tii[15,159] := {37, 393} tii[15,160] := {145, 146, 282, 512} tii[15,161] := {33, 115, 283, 488} tii[15,162] := {430, 431} tii[15,163] := {50, 242, 262, 501} tii[15,164] := {223} tii[15,165] := {74, 456} tii[15,166] := {150, 263, 387, 540} tii[15,167] := {466, 467} tii[15,168] := {142, 143, 388, 509} tii[15,169] := {334, 335} tii[15,170] := {154, 155, 441, 517} tii[15,171] := {196, 317, 426, 545} tii[15,172] := {26, 183, 208, 479} tii[15,173] := {428, 429} tii[15,174] := {254, 255, 465, 538} tii[15,175] := {70, 437} tii[15,176] := {64, 166, 340, 511} tii[15,177] := {117, 490} tii[15,178] := {58, 241, 270, 508} tii[15,179] := {210, 211, 480, 533} tii[15,180] := {313, 314, 497, 546} tii[15,181] := {25} tii[15,182] := {9, 46} tii[15,183] := {91} tii[15,184] := {6, 253} tii[15,185] := {32, 83} tii[15,186] := {149} tii[15,187] := {19, 20, 199, 301} tii[15,188] := {5, 42, 153, 238} tii[15,189] := {90} tii[15,190] := {2, 305} tii[15,191] := {12, 128} tii[15,192] := {81, 82, 198, 402} tii[15,193] := {148} tii[15,194] := {10, 11, 350, 351} tii[15,195] := {21, 78, 107, 300} tii[15,196] := {27, 28, 296, 399} tii[15,197] := {236, 237} tii[15,198] := {7, 51, 239, 346} tii[15,199] := {111} tii[15,200] := {101, 102, 222, 487} tii[15,201] := {4, 177} tii[15,202] := {168} tii[15,203] := {97, 98, 332, 478} tii[15,204] := {14, 76, 123, 361} tii[15,205] := {274, 275} tii[15,206] := {29, 89, 214, 398} tii[15,207] := {377, 378} tii[15,208] := {0, 231} tii[15,209] := {1, 41, 174, 414} tii[15,210] := {8, 135, 158, 445} cell#56 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {44} tii[22,2] := {33} tii[22,3] := {42} tii[22,4] := {34, 51} tii[22,5] := {29} tii[22,6] := {36} tii[22,7] := {30, 49} tii[22,8] := {45} tii[22,9] := {35, 53} tii[22,10] := {31, 54} tii[22,11] := {18} tii[22,12] := {22} tii[22,13] := {19, 41} tii[22,14] := {37} tii[22,15] := {21, 48} tii[22,16] := {20, 52} tii[22,17] := {24} tii[22,18] := {14, 40} tii[22,19] := {12, 47} tii[22,20] := {6, 50} tii[22,21] := {9} tii[22,22] := {15} tii[22,23] := {10, 28} tii[22,24] := {23} tii[22,25] := {13, 39} tii[22,26] := {11, 46} tii[22,27] := {16} tii[22,28] := {7, 27} tii[22,29] := {5, 38} tii[22,30] := {3, 43} tii[22,31] := {8} tii[22,32] := {4, 17} tii[22,33] := {2, 25} tii[22,34] := {1, 32} tii[22,35] := {0, 26} cell#57 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {80} tii[14,2] := {114, 115} tii[14,3] := {130, 131} tii[14,4] := {74} tii[14,5] := {50} tii[14,6] := {107, 108} tii[14,7] := {69, 70} tii[14,8] := {128, 129} tii[14,9] := {119, 120} tii[14,10] := {101, 102} tii[14,11] := {140, 141} tii[14,12] := {148, 149} tii[14,13] := {52} tii[14,14] := {30} tii[14,15] := {88, 89} tii[14,16] := {46, 47} tii[14,17] := {112, 113} tii[14,18] := {14} tii[14,19] := {105, 106} tii[14,20] := {83, 84} tii[14,21] := {25, 26} tii[14,22] := {126, 127} tii[14,23] := {40, 41} tii[14,24] := {135, 136} tii[14,25] := {117, 118} tii[14,26] := {99, 100} tii[14,27] := {138, 139} tii[14,28] := {78, 79} tii[14,29] := {146, 147} tii[14,30] := {150, 151} tii[14,31] := {32} tii[14,32] := {15} tii[14,33] := {63, 64} tii[14,34] := {27, 28} tii[14,35] := {94, 95} tii[14,36] := {4} tii[14,37] := {86, 87} tii[14,38] := {59, 60} tii[14,39] := {12, 13} tii[14,40] := {110, 111} tii[14,41] := {23, 24} tii[14,42] := {122, 123} tii[14,43] := {3} tii[14,44] := {103, 104} tii[14,45] := {8, 9} tii[14,46] := {81, 82} tii[14,47] := {124, 125} tii[14,48] := {56, 57} tii[14,49] := {18, 19} tii[14,50] := {133, 134} tii[14,51] := {33, 34} tii[14,52] := {142, 143} tii[14,53] := {85, 116} tii[14,54] := {58, 98} tii[14,55] := {109, 137} tii[14,56] := {37, 77} tii[14,57] := {121, 145} tii[14,58] := {22, 73} tii[14,59] := {132, 152} tii[14,60] := {144, 153} tii[14,61] := {55} tii[14,62] := {75, 76} tii[14,63] := {29} tii[14,64] := {96, 97} tii[14,65] := {44, 45} tii[14,66] := {65, 66} tii[14,67] := {10} tii[14,68] := {92, 93} tii[14,69] := {20, 21} tii[14,70] := {90, 91} tii[14,71] := {35, 36} tii[14,72] := {53, 54} tii[14,73] := {0} tii[14,74] := {71, 72} tii[14,75] := {1, 2} tii[14,76] := {6, 7} tii[14,77] := {67, 68} tii[14,78] := {61, 62} tii[14,79] := {16, 17} tii[14,80] := {5, 31} tii[14,81] := {48, 49} tii[14,82] := {42, 43} tii[14,83] := {38, 39} tii[14,84] := {11, 51} cell#58 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {67} tii[14,2] := {23, 101} tii[14,3] := {43, 118} tii[14,4] := {88} tii[14,5] := {66} tii[14,6] := {17, 115} tii[14,7] := {84, 85} tii[14,8] := {32, 127} tii[14,9] := {34, 125} tii[14,10] := {52, 114} tii[14,11] := {53, 135} tii[14,12] := {72, 141} tii[14,13] := {106} tii[14,14] := {87} tii[14,15] := {6, 126} tii[14,16] := {103, 104} tii[14,17] := {14, 136} tii[14,18] := {75} tii[14,19] := {16, 134} tii[14,20] := {29, 124} tii[14,21] := {92, 93} tii[14,22] := {30, 143} tii[14,23] := {108, 109} tii[14,24] := {49, 147} tii[14,25] := {33, 140} tii[14,26] := {50, 133} tii[14,27] := {51, 149} tii[14,28] := {69, 128} tii[14,29] := {70, 151} tii[14,30] := {89, 153} tii[14,31] := {96} tii[14,32] := {76} tii[14,33] := {1, 122} tii[14,34] := {94, 95} tii[14,35] := {4, 132} tii[14,36] := {62} tii[14,37] := {5, 131} tii[14,38] := {11, 120} tii[14,39] := {81, 82} tii[14,40] := {12, 139} tii[14,41] := {99, 100} tii[14,42] := {25, 144} tii[14,43] := {41} tii[14,44] := {15, 137} tii[14,45] := {60, 61} tii[14,46] := {27, 129} tii[14,47] := {28, 146} tii[14,48] := {46, 123} tii[14,49] := {79, 80} tii[14,50] := {47, 150} tii[14,51] := {59, 98} tii[14,52] := {68, 152} tii[14,53] := {9, 130} tii[14,54] := {20, 119} tii[14,55] := {21, 138} tii[14,56] := {36, 112} tii[14,57] := {37, 145} tii[14,58] := {18, 97} tii[14,59] := {56, 148} tii[14,60] := {35, 142} tii[14,61] := {45} tii[14,62] := {26, 65} tii[14,63] := {44} tii[14,64] := {10, 86} tii[14,65] := {63, 64} tii[14,66] := {42, 83} tii[14,67] := {54} tii[14,68] := {8, 105} tii[14,69] := {73, 74} tii[14,70] := {31, 102} tii[14,71] := {90, 91} tii[14,72] := {71, 107} tii[14,73] := {22} tii[14,74] := {2, 117} tii[14,75] := {39, 40} tii[14,76] := {57, 58} tii[14,77] := {13, 116} tii[14,78] := {48, 121} tii[14,79] := {38, 78} tii[14,80] := {19, 55} tii[14,81] := {0, 111} tii[14,82] := {3, 110} tii[14,83] := {24, 113} tii[14,84] := {7, 77} cell#59 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {91} tii[7,2] := {86} tii[7,3] := {43, 117} tii[7,4] := {60, 130} tii[7,5] := {98} tii[7,6] := {83, 115} tii[7,7] := {73} tii[7,8] := {33, 129} tii[7,9] := {48, 139} tii[7,10] := {25, 121} tii[7,11] := {85} tii[7,12] := {17, 107} tii[7,13] := {70, 101} tii[7,14] := {36, 136} tii[7,15] := {45, 141} tii[7,16] := {97} tii[7,17] := {82, 114} tii[7,18] := {67, 124} tii[7,19] := {59} tii[7,20] := {26, 138} tii[7,21] := {37, 144} tii[7,22] := {71} tii[7,23] := {19, 133} tii[7,24] := {12, 119} tii[7,25] := {55, 87} tii[7,26] := {27, 143} tii[7,27] := {35, 146} tii[7,28] := {14, 122} tii[7,29] := {84} tii[7,30] := {9, 108} tii[7,31] := {22, 137} tii[7,32] := {68, 100} tii[7,33] := {5, 92} tii[7,34] := {53, 111} tii[7,35] := {29, 142} tii[7,36] := {39, 145} tii[7,37] := {96} tii[7,38] := {81, 113} tii[7,39] := {66, 123} tii[7,40] := {62, 131} tii[7,41] := {52} tii[7,42] := {65} tii[7,43] := {64} tii[7,44] := {32, 104} tii[7,45] := {78} tii[7,46] := {47, 118} tii[7,47] := {23, 90} tii[7,48] := {57, 105} tii[7,49] := {56} tii[7,50] := {20, 110} tii[7,51] := {31, 103} tii[7,52] := {74} tii[7,53] := {13, 95} tii[7,54] := {30, 127} tii[7,55] := {72, 102} tii[7,56] := {40, 135} tii[7,57] := {8, 80} tii[7,58] := {51, 125} tii[7,59] := {44} tii[7,60] := {10, 109} tii[7,61] := {24, 116} tii[7,62] := {61} tii[7,63] := {6, 94} tii[7,64] := {15, 126} tii[7,65] := {11, 93} tii[7,66] := {3, 79} tii[7,67] := {21, 134} tii[7,68] := {58, 88} tii[7,69] := {28, 140} tii[7,70] := {54, 112} tii[7,71] := {1, 76} tii[7,72] := {38, 132} tii[7,73] := {34} tii[7,74] := {18, 128} tii[7,75] := {49} tii[7,76] := {7, 106} tii[7,77] := {46, 75} tii[7,78] := {2, 89} tii[7,79] := {42, 99} tii[7,80] := {50, 120} tii[7,81] := {41} tii[7,82] := {16, 77} tii[7,83] := {4, 69} tii[7,84] := {0, 63} cell#60 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {91} tii[7,2] := {86} tii[7,3] := {43, 117} tii[7,4] := {60, 130} tii[7,5] := {98} tii[7,6] := {83, 115} tii[7,7] := {73} tii[7,8] := {33, 129} tii[7,9] := {48, 139} tii[7,10] := {25, 121} tii[7,11] := {85} tii[7,12] := {17, 107} tii[7,13] := {70, 101} tii[7,14] := {36, 136} tii[7,15] := {45, 141} tii[7,16] := {97} tii[7,17] := {82, 114} tii[7,18] := {67, 124} tii[7,19] := {59} tii[7,20] := {26, 138} tii[7,21] := {37, 144} tii[7,22] := {71} tii[7,23] := {19, 133} tii[7,24] := {12, 119} tii[7,25] := {55, 87} tii[7,26] := {27, 143} tii[7,27] := {35, 146} tii[7,28] := {14, 122} tii[7,29] := {84} tii[7,30] := {9, 108} tii[7,31] := {22, 137} tii[7,32] := {68, 100} tii[7,33] := {5, 92} tii[7,34] := {53, 111} tii[7,35] := {29, 142} tii[7,36] := {39, 145} tii[7,37] := {96} tii[7,38] := {81, 113} tii[7,39] := {66, 123} tii[7,40] := {62, 131} tii[7,41] := {52} tii[7,42] := {65} tii[7,43] := {64} tii[7,44] := {32, 104} tii[7,45] := {78} tii[7,46] := {47, 118} tii[7,47] := {23, 90} tii[7,48] := {57, 105} tii[7,49] := {56} tii[7,50] := {20, 110} tii[7,51] := {31, 103} tii[7,52] := {74} tii[7,53] := {13, 95} tii[7,54] := {30, 127} tii[7,55] := {72, 102} tii[7,56] := {40, 135} tii[7,57] := {8, 80} tii[7,58] := {51, 125} tii[7,59] := {44} tii[7,60] := {10, 109} tii[7,61] := {24, 116} tii[7,62] := {61} tii[7,63] := {6, 94} tii[7,64] := {15, 126} tii[7,65] := {11, 93} tii[7,66] := {3, 79} tii[7,67] := {21, 134} tii[7,68] := {58, 88} tii[7,69] := {28, 140} tii[7,70] := {54, 112} tii[7,71] := {1, 76} tii[7,72] := {38, 132} tii[7,73] := {34} tii[7,74] := {18, 128} tii[7,75] := {49} tii[7,76] := {7, 106} tii[7,77] := {46, 75} tii[7,78] := {2, 89} tii[7,79] := {42, 99} tii[7,80] := {50, 120} tii[7,81] := {41} tii[7,82] := {16, 77} tii[7,83] := {4, 69} tii[7,84] := {0, 63} cell#61 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {176} tii[17,2] := {114, 222} tii[17,3] := {200} tii[17,4] := {74, 235} tii[17,5] := {168, 223} tii[17,6] := {182, 232} tii[17,7] := {113, 243} tii[17,8] := {131, 244} tii[17,9] := {83} tii[17,10] := {156} tii[17,11] := {87, 209} tii[17,12] := {115} tii[17,13] := {41, 135} tii[17,14] := {70, 161} tii[17,15] := {165} tii[17,16] := {64, 215} tii[17,17] := {146} tii[17,18] := {14, 166} tii[17,19] := {123, 197} tii[17,20] := {126, 162} tii[17,21] := {29, 191} tii[17,22] := {142, 213} tii[17,23] := {75, 227} tii[17,24] := {97, 234} tii[17,25] := {55, 216} tii[17,26] := {109} tii[17,27] := {137} tii[17,28] := {60, 158} tii[17,29] := {94, 180} tii[17,30] := {134} tii[17,31] := {184} tii[17,32] := {159} tii[17,33] := {111} tii[17,34] := {147, 211} tii[17,35] := {169} tii[17,36] := {10, 186} tii[17,37] := {53, 226} tii[17,38] := {40, 178} tii[17,39] := {140} tii[17,40] := {163, 224} tii[17,41] := {150, 183} tii[17,42] := {23, 205} tii[17,43] := {69, 196} tii[17,44] := {62, 194} tii[17,45] := {124, 203} tii[17,46] := {65, 236} tii[17,47] := {102, 190} tii[17,48] := {92, 210} tii[17,49] := {82, 239} tii[17,50] := {45, 228} tii[17,51] := {143, 219} tii[17,52] := {132, 231} tii[17,53] := {188} tii[17,54] := {21, 202} tii[17,55] := {170, 199} tii[17,56] := {37, 218} tii[17,57] := {89, 240} tii[17,58] := {35, 214} tii[17,59] := {149, 212} tii[17,60] := {108, 242} tii[17,61] := {66, 237} tii[17,62] := {54, 229} tii[17,63] := {96, 238} tii[17,64] := {90, 241} tii[17,65] := {59} tii[17,66] := {88} tii[17,67] := {26, 112} tii[17,68] := {42} tii[17,69] := {48, 141} tii[17,70] := {34, 71} tii[17,71] := {15, 122} tii[17,72] := {99} tii[17,73] := {9, 101} tii[17,74] := {77, 121} tii[17,75] := {30, 153} tii[17,76] := {39, 175} tii[17,77] := {110} tii[17,78] := {61} tii[17,79] := {136} tii[17,80] := {85} tii[17,81] := {25, 157} tii[17,82] := {52, 95} tii[17,83] := {117} tii[17,84] := {47, 179} tii[17,85] := {125} tii[17,86] := {43, 177} tii[17,87] := {7, 145} tii[17,88] := {98, 187} tii[17,89] := {63} tii[17,90] := {33, 116} tii[17,91] := {103, 144} tii[17,92] := {67, 195} tii[17,93] := {120, 206} tii[17,94] := {76, 172} tii[17,95] := {3, 128} tii[17,96] := {16, 173} tii[17,97] := {93} tii[17,98] := {106, 221} tii[17,99] := {24, 193} tii[17,100] := {79, 133} tii[17,101] := {27, 185} tii[17,102] := {8, 151} tii[17,103] := {100, 181} tii[17,104] := {46, 204} tii[17,105] := {81, 225} tii[17,106] := {38, 207} tii[17,107] := {84} tii[17,108] := {73, 119} tii[17,109] := {86} tii[17,110] := {148} tii[17,111] := {4, 167} tii[17,112] := {51, 139} tii[17,113] := {118} tii[17,114] := {129, 164} tii[17,115] := {12, 192} tii[17,116] := {2, 152} tii[17,117] := {17, 208} tii[17,118] := {104, 155} tii[17,119] := {22, 201} tii[17,120] := {127, 198} tii[17,121] := {6, 171} tii[17,122] := {32, 160} tii[17,123] := {36, 217} tii[17,124] := {78, 174} tii[17,125] := {31, 220} tii[17,126] := {72, 233} tii[17,127] := {13, 189} tii[17,128] := {50, 230} tii[17,129] := {28} tii[17,130] := {20, 49} tii[17,131] := {11, 58} tii[17,132] := {44} tii[17,133] := {19, 91} tii[17,134] := {68} tii[17,135] := {5, 80} tii[17,136] := {57, 107} tii[17,137] := {18, 138} tii[17,138] := {1, 105} tii[17,139] := {56, 154} tii[17,140] := {0, 130} cell#62 , |C| = 35 special orbit = [7, 7, 1] special rep = [[3], [4]] , dim = 35 cell rep = phi[[3],[4]] TII depth = 4 TII multiplicity polynomial = 35*X TII subcells: tii[30,1] := {24} tii[30,2] := {31} tii[30,3] := {33} tii[30,4] := {34} tii[30,5] := {10} tii[30,6] := {17} tii[30,7] := {21} tii[30,8] := {15} tii[30,9] := {6} tii[30,10] := {22} tii[30,11] := {9} tii[30,12] := {25} tii[30,13] := {20} tii[30,14] := {16} tii[30,15] := {26} tii[30,16] := {19} tii[30,17] := {12} tii[30,18] := {28} tii[30,19] := {29} tii[30,20] := {30} tii[30,21] := {27} tii[30,22] := {32} tii[30,23] := {1} tii[30,24] := {4} tii[30,25] := {5} tii[30,26] := {8} tii[30,27] := {2} tii[30,28] := {13} tii[30,29] := {11} tii[30,30] := {14} tii[30,31] := {7} tii[30,32] := {3} tii[30,33] := {18} tii[30,34] := {23} tii[30,35] := {0} cell#63 , |C| = 189 special orbit = [7, 5, 1, 1, 1] special rep = [[3], [3, 1]] , dim = 105 cell rep = phi[[3],[3, 1]]+phi[[2],[4, 1]] TII depth = 4 TII multiplicity polynomial = 21*X+84*X^2 TII subcells: tii[28,1] := {84} tii[28,2] := {49, 135} tii[28,3] := {89, 157} tii[28,4] := {113, 165} tii[28,5] := {106} tii[28,6] := {96} tii[28,7] := {27, 150} tii[28,8] := {65, 128} tii[28,9] := {66, 167} tii[28,10] := {83, 147} tii[28,11] := {92, 174} tii[28,12] := {124} tii[28,13] := {48, 162} tii[28,14] := {134} tii[28,15] := {125} tii[28,16] := {20, 156} tii[28,17] := {88, 176} tii[28,18] := {140, 141} tii[28,19] := {34, 169} tii[28,20] := {112, 180} tii[28,21] := {70, 171} tii[28,22] := {61, 175} tii[28,23] := {108, 181} tii[28,24] := {77, 182} tii[28,25] := {76, 172} tii[28,26] := {130, 184} tii[28,27] := {126, 185} tii[28,28] := {116, 186} tii[28,29] := {148, 187} tii[28,30] := {154, 188} tii[28,31] := {39} tii[28,32] := {7, 74} tii[28,33] := {18, 94} tii[28,34] := {62} tii[28,35] := {71} tii[28,36] := {41} tii[28,37] := {13, 98} tii[28,38] := {42, 109} tii[28,39] := {23, 58} tii[28,40] := {26, 114} tii[28,41] := {60, 131} tii[28,42] := {95} tii[28,43] := {29, 117} tii[28,44] := {85} tii[28,45] := {22, 127} tii[28,46] := {101, 102} tii[28,47] := {47, 132} tii[28,48] := {15, 100} tii[28,49] := {37, 146} tii[28,50] := {40, 142} tii[28,51] := {68, 145} tii[28,52] := {56, 136} tii[28,53] := {57, 160} tii[28,54] := {75, 164} tii[28,55] := {86} tii[28,56] := {64} tii[28,57] := {3, 119} tii[28,58] := {43, 81} tii[28,59] := {11, 133} tii[28,60] := {115} tii[28,61] := {107} tii[28,62] := {72} tii[28,63] := {12, 137} tii[28,64] := {6, 143} tii[28,65] := {122, 123} tii[28,66] := {52, 93} tii[28,67] := {25, 149} tii[28,68] := {4, 121} tii[28,69] := {17, 159} tii[28,70] := {87} tii[28,71] := {19, 155} tii[28,72] := {44, 111} tii[28,73] := {45, 158} tii[28,74] := {31, 151} tii[28,75] := {104, 105} tii[28,76] := {32, 170} tii[28,77] := {82, 120} tii[28,78] := {51, 173} tii[28,79] := {28, 152} tii[28,80] := {46, 161} tii[28,81] := {14, 139} tii[28,82] := {38, 166} tii[28,83] := {8, 144} tii[28,84] := {67, 168} tii[28,85] := {54, 178} tii[28,86] := {53, 163} tii[28,87] := {73, 179} tii[28,88] := {33, 153} tii[28,89] := {90, 177} tii[28,90] := {97, 183} tii[28,91] := {21} tii[28,92] := {9, 35} tii[28,93] := {2, 55} tii[28,94] := {50} tii[28,95] := {30, 69} tii[28,96] := {63} tii[28,97] := {5, 78} tii[28,98] := {24, 91} tii[28,99] := {79, 80} tii[28,100] := {59, 99} tii[28,101] := {10, 110} tii[28,102] := {36, 118} tii[28,103] := {0, 103} tii[28,104] := {1, 129} tii[28,105] := {16, 138} cell#64 , |C| = 315 special orbit = [5, 5, 3, 1, 1] special rep = [[2, 1], [3, 1]] , dim = 210 cell rep = phi[[2, 1],[3, 1]]+phi[[2],[3, 2]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[20,1] := {292} tii[20,2] := {303} tii[20,3] := {48, 257} tii[20,4] := {273} tii[20,5] := {176} tii[20,6] := {285} tii[20,7] := {110, 301} tii[20,8] := {162, 311} tii[20,9] := {123, 187} tii[20,10] := {293} tii[20,11] := {247} tii[20,12] := {302} tii[20,13] := {127, 192} tii[20,14] := {193, 261} tii[20,15] := {181, 240} tii[20,16] := {241, 290} tii[20,17] := {300} tii[20,18] := {310} tii[20,19] := {284} tii[20,20] := {258, 294} tii[20,21] := {264, 297} tii[20,22] := {289, 307} tii[20,23] := {312} tii[20,24] := {306, 314} tii[20,25] := {84} tii[20,26] := {216} tii[20,27] := {152} tii[20,28] := {205} tii[20,29] := {24, 227} tii[20,30] := {125} tii[20,31] := {134} tii[20,32] := {132} tii[20,33] := {248} tii[20,34] := {73, 283} tii[20,35] := {7, 171} tii[20,36] := {194} tii[20,37] := {183} tii[20,38] := {116, 305} tii[20,39] := {16, 221} tii[20,40] := {242} tii[20,41] := {169} tii[20,42] := {47, 188} tii[20,43] := {275} tii[20,44] := {214} tii[20,45] := {37, 147} tii[20,46] := {177} tii[20,47] := {50, 107} tii[20,48] := {108, 262} tii[20,49] := {232} tii[20,50] := {250} tii[20,51] := {59, 122} tii[20,52] := {60, 201} tii[20,53] := {99, 159} tii[20,54] := {269} tii[20,55] := {160, 291} tii[20,56] := {260} tii[20,57] := {195} tii[20,58] := {148, 277} tii[20,59] := {157, 225} tii[20,60] := {126, 254} tii[20,61] := {288} tii[20,62] := {206, 296} tii[20,63] := {226, 309} tii[20,64] := {83} tii[20,65] := {19, 212} tii[20,66] := {215} tii[20,67] := {90} tii[20,68] := {151} tii[20,69] := {36, 251} tii[20,70] := {140} tii[20,71] := {204} tii[20,72] := {124} tii[20,73] := {82, 145} tii[20,74] := {28, 228} tii[20,75] := {246} tii[20,76] := {86, 149} tii[20,77] := {172} tii[20,78] := {217} tii[20,79] := {53} tii[20,80] := {68, 105} tii[20,81] := {150, 233} tii[20,82] := {191} tii[20,83] := {11, 210} tii[20,84] := {139, 202} tii[20,85] := {218} tii[20,86] := {46, 267} tii[20,87] := {100} tii[20,88] := {81, 95} tii[20,89] := {96, 158} tii[20,90] := {239} tii[20,91] := {203, 270} tii[20,92] := {52, 109} tii[20,93] := {88} tii[20,94] := {229} tii[20,95] := {190, 252} tii[20,96] := {234} tii[20,97] := {77, 286} tii[20,98] := {40, 76} tii[20,99] := {101, 161} tii[20,100] := {170, 222} tii[20,101] := {138} tii[20,102] := {266} tii[20,103] := {199, 255} tii[20,104] := {243, 279} tii[20,105] := {120, 208} tii[20,106] := {256, 299} tii[20,107] := {168} tii[20,108] := {102, 146} tii[20,109] := {274} tii[20,110] := {213} tii[20,111] := {231} tii[20,112] := {121, 135} tii[20,113] := {136, 200} tii[20,114] := {249} tii[20,115] := {268} tii[20,116] := {263} tii[20,117] := {173} tii[20,118] := {259} tii[20,119] := {230, 276} tii[20,120] := {103, 153} tii[20,121] := {154, 235} tii[20,122] := {237, 280} tii[20,123] := {287} tii[20,124] := {219} tii[20,125] := {211, 253} tii[20,126] := {271, 295} tii[20,127] := {207, 272} tii[20,128] := {281, 308} tii[20,129] := {282} tii[20,130] := {245, 278} tii[20,131] := {304} tii[20,132] := {298, 313} tii[20,133] := {41} tii[20,134] := {67} tii[20,135] := {55} tii[20,136] := {1, 128} tii[20,137] := {91} tii[20,138] := {30} tii[20,139] := {141} tii[20,140] := {5, 182} tii[20,141] := {78} tii[20,142] := {131} tii[20,143] := {6, 89} tii[20,144] := {114} tii[20,145] := {14, 142} tii[20,146] := {13, 70} tii[20,147] := {180} tii[20,148] := {29, 166} tii[20,149] := {10, 189} tii[20,150] := {92} tii[20,151] := {26} tii[20,152] := {3, 167} tii[20,153] := {23, 238} tii[20,154] := {58} tii[20,155] := {118} tii[20,156] := {65} tii[20,157] := {25, 72} tii[20,158] := {174} tii[20,159] := {17, 106} tii[20,160] := {51} tii[20,161] := {97} tii[20,162] := {44, 265} tii[20,163] := {2, 143} tii[20,164] := {156} tii[20,165] := {66, 115} tii[20,166] := {98} tii[20,167] := {33, 85} tii[20,168] := {34, 163} tii[20,169] := {220} tii[20,170] := {18, 43} tii[20,171] := {15, 54} tii[20,172] := {80, 165} tii[20,173] := {57, 186} tii[20,174] := {87} tii[20,175] := {75, 236} tii[20,176] := {197} tii[20,177] := {137} tii[20,178] := {38, 74} tii[20,179] := {93, 224} tii[20,180] := {119, 209} tii[20,181] := {56} tii[20,182] := {31} tii[20,183] := {79} tii[20,184] := {130} tii[20,185] := {39, 71} tii[20,186] := {9, 184} tii[20,187] := {61} tii[20,188] := {113} tii[20,189] := {179} tii[20,190] := {49, 63} tii[20,191] := {64, 117} tii[20,192] := {27, 35} tii[20,193] := {94, 144} tii[20,194] := {129} tii[20,195] := {69, 111} tii[20,196] := {32} tii[20,197] := {112, 198} tii[20,198] := {155} tii[20,199] := {178} tii[20,200] := {20, 45} tii[20,201] := {133, 185} tii[20,202] := {164, 244} tii[20,203] := {196} tii[20,204] := {175, 223} tii[20,205] := {21} tii[20,206] := {0, 104} tii[20,207] := {62} tii[20,208] := {4, 42} tii[20,209] := {12} tii[20,210] := {8, 22} cell#65 , |C| = 175 special orbit = [7, 3, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1]] , dim = 105 cell rep = phi[[3],[2, 1, 1]]+phi[[1],[4, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+70*X^2 TII subcells: tii[25,1] := {165} tii[25,2] := {162} tii[25,3] := {140, 172} tii[25,4] := {152, 174} tii[25,5] := {154} tii[25,6] := {147} tii[25,7] := {138} tii[25,8] := {119} tii[25,9] := {120, 166} tii[25,10] := {100, 135} tii[25,11] := {136, 173} tii[25,12] := {129} tii[25,13] := {109} tii[25,14] := {99, 157} tii[25,15] := {87, 127} tii[25,16] := {116, 169} tii[25,17] := {73, 148} tii[25,18] := {54, 133} tii[25,19] := {94, 163} tii[25,20] := {79, 171} tii[25,21] := {137} tii[25,22] := {128} tii[25,23] := {117} tii[25,24] := {96} tii[25,25] := {97, 156} tii[25,26] := {74, 112} tii[25,27] := {113, 168} tii[25,28] := {95} tii[25,29] := {106} tii[25,30] := {84} tii[25,31] := {70} tii[25,32] := {71, 141} tii[25,33] := {61, 104} tii[25,34] := {51, 90} tii[25,35] := {91, 159} tii[25,36] := {49} tii[25,37] := {50, 130} tii[25,38] := {33, 111} tii[25,39] := {32, 67} tii[25,40] := {68, 150} tii[25,41] := {16, 55} tii[25,42] := {56, 164} tii[25,43] := {83} tii[25,44] := {59} tii[25,45] := {48, 123} tii[25,46] := {41, 80} tii[25,47] := {65, 144} tii[25,48] := {40} tii[25,49] := {29, 107} tii[25,50] := {15, 88} tii[25,51] := {21, 57} tii[25,52] := {46, 134} tii[25,53] := {11, 44} tii[25,54] := {37, 153} tii[25,55] := {13, 124} tii[25,56] := {7, 103} tii[25,57] := {26, 145} tii[25,58] := {4, 81} tii[25,59] := {19, 161} tii[25,60] := {27, 170} tii[25,61] := {155} tii[25,62] := {139} tii[25,63] := {121, 151} tii[25,64] := {118} tii[25,65] := {149} tii[25,66] := {98} tii[25,67] := {132, 160} tii[25,68] := {76, 115} tii[25,69] := {72} tii[25,70] := {122, 167} tii[25,71] := {53, 93} tii[25,72] := {34, 78} tii[25,73] := {69} tii[25,74] := {131} tii[25,75] := {47} tii[25,76] := {30, 64} tii[25,77] := {110, 146} tii[25,78] := {28} tii[25,79] := {85} tii[25,80] := {101, 158} tii[25,81] := {14, 45} tii[25,82] := {62, 105} tii[25,83] := {8, 36} tii[25,84] := {43, 92} tii[25,85] := {12} tii[25,86] := {77, 143} tii[25,87] := {6, 24} tii[25,88] := {35, 114} tii[25,89] := {3, 18} tii[25,90] := {0, 25} tii[25,91] := {108} tii[25,92] := {86, 126} tii[25,93] := {60} tii[25,94] := {75, 142} tii[25,95] := {42, 82} tii[25,96] := {22, 66} tii[25,97] := {20} tii[25,98] := {52, 125} tii[25,99] := {10, 38} tii[25,100] := {17, 89} tii[25,101] := {5, 23} tii[25,102] := {2, 39} tii[25,103] := {31, 102} tii[25,104] := {9, 63} tii[25,105] := {1, 58} cell#66 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {195} tii[17,2] := {160, 206} tii[17,3] := {231} tii[17,4] := {105, 218} tii[17,5] := {223, 242} tii[17,6] := {238, 244} tii[17,7] := {158, 240} tii[17,8] := {188, 243} tii[17,9] := {42} tii[17,10] := {171} tii[17,11] := {133, 184} tii[17,12] := {119} tii[17,13] := {44, 77} tii[17,14] := {72, 112} tii[17,15] := {196} tii[17,16] := {106, 175} tii[17,17] := {173} tii[17,18] := {35, 91} tii[17,19] := {182, 225} tii[17,20] := {150, 190} tii[17,21] := {60, 125} tii[17,22] := {211, 235} tii[17,23] := {132, 199} tii[17,24] := {166, 215} tii[17,25] := {109, 178} tii[17,26] := {65} tii[17,27] := {148} tii[17,28] := {67, 103} tii[17,29] := {97, 138} tii[17,30] := {88} tii[17,31] := {216} tii[17,32] := {174} tii[17,33] := {116} tii[17,34] := {205, 236} tii[17,35] := {197} tii[17,36] := {19, 118} tii[17,37] := {78, 198} tii[17,38] := {76, 130} tii[17,39] := {152} tii[17,40] := {227, 241} tii[17,41] := {177, 213} tii[17,42] := {38, 154} tii[17,43] := {111, 164} tii[17,44] := {101, 157} tii[17,45] := {183, 224} tii[17,46] := {104, 219} tii[17,47] := {162, 209} tii[17,48] := {136, 187} tii[17,49] := {139, 230} tii[17,50] := {81, 201} tii[17,51] := {212, 234} tii[17,52] := {192, 221} tii[17,53] := {217} tii[17,54] := {34, 146} tii[17,55] := {200, 228} tii[17,56] := {59, 180} tii[17,57] := {131, 232} tii[17,58] := {52, 172} tii[17,59] := {208, 237} tii[17,60] := {165, 239} tii[17,61] := {108, 220} tii[17,62] := {82, 202} tii[17,63] := {141, 229} tii[17,64] := {134, 233} tii[17,65] := {25} tii[17,66] := {93} tii[17,67] := {26, 55} tii[17,68] := {15} tii[17,69] := {49, 85} tii[17,70] := {7, 24} tii[17,71] := {14, 45} tii[17,72] := {120} tii[17,73] := {8, 30} tii[17,74] := {95, 144} tii[17,75] := {31, 73} tii[17,76] := {51, 100} tii[17,77] := {64} tii[17,78] := {27} tii[17,79] := {147} tii[17,80] := {89} tii[17,81] := {54, 102} tii[17,82] := {16, 40} tii[17,83] := {123} tii[17,84] := {84, 137} tii[17,85] := {149} tii[17,86] := {75, 129} tii[17,87] := {20, 68} tii[17,88] := {159, 207} tii[17,89] := {66} tii[17,90] := {29, 57} tii[17,91] := {122, 170} tii[17,92] := {110, 163} tii[17,93] := {189, 222} tii[17,94] := {135, 186} tii[17,95] := {12, 48} tii[17,96] := {39, 98} tii[17,97] := {96} tii[17,98] := {168, 204} tii[17,99] := {63, 128} tii[17,100] := {99, 143} tii[17,101] := {53, 117} tii[17,102] := {22, 69} tii[17,103] := {161, 210} tii[17,104] := {83, 153} tii[17,105] := {142, 193} tii[17,106] := {87, 155} tii[17,107] := {46} tii[17,108] := {28, 61} tii[17,109] := {90} tii[17,110] := {176} tii[17,111] := {10, 92} tii[17,112] := {47, 80} tii[17,113] := {124} tii[17,114] := {151, 194} tii[17,115] := {23, 126} tii[17,116] := {4, 70} tii[17,117] := {41, 156} tii[17,118] := {127, 169} tii[17,119] := {33, 145} tii[17,120] := {185, 226} tii[17,121] := {11, 94} tii[17,122] := {56, 107} tii[17,123] := {58, 179} tii[17,124] := {140, 191} tii[17,125] := {62, 181} tii[17,126] := {114, 214} tii[17,127] := {21, 121} tii[17,128] := {86, 203} tii[17,129] := {6} tii[17,130] := {2, 13} tii[17,131] := {0, 9} tii[17,132] := {43} tii[17,133] := {17, 37} tii[17,134] := {71} tii[17,135] := {3, 18} tii[17,136] := {74, 115} tii[17,137] := {36, 79} tii[17,138] := {5, 32} tii[17,139] := {113, 167} tii[17,140] := {1, 50} cell#67 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {105} tii[19,2] := {122} tii[19,3] := {125} tii[19,4] := {93} tii[19,5] := {72} tii[19,6] := {115} tii[19,7] := {89} tii[19,8] := {123} tii[19,9] := {80} tii[19,10] := {65} tii[19,11] := {107} tii[19,12] := {86} tii[19,13] := {55} tii[19,14] := {118} tii[19,15] := {112} tii[19,16] := {103} tii[19,17] := {120} tii[19,18] := {124} tii[19,19] := {79} tii[19,20] := {56} tii[19,21] := {106} tii[19,22] := {73} tii[19,23] := {117} tii[19,24] := {63} tii[19,25] := {48} tii[19,26] := {40} tii[19,27] := {95} tii[19,28] := {68} tii[19,29] := {38} tii[19,30] := {58} tii[19,31] := {110} tii[19,32] := {27} tii[19,33] := {102} tii[19,34] := {18} tii[19,35] := {91} tii[19,36] := {43} tii[19,37] := {113} tii[19,38] := {53} tii[19,39] := {121} tii[19,40] := {47} tii[19,41] := {33} tii[19,42] := {82} tii[19,43] := {50} tii[19,44] := {24} tii[19,45] := {99} tii[19,46] := {20} tii[19,47] := {90} tii[19,48] := {76} tii[19,49] := {35} tii[19,50] := {12} tii[19,51] := {104} tii[19,52] := {46} tii[19,53] := {8} tii[19,54] := {114} tii[19,55] := {83} tii[19,56] := {67} tii[19,57] := {100} tii[19,58] := {52} tii[19,59] := {111} tii[19,60] := {119} tii[19,61] := {88} tii[19,62] := {101} tii[19,63] := {94} tii[19,64] := {57} tii[19,65] := {87} tii[19,66] := {109} tii[19,67] := {74} tii[19,68] := {41} tii[19,69] := {116} tii[19,70] := {31} tii[19,71] := {59} tii[19,72] := {70} tii[19,73] := {81} tii[19,74] := {26} tii[19,75] := {42} tii[19,76] := {71} tii[19,77] := {98} tii[19,78] := {13} tii[19,79] := {49} tii[19,80] := {60} tii[19,81] := {9} tii[19,82] := {108} tii[19,83] := {29} tii[19,84] := {69} tii[19,85] := {39} tii[19,86] := {37} tii[19,87] := {28} tii[19,88] := {78} tii[19,89] := {7} tii[19,90] := {97} tii[19,91] := {4} tii[19,92] := {15} tii[19,93] := {2} tii[19,94] := {23} tii[19,95] := {92} tii[19,96] := {16} tii[19,97] := {64} tii[19,98] := {85} tii[19,99] := {54} tii[19,100] := {34} tii[19,101] := {44} tii[19,102] := {96} tii[19,103] := {51} tii[19,104] := {25} tii[19,105] := {14} tii[19,106] := {62} tii[19,107] := {11} tii[19,108] := {30} tii[19,109] := {84} tii[19,110] := {21} tii[19,111] := {6} tii[19,112] := {10} tii[19,113] := {77} tii[19,114] := {32} tii[19,115] := {3} tii[19,116] := {1} tii[19,117] := {22} tii[19,118] := {66} tii[19,119] := {61} tii[19,120] := {36} tii[19,121] := {75} tii[19,122] := {45} tii[19,123] := {19} tii[19,124] := {17} tii[19,125] := {5} tii[19,126] := {0} cell#68 , |C| = 315 special orbit = [5, 3, 3, 2, 2] special rep = [[2, 1, 1], [2, 1]] , dim = 210 cell rep = phi[[2, 2, 1],[1, 1]]+phi[[2, 1, 1],[2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X+105*X^2 TII subcells: tii[16,1] := {312, 313} tii[16,2] := {314} tii[16,3] := {290, 291} tii[16,4] := {241, 242} tii[16,5] := {301} tii[16,6] := {303} tii[16,7] := {82, 83} tii[16,8] := {108} tii[16,9] := {152, 153} tii[16,10] := {306, 307} tii[16,11] := {118, 119} tii[16,12] := {126, 127} tii[16,13] := {310} tii[16,14] := {274, 275} tii[16,15] := {144} tii[16,16] := {224} tii[16,17] := {265} tii[16,18] := {292, 293} tii[16,19] := {156, 157} tii[16,20] := {166, 167} tii[16,21] := {302} tii[16,22] := {186} tii[16,23] := {272, 273} tii[16,24] := {200, 201} tii[16,25] := {223} tii[16,26] := {249, 250} tii[16,27] := {264} tii[16,28] := {283} tii[16,29] := {221} tii[16,30] := {262} tii[16,31] := {84, 85} tii[16,32] := {194, 195} tii[16,33] := {107} tii[16,34] := {92, 93} tii[16,35] := {296, 297} tii[16,36] := {257} tii[16,37] := {289} tii[16,38] := {233, 234} tii[16,39] := {266, 267} tii[16,40] := {116, 117} tii[16,41] := {308, 309} tii[16,42] := {204, 205} tii[16,43] := {62, 63} tii[16,44] := {268, 269} tii[16,45] := {143} tii[16,46] := {239, 240} tii[16,47] := {158, 159} tii[16,48] := {182} tii[16,49] := {282} tii[16,50] := {281} tii[16,51] := {298, 299} tii[16,52] := {211, 212} tii[16,53] := {228} tii[16,54] := {305} tii[16,55] := {88, 89} tii[16,56] := {300} tii[16,57] := {168, 169} tii[16,58] := {258} tii[16,59] := {181} tii[16,60] := {133, 134} tii[16,61] := {311} tii[16,62] := {227} tii[16,63] := {154, 155} tii[16,64] := {185} tii[16,65] := {270, 271} tii[16,66] := {198, 199} tii[16,67] := {222} tii[16,68] := {263} tii[16,69] := {247, 248} tii[16,70] := {160, 161} tii[16,71] := {254} tii[16,72] := {284} tii[16,73] := {220} tii[16,74] := {286} tii[16,75] := {261} tii[16,76] := {213, 214} tii[16,77] := {253} tii[16,78] := {285} tii[16,79] := {3, 4} tii[16,80] := {47, 48} tii[16,81] := {24} tii[16,82] := {46} tii[16,83] := {5, 6} tii[16,84] := {114, 115} tii[16,85] := {58, 59} tii[16,86] := {18, 19} tii[16,87] := {243, 244} tii[16,88] := {94, 95} tii[16,89] := {29} tii[16,90] := {183} tii[16,91] := {103, 104} tii[16,92] := {40, 41} tii[16,93] := {52} tii[16,94] := {229} tii[16,95] := {130} tii[16,96] := {50} tii[16,97] := {208, 209} tii[16,98] := {142} tii[16,99] := {124, 125} tii[16,100] := {78} tii[16,101] := {175, 176} tii[16,102] := {191} tii[16,103] := {109} tii[16,104] := {151} tii[16,105] := {196, 197} tii[16,106] := {16, 17} tii[16,107] := {139, 140} tii[16,108] := {294, 295} tii[16,109] := {90, 91} tii[16,110] := {38, 39} tii[16,111] := {235, 236} tii[16,112] := {32, 33} tii[16,113] := {256} tii[16,114] := {51} tii[16,115] := {170} tii[16,116] := {276, 277} tii[16,117] := {64, 65} tii[16,118] := {288} tii[16,119] := {79} tii[16,120] := {245, 246} tii[16,121] := {164, 165} tii[16,122] := {54, 55} tii[16,123] := {280} tii[16,124] := {76} tii[16,125] := {184} tii[16,126] := {56, 57} tii[16,127] := {128, 129} tii[16,128] := {202, 203} tii[16,129] := {187} tii[16,130] := {217, 218} tii[16,131] := {304} tii[16,132] := {112} tii[16,133] := {97, 98} tii[16,134] := {99, 100} tii[16,135] := {147} tii[16,136] := {230} tii[16,137] := {251, 252} tii[16,138] := {177, 178} tii[16,139] := {193} tii[16,140] := {86, 87} tii[16,141] := {255} tii[16,142] := {106} tii[16,143] := {189} tii[16,144] := {287} tii[16,145] := {149} tii[16,146] := {131, 132} tii[16,147] := {232} tii[16,148] := {7, 8} tii[16,149] := {60, 61} tii[16,150] := {179, 180} tii[16,151] := {20, 21} tii[16,152] := {30} tii[16,153] := {42, 43} tii[16,154] := {210} tii[16,155] := {53} tii[16,156] := {49} tii[16,157] := {237, 238} tii[16,158] := {34, 35} tii[16,159] := {122, 123} tii[16,160] := {206, 207} tii[16,161] := {141} tii[16,162] := {225} tii[16,163] := {77} tii[16,164] := {173, 174} tii[16,165] := {278, 279} tii[16,166] := {66, 67} tii[16,167] := {190} tii[16,168] := {110} tii[16,169] := {150} tii[16,170] := {135, 136} tii[16,171] := {120, 121} tii[16,172] := {22, 23} tii[16,173] := {219} tii[16,174] := {75} tii[16,175] := {146} tii[16,176] := {259} tii[16,177] := {171, 172} tii[16,178] := {44, 45} tii[16,179] := {260} tii[16,180] := {111} tii[16,181] := {101, 102} tii[16,182] := {192} tii[16,183] := {105} tii[16,184] := {148} tii[16,185] := {188} tii[16,186] := {231} tii[16,187] := {0, 1} tii[16,188] := {2} tii[16,189] := {12, 13} tii[16,190] := {73, 74} tii[16,191] := {11} tii[16,192] := {27, 28} tii[16,193] := {96} tii[16,194] := {70} tii[16,195] := {36, 37} tii[16,196] := {162, 163} tii[16,197] := {14} tii[16,198] := {145} tii[16,199] := {68, 69} tii[16,200] := {215, 216} tii[16,201] := {137, 138} tii[16,202] := {80} tii[16,203] := {9, 10} tii[16,204] := {226} tii[16,205] := {31} tii[16,206] := {25, 26} tii[16,207] := {113} tii[16,208] := {71, 72} tii[16,209] := {15} tii[16,210] := {81} cell#69 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {484} tii[15,2] := {508, 509} tii[15,3] := {119, 535} tii[15,4] := {432} tii[15,5] := {306} tii[15,6] := {461, 462} tii[15,7] := {204, 205, 524, 550} tii[15,8] := {283, 284, 545, 552} tii[15,9] := {458} tii[15,10] := {402, 510} tii[15,11] := {399} tii[15,12] := {203, 326, 442, 525} tii[15,13] := {338, 449} tii[15,14] := {282, 416, 495, 542} tii[15,15] := {464, 526} tii[15,16] := {409, 494, 501, 541} tii[15,17] := {76, 520} tii[15,18] := {368} tii[15,19] := {400, 401} tii[15,20] := {240} tii[15,21] := {143, 144, 506, 548} tii[15,22] := {218, 219, 539, 551} tii[15,23] := {47, 485} tii[15,24] := {393} tii[15,25] := {181} tii[15,26] := {34, 434} tii[15,27] := {335, 463} tii[15,28] := {334} tii[15,29] := {142, 258, 382, 490} tii[15,30] := {97, 98, 459, 537} tii[15,31] := {51, 52, 375, 477} tii[15,32] := {272, 387} tii[15,33] := {217, 348, 447, 523} tii[15,34] := {157, 158, 515, 547} tii[15,35] := {207} tii[15,36] := {64, 141, 398, 521} tii[15,37] := {404, 491} tii[15,38] := {43, 121, 340, 488} tii[15,39] := {155, 256} tii[15,40] := {342, 446, 455, 522} tii[15,41] := {111, 223, 476, 540} tii[15,42] := {167, 257, 517, 518} tii[15,43] := {369} tii[15,44] := {269, 436} tii[15,45] := {304} tii[15,46] := {96, 237, 332, 466} tii[15,47] := {244, 356} tii[15,48] := {156, 313, 419, 504} tii[15,49] := {242} tii[15,50] := {63, 179, 267, 437} tii[15,51] := {337, 467} tii[15,52] := {42, 139, 212, 376} tii[15,53] := {278, 392, 412, 503} tii[15,54] := {185, 296} tii[15,55] := {110, 248, 353, 482} tii[15,56] := {134, 251} tii[15,57] := {166, 297, 424, 425} tii[15,58] := {405, 406} tii[15,59] := {343, 344, 456, 457} tii[15,60] := {290, 291, 428, 429} tii[15,61] := {173} tii[15,62] := {372} tii[15,63] := {265, 266} tii[15,64] := {351, 352} tii[15,65] := {235} tii[15,66] := {77, 505} tii[15,67] := {435} tii[15,68] := {302} tii[15,69] := {241} tii[15,70] := {330, 331} tii[15,71] := {145, 146, 489, 543} tii[15,72] := {58, 460} tii[15,73] := {378} tii[15,74] := {417, 418} tii[15,75] := {220, 221, 528, 549} tii[15,76] := {85, 86, 407, 497} tii[15,77] := {395, 396} tii[15,78] := {100, 200, 443, 536} tii[15,79] := {271} tii[15,80] := {473, 474} tii[15,81] := {69, 176, 385, 513} tii[15,82] := {215, 324} tii[15,83] := {160, 287, 496, 546} tii[15,84] := {228, 325, 530, 531} tii[15,85] := {26, 433} tii[15,86] := {174} tii[15,87] := {92, 507} tii[15,88] := {371} tii[15,89] := {127} tii[15,90] := {18, 370} tii[15,91] := {238} tii[15,92] := {61, 62, 397, 512} tii[15,93] := {263, 264} tii[15,94] := {129, 130, 468, 529} tii[15,95] := {28, 29, 308, 421} tii[15,96] := {311} tii[15,97] := {108, 109, 475, 534} tii[15,98] := {349, 350} tii[15,99] := {38, 95, 333, 487} tii[15,100] := {336} tii[15,101] := {178} tii[15,102] := {328, 329} tii[15,103] := {147, 262, 383, 511} tii[15,104] := {148} tii[15,105] := {9, 307} tii[15,106] := {149, 150, 492, 544} tii[15,107] := {277, 390} tii[15,108] := {22, 78, 276, 440} tii[15,109] := {414, 415} tii[15,110] := {107, 196} tii[15,111] := {70, 161, 420, 519} tii[15,112] := {247} tii[15,113] := {106, 236, 319, 470} tii[15,114] := {222, 355, 448, 533} tii[15,115] := {15, 16, 245, 363} tii[15,116] := {114, 197, 479, 480} tii[15,117] := {224, 360} tii[15,118] := {8, 27, 190, 316} tii[15,119] := {294, 391, 498, 499} tii[15,120] := {21, 80, 268, 438} tii[15,121] := {128} tii[15,122] := {261, 394} tii[15,123] := {153, 301, 384, 493} tii[15,124] := {11, 59, 213, 377} tii[15,125] := {347, 472} tii[15,126] := {44, 133, 354, 483} tii[15,127] := {87, 171} tii[15,128] := {55, 136} tii[15,129] := {74, 172, 426, 427} tii[15,130] := {359, 450, 453, 532} tii[15,131] := {4, 36, 165, 315} tii[15,132] := {117, 118, 364, 365} tii[15,133] := {120} tii[15,134] := {305} tii[15,135] := {57, 486} tii[15,136] := {177} tii[15,137] := {201, 202} tii[15,138] := {246} tii[15,139] := {83, 84, 439, 516} tii[15,140] := {280, 281} tii[15,141] := {259, 260} tii[15,142] := {19, 373} tii[15,143] := {122} tii[15,144] := {99, 199, 317, 465} tii[15,145] := {270} tii[15,146] := {101, 102, 469, 538} tii[15,147] := {345, 346} tii[15,148] := {30, 31, 309, 430} tii[15,149] := {214, 322} tii[15,150] := {187} tii[15,151] := {68, 175, 254, 410} tii[15,152] := {159, 286, 386, 502} tii[15,153] := {17, 50, 249, 381} tii[15,154] := {162, 293} tii[15,155] := {227, 323, 451, 452} tii[15,156] := {182} tii[15,157] := {79} tii[15,158] := {39, 124, 206, 374} tii[15,159] := {198, 327} tii[15,160] := {66, 67, 408, 514} tii[15,161] := {103, 234, 318, 445} tii[15,162] := {131, 232} tii[15,163] := {23, 93, 154, 310} tii[15,164] := {132} tii[15,165] := {279, 413} tii[15,166] := {71, 189, 285, 431} tii[15,167] := {89, 191} tii[15,168] := {24, 81, 289, 441} tii[15,169] := {112, 229} tii[15,170] := {292, 388, 389, 500} tii[15,171] := {115, 233, 361, 362} tii[15,172] := {13, 60, 113, 250} tii[15,173] := {56, 137} tii[15,174] := {169, 170, 298, 299} tii[15,175] := {140, 303} tii[15,176] := {65, 194, 275, 411} tii[15,177] := {216, 379} tii[15,178] := {25, 94, 163, 314} tii[15,179] := {226, 321, 357, 481} tii[15,180] := {230, 231, 366, 367} tii[15,181] := {138} tii[15,182] := {183, 184} tii[15,183] := {239} tii[15,184] := {35, 403} tii[15,185] := {208, 209} tii[15,186] := {312} tii[15,187] := {53, 54, 341, 454} tii[15,188] := {32, 82, 288, 423} tii[15,189] := {123} tii[15,190] := {3, 243} tii[15,191] := {273, 274} tii[15,192] := {104, 105, 444, 527} tii[15,193] := {188} tii[15,194] := {6, 7, 186, 300} tii[15,195] := {45, 126, 320, 478} tii[15,196] := {2, 14, 135, 252} tii[15,197] := {164, 295} tii[15,198] := {0, 10, 90, 193} tii[15,199] := {48} tii[15,200] := {40, 41, 339, 471} tii[15,201] := {210, 211} tii[15,202] := {88} tii[15,203] := {12, 49, 225, 380} tii[15,204] := {72, 180, 255, 422} tii[15,205] := {73, 168} tii[15,206] := {1, 20, 116, 253} tii[15,207] := {33, 91} tii[15,208] := {151, 152} tii[15,209] := {46, 125, 195, 358} tii[15,210] := {5, 37, 75, 192} cell#70 , |C| = 245 special orbit = [5, 3, 3, 3, 1] special rep = [[2, 1], [2, 2]] , dim = 140 cell rep = phi[[2, 1],[2, 2]]+phi[[1, 1],[3, 2]] TII depth = 4 TII multiplicity polynomial = 35*X+105*X^2 TII subcells: tii[17,1] := {184} tii[17,2] := {201, 202} tii[17,3] := {221} tii[17,4] := {139, 234} tii[17,5] := {209, 237} tii[17,6] := {231, 241} tii[17,7] := {186, 243} tii[17,8] := {208, 244} tii[17,9] := {21} tii[17,10] := {155} tii[17,11] := {173, 174} tii[17,12] := {96} tii[17,13] := {50, 51} tii[17,14] := {86, 87} tii[17,15] := {169} tii[17,16] := {140, 203} tii[17,17] := {138} tii[17,18] := {49, 103} tii[17,19] := {157, 210} tii[17,20] := {111, 162} tii[17,21] := {85, 148} tii[17,22] := {190, 225} tii[17,23] := {175, 211} tii[17,24] := {196, 226} tii[17,25] := {144, 189} tii[17,26] := {38} tii[17,27] := {126} tii[17,28] := {77, 78} tii[17,29] := {118, 119} tii[17,30] := {64} tii[17,31] := {198} tii[17,32] := {156} tii[17,33] := {95} tii[17,34] := {185, 227} tii[17,35] := {172} tii[17,36] := {27, 134} tii[17,37] := {109, 222} tii[17,38] := {107, 108} tii[17,39] := {127} tii[17,40] := {214, 235} tii[17,41] := {143, 192} tii[17,42] := {57, 182} tii[17,43] := {149, 150} tii[17,44] := {136, 137} tii[17,45] := {158, 223} tii[17,46] := {142, 228} tii[17,47] := {130, 205} tii[17,48] := {180, 181} tii[17,49] := {168, 236} tii[17,50] := {113, 213} tii[17,51] := {191, 233} tii[17,52] := {217, 218} tii[17,53] := {200} tii[17,54] := {48, 170} tii[17,55] := {177, 215} tii[17,56] := {84, 207} tii[17,57] := {176, 238} tii[17,58] := {72, 199} tii[17,59] := {187, 229} tii[17,60] := {197, 242} tii[17,61] := {145, 230} tii[17,62] := {114, 224} tii[17,63] := {164, 240} tii[17,64] := {160, 239} tii[17,65] := {10} tii[17,66] := {69} tii[17,67] := {28, 29} tii[17,68] := {6} tii[17,69] := {58, 59} tii[17,70] := {12, 13} tii[17,71] := {16, 47} tii[17,72] := {79} tii[17,73] := {8, 40} tii[17,74] := {56, 101} tii[17,75] := {36, 88} tii[17,76] := {63, 102} tii[17,77] := {39} tii[17,78] := {14} tii[17,79] := {125} tii[17,80] := {66} tii[17,81] := {75, 76} tii[17,82] := {24, 25} tii[17,83] := {97} tii[17,84] := {116, 117} tii[17,85] := {110} tii[17,86] := {104, 105} tii[17,87] := {30, 74} tii[17,88] := {128, 204} tii[17,89] := {41} tii[17,90] := {31, 32} tii[17,91] := {82, 132} tii[17,92] := {146, 147} tii[17,93] := {161, 220} tii[17,94] := {99, 178} tii[17,95] := {20, 65} tii[17,96] := {60, 120} tii[17,97] := {70} tii[17,98] := {194, 195} tii[17,99] := {91, 133} tii[17,100] := {61, 123} tii[17,101] := {73, 135} tii[17,102] := {34, 93} tii[17,103] := {129, 188} tii[17,104] := {115, 179} tii[17,105] := {165, 219} tii[17,106] := {122, 163} tii[17,107] := {26} tii[17,108] := {43, 44} tii[17,109] := {67} tii[17,110] := {141} tii[17,111] := {15, 106} tii[17,112] := {52, 53} tii[17,113] := {98} tii[17,114] := {112, 166} tii[17,115] := {35, 151} tii[17,116] := {7, 94} tii[17,117] := {62, 167} tii[17,118] := {89, 153} tii[17,119] := {46, 171} tii[17,120] := {159, 212} tii[17,121] := {17, 124} tii[17,122] := {80, 81} tii[17,123] := {83, 206} tii[17,124] := {100, 183} tii[17,125] := {90, 193} tii[17,126] := {131, 232} tii[17,127] := {33, 154} tii[17,128] := {121, 216} tii[17,129] := {1} tii[17,130] := {4, 5} tii[17,131] := {0, 11} tii[17,132] := {22} tii[17,133] := {18, 19} tii[17,134] := {45} tii[17,135] := {2, 23} tii[17,136] := {37, 92} tii[17,137] := {54, 55} tii[17,138] := {9, 42} tii[17,139] := {71, 152} tii[17,140] := {3, 68} cell#71 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {114} tii[19,2] := {124} tii[19,3] := {125} tii[19,4] := {99} tii[19,5] := {65} tii[19,6] := {120} tii[19,7] := {79} tii[19,8] := {123} tii[19,9] := {90} tii[19,10] := {74} tii[19,11] := {115} tii[19,12] := {89} tii[19,13] := {58} tii[19,14] := {122} tii[19,15] := {101} tii[19,16] := {86} tii[19,17] := {111} tii[19,18] := {96} tii[19,19] := {80} tii[19,20] := {45} tii[19,21] := {105} tii[19,22] := {59} tii[19,23] := {116} tii[19,24] := {73} tii[19,25] := {56} tii[19,26] := {29} tii[19,27] := {103} tii[19,28] := {69} tii[19,29] := {40} tii[19,30] := {42} tii[19,31] := {113} tii[19,32] := {22} tii[19,33] := {84} tii[19,34] := {11} tii[19,35] := {68} tii[19,36] := {37} tii[19,37] := {98} tii[19,38] := {19} tii[19,39] := {78} tii[19,40] := {81} tii[19,41] := {64} tii[19,42] := {106} tii[19,43] := {76} tii[19,44] := {49} tii[19,45] := {117} tii[19,46] := {46} tii[19,47] := {102} tii[19,48] := {87} tii[19,49] := {60} tii[19,50] := {32} tii[19,51] := {112} tii[19,52] := {52} tii[19,53] := {18} tii[19,54] := {95} tii[19,55] := {107} tii[19,56] := {93} tii[19,57] := {118} tii[19,58] := {77} tii[19,59] := {110} tii[19,60] := {119} tii[19,61] := {83} tii[19,62] := {97} tii[19,63] := {100} tii[19,64] := {47} tii[19,65] := {85} tii[19,66] := {109} tii[19,67] := {62} tii[19,68] := {39} tii[19,69] := {121} tii[19,70] := {24} tii[19,71] := {55} tii[19,72] := {35} tii[19,73] := {82} tii[19,74] := {14} tii[19,75] := {26} tii[19,76] := {66} tii[19,77] := {94} tii[19,78] := {10} tii[19,79] := {57} tii[19,80] := {50} tii[19,81] := {4} tii[19,82] := {108} tii[19,83] := {21} tii[19,84] := {72} tii[19,85] := {41} tii[19,86] := {9} tii[19,87] := {25} tii[19,88] := {53} tii[19,89] := {15} tii[19,90] := {104} tii[19,91] := {7} tii[19,92] := {27} tii[19,93] := {2} tii[19,94] := {20} tii[19,95] := {71} tii[19,96] := {28} tii[19,97] := {63} tii[19,98] := {75} tii[19,99] := {48} tii[19,100] := {38} tii[19,101] := {31} tii[19,102] := {91} tii[19,103] := {54} tii[19,104] := {23} tii[19,105] := {12} tii[19,106] := {34} tii[19,107] := {30} tii[19,108] := {16} tii[19,109] := {88} tii[19,110] := {43} tii[19,111] := {17} tii[19,112] := {5} tii[19,113] := {51} tii[19,114] := {36} tii[19,115] := {8} tii[19,116] := {3} tii[19,117] := {44} tii[19,118] := {92} tii[19,119] := {70} tii[19,120] := {61} tii[19,121] := {67} tii[19,122] := {33} tii[19,123] := {13} tii[19,124] := {6} tii[19,125] := {1} tii[19,126] := {0} cell#72 , |C| = 70 special orbit = [3, 3, 3, 3, 3] special rep = [[1, 1, 1], [2, 2]] , dim = 70 cell rep = phi[[1, 1, 1],[2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X TII subcells: tii[10,1] := {69} tii[10,2] := {26} tii[10,3] := {63} tii[10,4] := {40} tii[10,5] := {52} tii[10,6] := {33} tii[10,7] := {67} tii[10,8] := {43} tii[10,9] := {48} tii[10,10] := {61} tii[10,11] := {64} tii[10,12] := {50} tii[10,13] := {60} tii[10,14] := {56} tii[10,15] := {66} tii[10,16] := {62} tii[10,17] := {68} tii[10,18] := {19} tii[10,19] := {5} tii[10,20] := {11} tii[10,21] := {25} tii[10,22] := {36} tii[10,23] := {21} tii[10,24] := {34} tii[10,25] := {9} tii[10,26] := {16} tii[10,27] := {58} tii[10,28] := {32} tii[10,29] := {42} tii[10,30] := {12} tii[10,31] := {44} tii[10,32] := {51} tii[10,33] := {30} tii[10,34] := {20} tii[10,35] := {37} tii[10,36] := {49} tii[10,37] := {38} tii[10,38] := {59} tii[10,39] := {14} tii[10,40] := {23} tii[10,41] := {17} tii[10,42] := {41} tii[10,43] := {27} tii[10,44] := {53} tii[10,45] := {39} tii[10,46] := {46} tii[10,47] := {57} tii[10,48] := {24} tii[10,49] := {47} tii[10,50] := {65} tii[10,51] := {35} tii[10,52] := {54} tii[10,53] := {55} tii[10,54] := {3} tii[10,55] := {6} tii[10,56] := {1} tii[10,57] := {10} tii[10,58] := {7} tii[10,59] := {2} tii[10,60] := {13} tii[10,61] := {29} tii[10,62] := {15} tii[10,63] := {18} tii[10,64] := {4} tii[10,65] := {28} tii[10,66] := {22} tii[10,67] := {45} tii[10,68] := {8} tii[10,69] := {31} tii[10,70] := {0} cell#73 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {79} tii[9,2] := {99} tii[9,3] := {104} tii[9,4] := {65} tii[9,5] := {53} tii[9,6] := {22} tii[9,7] := {90} tii[9,8] := {35} tii[9,9] := {100} tii[9,10] := {63} tii[9,11] := {57} tii[9,12] := {80} tii[9,13] := {97} tii[9,14] := {103} tii[9,15] := {86} tii[9,16] := {76} tii[9,17] := {98} tii[9,18] := {102} tii[9,19] := {66} tii[9,20] := {32} tii[9,21] := {48} tii[9,22] := {78} tii[9,23] := {93} tii[9,24] := {71} tii[9,25] := {14} tii[9,26] := {40} tii[9,27] := {44} tii[9,28] := {25} tii[9,29] := {60} tii[9,30] := {50} tii[9,31] := {91} tii[9,32] := {9} tii[9,33] := {51} tii[9,34] := {4} tii[9,35] := {67} tii[9,36] := {101} tii[9,37] := {43} tii[9,38] := {68} tii[9,39] := {84} tii[9,40] := {17} tii[9,41] := {94} tii[9,42] := {24} tii[9,43] := {61} tii[9,44] := {95} tii[9,45] := {49} tii[9,46] := {74} tii[9,47] := {85} tii[9,48] := {39} tii[9,49] := {31} tii[9,50] := {47} tii[9,51] := {37} tii[9,52] := {15} tii[9,53] := {77} tii[9,54] := {54} tii[9,55] := {26} tii[9,56] := {7} tii[9,57] := {92} tii[9,58] := {70} tii[9,59] := {34} tii[9,60] := {81} tii[9,61] := {73} tii[9,62] := {27} tii[9,63] := {13} tii[9,64] := {83} tii[9,65] := {62} tii[9,66] := {42} tii[9,67] := {87} tii[9,68] := {96} tii[9,69] := {45} tii[9,70] := {69} tii[9,71] := {52} tii[9,72] := {88} tii[9,73] := {89} tii[9,74] := {64} tii[9,75] := {23} tii[9,76] := {36} tii[9,77] := {12} tii[9,78] := {46} tii[9,79] := {38} tii[9,80] := {5} tii[9,81] := {21} tii[9,82] := {10} tii[9,83] := {2} tii[9,84] := {55} tii[9,85] := {82} tii[9,86] := {59} tii[9,87] := {16} tii[9,88] := {1} tii[9,89] := {19} tii[9,90] := {18} tii[9,91] := {8} tii[9,92] := {30} tii[9,93] := {29} tii[9,94] := {72} tii[9,95] := {3} tii[9,96] := {33} tii[9,97] := {56} tii[9,98] := {75} tii[9,99] := {28} tii[9,100] := {20} tii[9,101] := {6} tii[9,102] := {58} tii[9,103] := {41} tii[9,104] := {11} tii[9,105] := {0} cell#74 , |C| = 140 special orbit = [7, 2, 2, 1, 1, 1, 1] special rep = [[3, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[3, 1],[1, 1, 1]]+phi[[],[4, 2, 1]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[23,1] := {114} tii[23,2] := {109} tii[23,3] := {76} tii[23,4] := {126} tii[23,5] := {86} tii[23,6] := {134} tii[23,7] := {53} tii[23,8] := {127} tii[23,9] := {135, 136} tii[23,10] := {107} tii[23,11] := {34} tii[23,12] := {95} tii[23,13] := {110, 111} tii[23,14] := {52} tii[23,15] := {68, 69} tii[23,16] := {132} tii[23,17] := {62} tii[23,18] := {137} tii[23,19] := {33} tii[23,20] := {133} tii[23,21] := {138, 139} tii[23,22] := {128} tii[23,23] := {84} tii[23,24] := {17} tii[23,25] := {73} tii[23,26] := {122} tii[23,27] := {89, 90} tii[23,28] := {130, 131} tii[23,29] := {108} tii[23,30] := {30} tii[23,31] := {44, 45} tii[23,32] := {120, 121} tii[23,33] := {105, 129} tii[23,34] := {98} tii[23,35] := {7} tii[23,36] := {83} tii[23,37] := {101, 102} tii[23,38] := {61} tii[23,39] := {15} tii[23,40] := {25, 26} tii[23,41] := {78, 79} tii[23,42] := {59, 99} tii[23,43] := {23} tii[23,44] := {36, 37} tii[23,45] := {20, 56} tii[23,46] := {4} tii[23,47] := {96} tii[23,48] := {14} tii[23,49] := {75} tii[23,50] := {31} tii[23,51] := {54} tii[23,52] := {22} tii[23,53] := {123} tii[23,54] := {41} tii[23,55] := {87} tii[23,56] := {115} tii[23,57] := {70} tii[23,58] := {124, 125} tii[23,59] := {32} tii[23,60] := {97} tii[23,61] := {55} tii[23,62] := {112, 113} tii[23,63] := {93, 94} tii[23,64] := {116} tii[23,65] := {10} tii[23,66] := {64} tii[23,67] := {106} tii[23,68] := {24} tii[23,69] := {118, 119} tii[23,70] := {46} tii[23,71] := {85} tii[23,72] := {16} tii[23,73] := {74} tii[23,74] := {103, 104} tii[23,75] := {35} tii[23,76] := {91, 92} tii[23,77] := {82, 117} tii[23,78] := {71, 72} tii[23,79] := {63} tii[23,80] := {6} tii[23,81] := {80, 81} tii[23,82] := {19} tii[23,83] := {60, 100} tii[23,84] := {49, 50} tii[23,85] := {39, 88} tii[23,86] := {3} tii[23,87] := {42} tii[23,88] := {11} tii[23,89] := {27} tii[23,90] := {5} tii[23,91] := {51} tii[23,92] := {18} tii[23,93] := {66, 67} tii[23,94] := {47, 48} tii[23,95] := {40} tii[23,96] := {1} tii[23,97] := {57, 58} tii[23,98] := {8} tii[23,99] := {28, 29} tii[23,100] := {38, 77} tii[23,101] := {21, 65} tii[23,102] := {0} tii[23,103] := {2} tii[23,104] := {12, 13} tii[23,105] := {9, 43} cell#75 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {307} tii[15,2] := {126, 456} tii[15,3] := {391, 392} tii[15,4] := {364} tii[15,5] := {252} tii[15,6] := {92, 491} tii[15,7] := {278, 279, 462, 463} tii[15,8] := {326, 327, 501, 502} tii[15,9] := {412} tii[15,10] := {143, 515} tii[15,11] := {362} tii[15,12] := {184, 185, 479, 480} tii[15,13] := {402, 403} tii[15,14] := {234, 235, 508, 509} tii[15,15] := {199, 532} tii[15,16] := {257, 258, 543, 544} tii[15,17] := {334, 438} tii[15,18] := {306} tii[15,19] := {54, 455} tii[15,20] := {186} tii[15,21] := {213, 339, 418, 496} tii[15,22] := {265, 385, 470, 521} tii[15,23] := {274, 476} tii[15,24] := {363} tii[15,25] := {125} tii[15,26] := {214, 436} tii[15,27] := {91, 490} tii[15,28] := {305} tii[15,29] := {123, 124, 441, 442} tii[15,30] := {152, 312, 371, 518} tii[15,31] := {157, 267, 466, 467} tii[15,32] := {347, 348} tii[15,33] := {167, 168, 482, 483} tii[15,34] := {204, 358, 432, 538} tii[15,35] := {180} tii[15,36] := {99, 338, 365, 533} tii[15,37] := {142, 514} tii[15,38] := {62, 288, 409, 516} tii[15,39] := {227, 228} tii[15,40] := {192, 193, 527, 528} tii[15,41] := {146, 408, 410, 549} tii[15,42] := {112, 446, 453, 551} tii[15,43] := {390} tii[15,44] := {53, 506} tii[15,45] := {333} tii[15,46] := {75, 183, 460, 461} tii[15,47] := {375, 376} tii[15,48] := {108, 231, 499, 500} tii[15,49] := {275} tii[15,50] := {42, 245, 419, 494} tii[15,51] := {90, 525} tii[15,52] := {21, 292, 378, 459} tii[15,53] := {132, 133, 535, 536} tii[15,54] := {322, 323} tii[15,55] := {69, 291, 471, 519} tii[15,56] := {266, 373} tii[15,57] := {50, 343, 503, 534} tii[15,58] := {119, 540} tii[15,59] := {164, 165, 547, 548} tii[15,60] := {109, 220, 539, 552} tii[15,61] := {117} tii[15,62] := {188} tii[15,63] := {39, 248} tii[15,64] := {85, 316} tii[15,65] := {179} tii[15,66] := {335, 336} tii[15,67] := {251} tii[15,68] := {121} tii[15,69] := {187} tii[15,70] := {18, 311} tii[15,71] := {215, 216, 420, 421} tii[15,72] := {281, 282} tii[15,73] := {195} tii[15,74] := {47, 370} tii[15,75] := {269, 270, 472, 473} tii[15,76] := {224, 225, 331, 332} tii[15,77] := {41, 367} tii[15,78] := {153, 154, 396, 397} tii[15,79] := {246} tii[15,80] := {84, 416} tii[15,81] := {103, 104, 351, 352} tii[15,82] := {293, 294} tii[15,83] := {206, 207, 451, 452} tii[15,84] := {172, 173, 488, 489} tii[15,85] := {211, 437} tii[15,86] := {243} tii[15,87] := {340, 341} tii[15,88] := {313} tii[15,89] := {76} tii[15,90] := {151, 389} tii[15,91] := {182} tii[15,92] := {98, 249, 317, 495} tii[15,93] := {11, 368} tii[15,94] := {286, 287, 387, 388} tii[15,95] := {101, 202, 424, 425} tii[15,96] := {259} tii[15,97] := {144, 297, 383, 520} tii[15,98] := {30, 417} tii[15,99] := {59, 277, 309, 517} tii[15,100] := {308} tii[15,101] := {122} tii[15,102] := {27, 414} tii[15,103] := {127, 128, 443, 444} tii[15,104] := {118} tii[15,105] := {100, 337} tii[15,106] := {221, 222, 428, 429} tii[15,107] := {353, 354} tii[15,108] := {32, 226, 356, 493} tii[15,109] := {56, 458} tii[15,110] := {162, 163} tii[15,111] := {94, 355, 357, 537} tii[15,112] := {196} tii[15,113] := {81, 82, 406, 407} tii[15,114] := {175, 176, 484, 485} tii[15,115] := {63, 148, 381, 382} tii[15,116] := {67, 401, 411, 545} tii[15,117] := {303, 304} tii[15,118] := {35, 113, 328, 423} tii[15,119] := {140, 141, 512, 513} tii[15,120] := {31, 247, 318, 505} tii[15,121] := {150} tii[15,122] := {52, 454} tii[15,123] := {130, 131, 447, 448} tii[15,124] := {15, 262, 296, 477} tii[15,125] := {93, 492} tii[15,126] := {57, 295, 384, 529} tii[15,127] := {200, 201} tii[15,128] := {145, 260} tii[15,129] := {36, 345, 435, 541} tii[15,130] := {197, 198, 530, 531} tii[15,131] := {6, 203, 236, 445} tii[15,132] := {58, 314, 475, 550} tii[15,133] := {178} tii[15,134] := {250} tii[15,135] := {280, 398} tii[15,136] := {120} tii[15,137] := {4, 310} tii[15,138] := {194} tii[15,139] := {223, 329, 346, 434} tii[15,140] := {14, 369} tii[15,141] := {13, 366} tii[15,142] := {155, 393} tii[15,143] := {72} tii[15,144] := {77, 78, 394, 395} tii[15,145] := {244} tii[15,146] := {156, 285, 377, 469} tii[15,147] := {29, 415} tii[15,148] := {105, 209, 430, 431} tii[15,149] := {289, 290} tii[15,150] := {134} tii[15,151] := {44, 45, 349, 350} tii[15,152] := {114, 115, 449, 450} tii[15,153] := {66, 174, 386, 465} tii[15,154] := {237, 238} tii[15,155] := {88, 89, 486, 487} tii[15,156] := {212} tii[15,157] := {40} tii[15,158] := {20, 181, 372, 478} tii[15,159] := {26, 413} tii[15,160] := {102, 254, 320, 498} tii[15,161] := {79, 80, 404, 405} tii[15,162] := {263, 264} tii[15,163] := {8, 230, 321, 439} tii[15,164] := {83} tii[15,165] := {55, 457} tii[15,166] := {37, 229, 433, 507} tii[15,167] := {205, 319} tii[15,168] := {34, 233, 359, 497} tii[15,169] := {170, 171} tii[15,170] := {138, 139, 510, 511} tii[15,171] := {24, 284, 474, 526} tii[15,172] := {3, 169, 268, 399} tii[15,173] := {147, 283} tii[15,174] := {38, 253, 504, 542} tii[15,175] := {12, 440} tii[15,176] := {43, 129, 426, 427} tii[15,177] := {28, 481} tii[15,178] := {9, 232, 330, 422} tii[15,179] := {86, 87, 522, 523} tii[15,180] := {70, 189, 524, 546} tii[15,181] := {71} tii[15,182] := {51, 137} tii[15,183] := {74} tii[15,184] := {217, 218} tii[15,185] := {25, 191} tii[15,186] := {136} tii[15,187] := {160, 161, 272, 273} tii[15,188] := {106, 107, 241, 242} tii[15,189] := {73} tii[15,190] := {60, 276} tii[15,191] := {10, 256} tii[15,192] := {158, 159, 379, 380} tii[15,193] := {135} tii[15,194] := {33, 96, 324, 325} tii[15,195] := {64, 65, 301, 302} tii[15,196] := {17, 68, 271, 374} tii[15,197] := {239, 240} tii[15,198] := {7, 97, 208, 344} tii[15,199] := {19} tii[15,200] := {61, 190, 261, 468} tii[15,201] := {5, 315} tii[15,202] := {46} tii[15,203] := {16, 166, 298, 464} tii[15,204] := {48, 49, 360, 361} tii[15,205] := {110, 111} tii[15,206] := {2, 149, 177, 400} tii[15,207] := {95, 219} tii[15,208] := {1, 255} tii[15,209] := {22, 23, 299, 300} tii[15,210] := {0, 116, 210, 342} cell#76 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {322} tii[15,2] := {242, 356} tii[15,3] := {175, 433} tii[15,4] := {380} tii[15,5] := {354} tii[15,6] := {186, 412} tii[15,7] := {207, 294, 408, 500} tii[15,8] := {275, 364, 469, 523} tii[15,9] := {429} tii[15,10] := {241, 460} tii[15,11] := {456} tii[15,12] := {112, 293, 388, 498} tii[15,13] := {430, 505} tii[15,14] := {167, 365, 439, 519} tii[15,15] := {289, 495} tii[15,16] := {261, 368, 513, 514} tii[15,17] := {128, 453} tii[15,18] := {320} tii[15,19] := {138, 355} tii[15,20] := {297} tii[15,21] := {156, 235, 438, 510} tii[15,22] := {218, 304, 482, 530} tii[15,23] := {89, 493} tii[15,24] := {377} tii[15,25] := {240} tii[15,26] := {58, 509} tii[15,27] := {184, 411} tii[15,28] := {404} tii[15,29] := {76, 234, 334, 459} tii[15,30] := {111, 181, 389, 531} tii[15,31] := {41, 101, 494, 538} tii[15,32] := {378, 468} tii[15,33] := {120, 306, 391, 485} tii[15,34] := {166, 251, 440, 543} tii[15,35] := {288} tii[15,36] := {78, 221, 437, 544} tii[15,37] := {230, 455} tii[15,38] := {44, 172, 403, 549} tii[15,39] := {260, 367} tii[15,40] := {203, 309, 480, 481} tii[15,41] := {122, 282, 483, 550} tii[15,42] := {162, 342, 508, 552} tii[15,43] := {431} tii[15,44] := {137, 386} tii[15,45] := {457} tii[15,46] := {47, 276, 292, 499} tii[15,47] := {432, 506} tii[15,48] := {84, 339, 363, 521} tii[15,49] := {405} tii[15,50] := {27, 237, 333, 525} tii[15,51] := {178, 435} tii[15,52] := {11, 191, 285, 536} tii[15,53] := {154, 254, 466, 467} tii[15,54] := {379, 470} tii[15,55] := {54, 307, 394, 537} tii[15,56] := {326, 488} tii[15,57] := {81, 375, 436, 546} tii[15,58] := {232, 476} tii[15,59] := {205, 311, 503, 504} tii[15,60] := {159, 345, 473, 527} tii[15,61] := {74} tii[15,62] := {212} tii[15,63] := {80, 135} tii[15,64] := {124, 198} tii[15,65] := {109} tii[15,66] := {129, 382} tii[15,67] := {269} tii[15,68] := {157} tii[15,69] := {298} tii[15,70] := {95, 180} tii[15,71] := {158, 236, 352, 462} tii[15,72] := {91, 327} tii[15,73] := {219} tii[15,74] := {149, 250} tii[15,75] := {220, 305, 419, 492} tii[15,76] := {71, 148, 273, 371} tii[15,77] := {133, 229} tii[15,78] := {114, 278, 295, 414} tii[15,79] := {349} tii[15,80] := {195, 302} tii[15,81] := {75, 224, 246, 360} tii[15,82] := {323, 421} tii[15,83] := {169, 341, 366, 450} tii[15,84] := {213, 314, 397, 398} tii[15,85] := {57, 474} tii[15,86] := {152} tii[15,87] := {130, 384} tii[15,88] := {329} tii[15,89] := {185} tii[15,90] := {35, 497} tii[15,91] := {206} tii[15,92] := {77, 134, 335, 526} tii[15,93] := {62, 233} tii[15,94] := {106, 196, 331, 424} tii[15,95] := {22, 64, 475, 528} tii[15,96] := {274} tii[15,97] := {121, 197, 392, 540} tii[15,98] := {102, 303} tii[15,99] := {49, 171, 387, 541} tii[15,100] := {406} tii[15,101] := {227} tii[15,102] := {94, 287} tii[15,103] := {79, 238, 336, 461} tii[15,104] := {231} tii[15,105] := {18, 458} tii[15,106] := {153, 245, 358, 465} tii[15,107] := {381, 471} tii[15,108] := {25, 125, 346, 547} tii[15,109] := {146, 362} tii[15,110] := {204, 310} tii[15,111] := {86, 225, 441, 548} tii[15,112] := {300} tii[15,113] := {45, 192, 281, 416} tii[15,114] := {123, 308, 393, 490} tii[15,115] := {13, 39, 434, 507} tii[15,116] := {117, 283, 477, 551} tii[15,117] := {330, 427} tii[15,118] := {7, 56, 385, 522} tii[15,119] := {163, 255, 445, 446} tii[15,120] := {28, 136, 351, 524} tii[15,121] := {290} tii[15,122] := {132, 347} tii[15,123] := {73, 244, 337, 463} tii[15,124] := {12, 98, 325, 534} tii[15,125] := {194, 418} tii[15,126] := {55, 199, 423, 535} tii[15,127] := {262, 369} tii[15,128] := {208, 401} tii[15,129] := {82, 259, 452, 545} tii[15,130] := {211, 316, 486, 487} tii[15,131] := {9, 68, 266, 518} tii[15,132] := {119, 319, 400, 532} tii[15,133] := {107} tii[15,134] := {267} tii[15,135] := {90, 409} tii[15,136] := {155} tii[15,137] := {37, 179} tii[15,138] := {217} tii[15,139] := {70, 147, 357, 442} tii[15,140] := {65, 249} tii[15,141] := {60, 228} tii[15,142] := {36, 478} tii[15,143] := {176} tii[15,144] := {48, 183, 277, 413} tii[15,145] := {348} tii[15,146] := {108, 189, 390, 479} tii[15,147] := {100, 301} tii[15,148] := {26, 66, 454, 517} tii[15,149] := {321, 420} tii[15,150] := {247} tii[15,151] := {24, 143, 223, 359} tii[15,152] := {85, 253, 340, 448} tii[15,153] := {15, 88, 410, 529} tii[15,154] := {268, 373} tii[15,155] := {116, 201, 395, 396} tii[15,156] := {350} tii[15,157] := {131} tii[15,158] := {14, 182, 291, 496} tii[15,159] := {92, 286} tii[15,160] := {72, 141, 338, 512} tii[15,161] := {42, 188, 279, 415} tii[15,162] := {324, 422} tii[15,163] := {5, 142, 263, 515} tii[15,164] := {193} tii[15,165] := {144, 361} tii[15,166] := {33, 252, 370, 516} tii[15,167] := {265, 451} tii[15,168] := {30, 126, 353, 542} tii[15,169] := {210, 315} tii[15,170] := {160, 256, 443, 444} tii[15,171] := {52, 317, 402, 533} tii[15,172] := {2, 104, 209, 484} tii[15,173] := {214, 399} tii[15,174] := {83, 343, 376, 511} tii[15,175] := {59, 264} tii[15,176] := {23, 222, 243, 464} tii[15,177] := {99, 332} tii[15,178] := {8, 150, 239, 520} tii[15,179] := {115, 202, 425, 426} tii[15,180] := {118, 284, 428, 501} tii[15,181] := {50} tii[15,182] := {32, 67} tii[15,183] := {113} tii[15,184] := {61, 271} tii[15,185] := {53, 97} tii[15,186] := {168} tii[15,187] := {46, 103, 216, 318} tii[15,188] := {29, 127, 170, 258} tii[15,189] := {177} tii[15,190] := {10, 407} tii[15,191] := {63, 140} tii[15,192] := {110, 190, 299, 417} tii[15,193] := {248} tii[15,194] := {6, 20, 383, 472} tii[15,195] := {51, 174, 200, 313} tii[15,196] := {3, 34, 328, 491} tii[15,197] := {270, 374} tii[15,198] := {0, 21, 272, 449} tii[15,199] := {93} tii[15,200] := {43, 96, 280, 502} tii[15,201] := {38, 187} tii[15,202] := {145} tii[15,203] := {17, 87, 296, 539} tii[15,204] := {31, 151, 226, 372} tii[15,205] := {161, 257} tii[15,206] := {4, 40, 215, 489} tii[15,207] := {165, 344} tii[15,208] := {19, 139} tii[15,209] := {16, 105, 173, 312} tii[15,210] := {1, 69, 164, 447} cell#77 , |C| = 55 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[3],[1, 1, 1, 1]]+phi[[],[4, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 15*X+20*X^2 TII subcells: tii[22,1] := {50} tii[22,2] := {52} tii[22,3] := {51} tii[22,4] := {53, 54} tii[22,5] := {46} tii[22,6] := {45} tii[22,7] := {48, 49} tii[22,8] := {38} tii[22,9] := {43, 44} tii[22,10] := {36, 47} tii[22,11] := {39} tii[22,12] := {37} tii[22,13] := {41, 42} tii[22,14] := {27} tii[22,15] := {34, 35} tii[22,16] := {25, 40} tii[22,17] := {18} tii[22,18] := {23, 24} tii[22,19] := {16, 31} tii[22,20] := {8, 28} tii[22,21] := {29} tii[22,22] := {26} tii[22,23] := {32, 33} tii[22,24] := {17} tii[22,25] := {21, 22} tii[22,26] := {15, 30} tii[22,27] := {9} tii[22,28] := {13, 14} tii[22,29] := {7, 20} tii[22,30] := {3, 19} tii[22,31] := {4} tii[22,32] := {5, 6} tii[22,33] := {2, 11} tii[22,34] := {1, 10} tii[22,35] := {0, 12} cell#78 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {93} tii[14,2] := {103, 124} tii[14,3] := {117, 136} tii[14,4] := {108} tii[14,5] := {95} tii[14,6] := {87, 132} tii[14,7] := {75, 116} tii[14,8] := {105, 143} tii[14,9] := {69, 139} tii[14,10] := {49, 130} tii[14,11] := {90, 148} tii[14,12] := {104, 151} tii[14,13] := {94} tii[14,14] := {78} tii[14,15] := {68, 123} tii[14,16] := {57, 100} tii[14,17] := {89, 135} tii[14,18] := {60} tii[14,19] := {52, 131} tii[14,20] := {32, 120} tii[14,21] := {41, 85} tii[14,22] := {73, 142} tii[14,23] := {31, 98} tii[14,24] := {88, 146} tii[14,25] := {35, 137} tii[14,26] := {23, 128} tii[14,27] := {55, 145} tii[14,28] := {17, 119} tii[14,29] := {71, 149} tii[14,30] := {83, 153} tii[14,31] := {76} tii[14,32] := {59} tii[14,33] := {51, 111} tii[14,34] := {40, 84} tii[14,35] := {72, 127} tii[14,36] := {42} tii[14,37] := {34, 121} tii[14,38] := {22, 109} tii[14,39] := {27, 64} tii[14,40] := {54, 133} tii[14,41] := {20, 80} tii[14,42] := {70, 140} tii[14,43] := {29} tii[14,44] := {24, 129} tii[14,45] := {18, 47} tii[14,46] := {13, 118} tii[14,47] := {38, 138} tii[14,48] := {9, 106} tii[14,49] := {12, 61} tii[14,50] := {53, 144} tii[14,51] := {8, 74} tii[14,52] := {63, 150} tii[14,53] := {15, 122} tii[14,54] := {7, 110} tii[14,55] := {25, 134} tii[14,56] := {4, 97} tii[14,57] := {36, 141} tii[14,58] := {2, 82} tii[14,59] := {46, 147} tii[14,60] := {37, 152} tii[14,61] := {77} tii[14,62] := {66, 102} tii[14,63] := {79} tii[14,64] := {86, 115} tii[14,65] := {58, 101} tii[14,66] := {48, 113} tii[14,67] := {43} tii[14,68] := {67, 126} tii[14,69] := {28, 65} tii[14,70] := {39, 125} tii[14,71] := {21, 81} tii[14,72] := {14, 92} tii[14,73] := {19} tii[14,74] := {50, 114} tii[14,75] := {11, 30} tii[14,76] := {6, 44} tii[14,77] := {26, 112} tii[14,78] := {10, 107} tii[14,79] := {3, 56} tii[14,80] := {1, 45} tii[14,81] := {33, 99} tii[14,82] := {16, 96} tii[14,83] := {5, 91} tii[14,84] := {0, 62} cell#79 , |C| = 126 special orbit = [5, 2, 2, 2, 2, 1, 1] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1],[1, 1, 1]]+phi[[],[3, 2, 2]] TII depth = 3 TII multiplicity polynomial = 84*X+21*X^2 TII subcells: tii[13,1] := {99} tii[13,2] := {92} tii[13,3] := {59} tii[13,4] := {113} tii[13,5] := {106} tii[13,6] := {120} tii[13,7] := {41} tii[13,8] := {93} tii[13,9] := {122} tii[13,10] := {121, 125} tii[13,11] := {105} tii[13,12] := {101, 118} tii[13,13] := {58} tii[13,14] := {73} tii[13,15] := {65, 95} tii[13,16] := {16} tii[13,17] := {17} tii[13,18] := {84} tii[13,19] := {23} tii[13,20] := {76} tii[13,21] := {20} tii[13,22] := {69} tii[13,23] := {35} tii[13,24] := {54} tii[13,25] := {60} tii[13,26] := {29} tii[13,27] := {45} tii[13,28] := {111} tii[13,29] := {34} tii[13,30] := {115} tii[13,31] := {13} tii[13,32] := {86} tii[13,33] := {49} tii[13,34] := {75} tii[13,35] := {112, 123} tii[13,36] := {71} tii[13,37] := {55} tii[13,38] := {42} tii[13,39] := {90} tii[13,40] := {19} tii[13,41] := {104} tii[13,42] := {83, 107} tii[13,43] := {32} tii[13,44] := {100, 117} tii[13,45] := {77} tii[13,46] := {87, 109} tii[13,47] := {28} tii[13,48] := {74} tii[13,49] := {44} tii[13,50] := {66, 96} tii[13,51] := {51, 81} tii[13,52] := {47} tii[13,53] := {102} tii[13,54] := {8} tii[13,55] := {67} tii[13,56] := {89} tii[13,57] := {72} tii[13,58] := {116} tii[13,59] := {30} tii[13,60] := {12} tii[13,61] := {114, 124} tii[13,62] := {94} tii[13,63] := {21} tii[13,64] := {103, 119} tii[13,65] := {18} tii[13,66] := {57} tii[13,67] := {56} tii[13,68] := {31} tii[13,69] := {48, 79} tii[13,70] := {78} tii[13,71] := {88, 110} tii[13,72] := {36, 63} tii[13,73] := {27} tii[13,74] := {43} tii[13,75] := {50, 80} tii[13,76] := {0} tii[13,77] := {10} tii[13,78] := {2} tii[13,79] := {6} tii[13,80] := {5} tii[13,81] := {52} tii[13,82] := {24} tii[13,83] := {11} tii[13,84] := {38} tii[13,85] := {26} tii[13,86] := {40} tii[13,87] := {7} tii[13,88] := {91} tii[13,89] := {85, 108} tii[13,90] := {62} tii[13,91] := {14} tii[13,92] := {33} tii[13,93] := {70, 98} tii[13,94] := {53, 82} tii[13,95] := {3} tii[13,96] := {39} tii[13,97] := {9} tii[13,98] := {61} tii[13,99] := {22} tii[13,100] := {68, 97} tii[13,101] := {37, 64} tii[13,102] := {1} tii[13,103] := {4} tii[13,104] := {15} tii[13,105] := {25, 46} cell#80 , |C| = 126 special orbit = [5, 2, 2, 2, 2, 1, 1] special rep = [[2, 1, 1], [1, 1, 1]] , dim = 105 cell rep = phi[[2, 1, 1],[1, 1, 1]]+phi[[],[3, 2, 2]] TII depth = 3 TII multiplicity polynomial = 84*X+21*X^2 TII subcells: tii[13,1] := {99} tii[13,2] := {92} tii[13,3] := {59} tii[13,4] := {113} tii[13,5] := {106} tii[13,6] := {120} tii[13,7] := {41} tii[13,8] := {93} tii[13,9] := {122} tii[13,10] := {121, 125} tii[13,11] := {105} tii[13,12] := {101, 118} tii[13,13] := {58} tii[13,14] := {73} tii[13,15] := {65, 95} tii[13,16] := {16} tii[13,17] := {17} tii[13,18] := {84} tii[13,19] := {23} tii[13,20] := {76} tii[13,21] := {20} tii[13,22] := {69} tii[13,23] := {35} tii[13,24] := {54} tii[13,25] := {60} tii[13,26] := {29} tii[13,27] := {45} tii[13,28] := {111} tii[13,29] := {34} tii[13,30] := {115} tii[13,31] := {13} tii[13,32] := {86} tii[13,33] := {49} tii[13,34] := {75} tii[13,35] := {112, 123} tii[13,36] := {71} tii[13,37] := {55} tii[13,38] := {42} tii[13,39] := {90} tii[13,40] := {19} tii[13,41] := {104} tii[13,42] := {83, 107} tii[13,43] := {32} tii[13,44] := {100, 117} tii[13,45] := {77} tii[13,46] := {87, 109} tii[13,47] := {28} tii[13,48] := {74} tii[13,49] := {44} tii[13,50] := {66, 96} tii[13,51] := {51, 81} tii[13,52] := {47} tii[13,53] := {102} tii[13,54] := {8} tii[13,55] := {67} tii[13,56] := {89} tii[13,57] := {72} tii[13,58] := {116} tii[13,59] := {30} tii[13,60] := {12} tii[13,61] := {114, 124} tii[13,62] := {94} tii[13,63] := {21} tii[13,64] := {103, 119} tii[13,65] := {18} tii[13,66] := {57} tii[13,67] := {56} tii[13,68] := {31} tii[13,69] := {48, 79} tii[13,70] := {78} tii[13,71] := {88, 110} tii[13,72] := {36, 63} tii[13,73] := {27} tii[13,74] := {43} tii[13,75] := {50, 80} tii[13,76] := {0} tii[13,77] := {10} tii[13,78] := {2} tii[13,79] := {6} tii[13,80] := {5} tii[13,81] := {52} tii[13,82] := {24} tii[13,83] := {11} tii[13,84] := {38} tii[13,85] := {26} tii[13,86] := {40} tii[13,87] := {7} tii[13,88] := {91} tii[13,89] := {85, 108} tii[13,90] := {62} tii[13,91] := {14} tii[13,92] := {33} tii[13,93] := {70, 98} tii[13,94] := {53, 82} tii[13,95] := {3} tii[13,96] := {39} tii[13,97] := {9} tii[13,98] := {61} tii[13,99] := {22} tii[13,100] := {68, 97} tii[13,101] := {37, 64} tii[13,102] := {1} tii[13,103] := {4} tii[13,104] := {15} tii[13,105] := {25, 46} cell#81 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {48} tii[9,2] := {72} tii[9,3] := {87} tii[9,4] := {62} tii[9,5] := {75} tii[9,6] := {33} tii[9,7] := {83} tii[9,8] := {52} tii[9,9] := {96} tii[9,10] := {82} tii[9,11] := {70} tii[9,12] := {95} tii[9,13] := {92} tii[9,14] := {101} tii[9,15] := {97} tii[9,16] := {90} tii[9,17] := {103} tii[9,18] := {104} tii[9,19] := {36} tii[9,20] := {10} tii[9,21] := {21} tii[9,22] := {46} tii[9,23] := {67} tii[9,24] := {39} tii[9,25] := {24} tii[9,26] := {61} tii[9,27] := {18} tii[9,28] := {40} tii[9,29] := {31} tii[9,30] := {25} tii[9,31] := {58} tii[9,32] := {17} tii[9,33] := {71} tii[9,34] := {8} tii[9,35] := {41} tii[9,36] := {77} tii[9,37] := {57} tii[9,38] := {86} tii[9,39] := {51} tii[9,40] := {30} tii[9,41] := {68} tii[9,42] := {37} tii[9,43] := {81} tii[9,44] := {64} tii[9,45] := {69} tii[9,46] := {94} tii[9,47] := {98} tii[9,48] := {59} tii[9,49] := {27} tii[9,50] := {43} tii[9,51] := {35} tii[9,52] := {26} tii[9,53] := {73} tii[9,54] := {54} tii[9,55] := {42} tii[9,56] := {15} tii[9,57] := {88} tii[9,58] := {65} tii[9,59] := {49} tii[9,60] := {79} tii[9,61] := {91} tii[9,62] := {45} tii[9,63] := {23} tii[9,64] := {76} tii[9,65] := {80} tii[9,66] := {66} tii[9,67] := {100} tii[9,68] := {102} tii[9,69] := {60} tii[9,70] := {89} tii[9,71] := {74} tii[9,72] := {99} tii[9,73] := {85} tii[9,74] := {84} tii[9,75] := {5} tii[9,76] := {13} tii[9,77] := {3} tii[9,78] := {22} tii[9,79] := {16} tii[9,80] := {9} tii[9,81] := {7} tii[9,82] := {20} tii[9,83] := {4} tii[9,84] := {29} tii[9,85] := {56} tii[9,86] := {32} tii[9,87] := {28} tii[9,88] := {2} tii[9,89] := {38} tii[9,90] := {34} tii[9,91] := {14} tii[9,92] := {12} tii[9,93] := {53} tii[9,94] := {44} tii[9,95] := {6} tii[9,96] := {47} tii[9,97] := {78} tii[9,98] := {93} tii[9,99] := {50} tii[9,100] := {19} tii[9,101] := {11} tii[9,102] := {55} tii[9,103] := {63} tii[9,104] := {1} tii[9,105] := {0} cell#82 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {80} tii[9,2] := {101} tii[9,3] := {103} tii[9,4] := {64} tii[9,5] := {51} tii[9,6] := {19} tii[9,7] := {92} tii[9,8] := {32} tii[9,9] := {98} tii[9,10] := {66} tii[9,11] := {53} tii[9,12] := {78} tii[9,13] := {102} tii[9,14] := {104} tii[9,15] := {93} tii[9,16] := {85} tii[9,17] := {99} tii[9,18] := {97} tii[9,19] := {65} tii[9,20] := {29} tii[9,21] := {44} tii[9,22] := {82} tii[9,23] := {90} tii[9,24] := {69} tii[9,25] := {12} tii[9,26] := {40} tii[9,27] := {39} tii[9,28] := {23} tii[9,29] := {57} tii[9,30] := {50} tii[9,31] := {94} tii[9,32] := {7} tii[9,33] := {52} tii[9,34] := {5} tii[9,35] := {71} tii[9,36] := {100} tii[9,37] := {41} tii[9,38] := {63} tii[9,39] := {86} tii[9,40] := {16} tii[9,41] := {88} tii[9,42] := {25} tii[9,43] := {67} tii[9,44] := {95} tii[9,45] := {54} tii[9,46] := {79} tii[9,47] := {74} tii[9,48] := {45} tii[9,49] := {28} tii[9,50] := {43} tii[9,51] := {37} tii[9,52] := {13} tii[9,53] := {81} tii[9,54] := {55} tii[9,55] := {24} tii[9,56] := {9} tii[9,57] := {89} tii[9,58] := {68} tii[9,59] := {35} tii[9,60] := {76} tii[9,61] := {83} tii[9,62] := {27} tii[9,63] := {14} tii[9,64] := {84} tii[9,65] := {70} tii[9,66] := {42} tii[9,67] := {91} tii[9,68] := {87} tii[9,69] := {46} tii[9,70] := {62} tii[9,71] := {58} tii[9,72] := {75} tii[9,73] := {96} tii[9,74] := {72} tii[9,75] := {20} tii[9,76] := {33} tii[9,77] := {15} tii[9,78] := {47} tii[9,79] := {38} tii[9,80] := {4} tii[9,81] := {22} tii[9,82] := {10} tii[9,83] := {2} tii[9,84] := {56} tii[9,85] := {77} tii[9,86] := {60} tii[9,87] := {17} tii[9,88] := {1} tii[9,89] := {26} tii[9,90] := {18} tii[9,91] := {8} tii[9,92] := {30} tii[9,93] := {31} tii[9,94] := {73} tii[9,95] := {3} tii[9,96] := {34} tii[9,97] := {49} tii[9,98] := {61} tii[9,99] := {36} tii[9,100] := {21} tii[9,101] := {6} tii[9,102] := {59} tii[9,103] := {48} tii[9,104] := {11} tii[9,105] := {0} cell#83 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {106} tii[14,2] := {66, 126} tii[14,3] := {85, 138} tii[14,4] := {119} tii[14,5] := {104} tii[14,6] := {55, 134} tii[14,7] := {115, 116} tii[14,8] := {75, 145} tii[14,9] := {76, 141} tii[14,10] := {93, 132} tii[14,11] := {94, 150} tii[14,12] := {109, 152} tii[14,13] := {105} tii[14,14] := {86} tii[14,15] := {34, 125} tii[14,16] := {98, 99} tii[14,17] := {53, 137} tii[14,18] := {65} tii[14,19] := {54, 133} tii[14,20] := {72, 122} tii[14,21] := {82, 83} tii[14,22] := {73, 144} tii[14,23] := {63, 97} tii[14,24] := {92, 148} tii[14,25] := {33, 130} tii[14,26] := {50, 120} tii[14,27] := {51, 140} tii[14,28] := {31, 108} tii[14,29] := {70, 146} tii[14,30] := {56, 151} tii[14,31] := {87} tii[14,32] := {64} tii[14,33] := {16, 112} tii[14,34] := {80, 81} tii[14,35] := {30, 129} tii[14,36] := {43} tii[14,37] := {32, 123} tii[14,38] := {48, 110} tii[14,39] := {59, 60} tii[14,40] := {49, 135} tii[14,41] := {41, 77} tii[14,42] := {68, 142} tii[14,43] := {23} tii[14,44] := {15, 121} tii[14,45] := {39, 40} tii[14,46] := {27, 107} tii[14,47] := {28, 131} tii[14,48] := {13, 90} tii[14,49] := {21, 57} tii[14,50] := {46, 139} tii[14,51] := {9, 45} tii[14,52] := {35, 147} tii[14,53] := {6, 124} tii[14,54] := {11, 111} tii[14,55] := {12, 136} tii[14,56] := {4, 96} tii[14,57] := {25, 143} tii[14,58] := {2, 78} tii[14,59] := {17, 149} tii[14,60] := {26, 153} tii[14,61] := {89} tii[14,62] := {71, 103} tii[14,63] := {88} tii[14,64] := {47, 118} tii[14,65] := {101, 102} tii[14,66] := {84, 114} tii[14,67] := {44} tii[14,68] := {36, 128} tii[14,69] := {61, 62} tii[14,70] := {74, 127} tii[14,71] := {42, 79} tii[14,72] := {22, 69} tii[14,73] := {10} tii[14,74] := {18, 117} tii[14,75] := {19, 20} tii[14,76] := {8, 37} tii[14,77] := {52, 113} tii[14,78] := {14, 91} tii[14,79] := {3, 24} tii[14,80] := {1, 38} tii[14,81] := {7, 100} tii[14,82] := {29, 95} tii[14,83] := {5, 67} tii[14,84] := {0, 58} cell#84 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {63} tii[12,2] := {24} tii[12,3] := {82} tii[12,4] := {21} tii[12,5] := {62} tii[12,6] := {78, 79} tii[12,7] := {35} tii[12,8] := {51, 52} tii[12,9] := {96} tii[12,10] := {11} tii[12,11] := {81} tii[12,12] := {94, 95} tii[12,13] := {71} tii[12,14] := {20} tii[12,15] := {29, 30} tii[12,16] := {86, 87} tii[12,17] := {97, 98} tii[12,18] := {34} tii[12,19] := {49, 50} tii[12,20] := {65, 66} tii[12,21] := {101} tii[12,22] := {4} tii[12,23] := {88} tii[12,24] := {99, 100} tii[12,25] := {10} tii[12,26] := {80} tii[12,27] := {14, 15} tii[12,28] := {92, 93} tii[12,29] := {103, 104} tii[12,30] := {61} tii[12,31] := {19} tii[12,32] := {76, 77} tii[12,33] := {27, 28} tii[12,34] := {44, 45} tii[12,35] := {90, 91} tii[12,36] := {75, 102} tii[12,37] := {23} tii[12,38] := {38, 39} tii[12,39] := {54, 55} tii[12,40] := {36, 72} tii[12,41] := {6} tii[12,42] := {46} tii[12,43] := {13} tii[12,44] := {31} tii[12,45] := {7} tii[12,46] := {43} tii[12,47] := {16} tii[12,48] := {59, 60} tii[12,49] := {40, 41} tii[12,50] := {3} tii[12,51] := {53} tii[12,52] := {12} tii[12,53] := {69, 70} tii[12,54] := {32, 33} tii[12,55] := {84, 85} tii[12,56] := {67, 68} tii[12,57] := {1} tii[12,58] := {42} tii[12,59] := {57, 58} tii[12,60] := {5} tii[12,61] := {73, 74} tii[12,62] := {17, 18} tii[12,63] := {56, 89} tii[12,64] := {47, 48} tii[12,65] := {37, 83} tii[12,66] := {0} tii[12,67] := {2} tii[12,68] := {8, 9} tii[12,69] := {25, 26} tii[12,70] := {22, 64} cell#85 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {55} tii[7,2] := {71} tii[7,3] := {30, 84} tii[7,4] := {44, 106} tii[7,5] := {83} tii[7,6] := {66, 105} tii[7,7] := {86} tii[7,8] := {39, 103} tii[7,9] := {58, 121} tii[7,10] := {35, 115} tii[7,11] := {102} tii[7,12] := {23, 98} tii[7,13] := {81, 120} tii[7,14] := {51, 131} tii[7,15] := {64, 135} tii[7,16] := {113} tii[7,17] := {96, 129} tii[7,18] := {91, 136} tii[7,19] := {70} tii[7,20] := {29, 110} tii[7,21] := {43, 124} tii[7,22] := {82} tii[7,23] := {24, 123} tii[7,24] := {15, 109} tii[7,25] := {65, 104} tii[7,26] := {37, 134} tii[7,27] := {49, 139} tii[7,28] := {17, 132} tii[7,29] := {100} tii[7,30] := {10, 122} tii[7,31] := {27, 142} tii[7,32] := {79, 118} tii[7,33] := {4, 111} tii[7,34] := {75, 127} tii[7,35] := {36, 144} tii[7,36] := {47, 146} tii[7,37] := {114} tii[7,38] := {97, 130} tii[7,39] := {92, 137} tii[7,40] := {76, 141} tii[7,41] := {22} tii[7,42] := {33} tii[7,43] := {31} tii[7,44] := {21, 67} tii[7,45] := {45} tii[7,46] := {32, 88} tii[7,47] := {12, 57} tii[7,48] := {42, 74} tii[7,49] := {41} tii[7,50] := {25, 101} tii[7,51] := {20, 72} tii[7,52] := {60} tii[7,53] := {16, 80} tii[7,54] := {38, 119} tii[7,55] := {54, 90} tii[7,56] := {50, 126} tii[7,57] := {9, 68} tii[7,58] := {62, 116} tii[7,59] := {52} tii[7,60] := {11, 125} tii[7,61] := {28, 87} tii[7,62] := {73} tii[7,63] := {5, 112} tii[7,64] := {18, 138} tii[7,65] := {14, 85} tii[7,66] := {2, 108} tii[7,67] := {26, 143} tii[7,68] := {69, 107} tii[7,69] := {34, 145} tii[7,70] := {77, 128} tii[7,71] := {1, 93} tii[7,72] := {48, 140} tii[7,73] := {40} tii[7,74] := {19, 95} tii[7,75] := {59} tii[7,76] := {8, 94} tii[7,77] := {53, 89} tii[7,78] := {3, 99} tii[7,79] := {61, 117} tii[7,80] := {63, 133} tii[7,81] := {13} tii[7,82] := {7, 46} tii[7,83] := {6, 56} tii[7,84] := {0, 78} cell#86 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {90} tii[9,2] := {102} tii[9,3] := {104} tii[9,4] := {83} tii[9,5] := {69} tii[9,6] := {25} tii[9,7] := {100} tii[9,8] := {41} tii[9,9] := {103} tii[9,10] := {77} tii[9,11] := {63} tii[9,12] := {88} tii[9,13] := {89} tii[9,14] := {97} tii[9,15] := {76} tii[9,16] := {62} tii[9,17] := {87} tii[9,18] := {81} tii[9,19] := {75} tii[9,20] := {30} tii[9,21] := {48} tii[9,22] := {84} tii[9,23] := {94} tii[9,24] := {71} tii[9,25] := {16} tii[9,26] := {54} tii[9,27] := {43} tii[9,28] := {27} tii[9,29] := {65} tii[9,30] := {59} tii[9,31] := {95} tii[9,32] := {8} tii[9,33] := {61} tii[9,34] := {5} tii[9,35] := {80} tii[9,36] := {101} tii[9,37] := {47} tii[9,38] := {74} tii[9,39] := {85} tii[9,40] := {18} tii[9,41] := {98} tii[9,42] := {22} tii[9,43] := {45} tii[9,44] := {96} tii[9,45] := {31} tii[9,46] := {58} tii[9,47] := {51} tii[9,48] := {21} tii[9,49] := {38} tii[9,50] := {56} tii[9,51] := {53} tii[9,52] := {17} tii[9,53] := {91} tii[9,54] := {70} tii[9,55] := {28} tii[9,56] := {12} tii[9,57] := {99} tii[9,58] := {79} tii[9,59] := {35} tii[9,60] := {93} tii[9,61] := {60} tii[9,62] := {39} tii[9,63] := {19} tii[9,64] := {92} tii[9,65] := {46} tii[9,66] := {55} tii[9,67] := {73} tii[9,68] := {67} tii[9,69] := {50} tii[9,70] := {82} tii[9,71] := {33} tii[9,72] := {52} tii[9,73] := {78} tii[9,74] := {49} tii[9,75] := {20} tii[9,76] := {32} tii[9,77] := {15} tii[9,78] := {42} tii[9,79] := {44} tii[9,80] := {4} tii[9,81] := {24} tii[9,82] := {10} tii[9,83] := {2} tii[9,84] := {64} tii[9,85] := {86} tii[9,86] := {57} tii[9,87] := {14} tii[9,88] := {1} tii[9,89] := {7} tii[9,90] := {26} tii[9,91] := {11} tii[9,92] := {37} tii[9,93] := {40} tii[9,94] := {72} tii[9,95] := {3} tii[9,96] := {34} tii[9,97] := {68} tii[9,98] := {36} tii[9,99] := {13} tii[9,100] := {29} tii[9,101] := {6} tii[9,102] := {66} tii[9,103] := {23} tii[9,104] := {9} tii[9,105] := {0} cell#87 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {142} tii[14,2] := {132, 152} tii[14,3] := {149, 153} tii[14,4] := {125} tii[14,5] := {102} tii[14,6] := {109, 147} tii[14,7] := {80, 117} tii[14,8] := {136, 151} tii[14,9] := {86, 143} tii[14,10] := {68, 128} tii[14,11] := {116, 150} tii[14,12] := {138, 139} tii[14,13] := {101} tii[14,14] := {78} tii[14,15] := {85, 134} tii[14,16] := {60, 93} tii[14,17] := {115, 145} tii[14,18] := {59} tii[14,19] := {66, 127} tii[14,20] := {50, 106} tii[14,21] := {42, 75} tii[14,22] := {91, 141} tii[14,23] := {29, 64} tii[14,24] := {118, 119} tii[14,25] := {48, 133} tii[14,26] := {34, 113} tii[14,27] := {70, 144} tii[14,28] := {23, 92} tii[14,29] := {96, 140} tii[14,30] := {121, 146} tii[14,31] := {77} tii[14,32] := {58} tii[14,33] := {65, 111} tii[14,34] := {41, 72} tii[14,35] := {90, 130} tii[14,36] := {39} tii[14,37] := {47, 103} tii[14,38] := {33, 81} tii[14,39] := {27, 55} tii[14,40] := {69, 122} tii[14,41] := {16, 44} tii[14,42] := {94, 95} tii[14,43] := {26} tii[14,44] := {32, 110} tii[14,45] := {15, 38} tii[14,46] := {21, 88} tii[14,47] := {51, 129} tii[14,48] := {12, 71} tii[14,49] := {9, 30} tii[14,50] := {73, 120} tii[14,51] := {5, 37} tii[14,52] := {98, 131} tii[14,53] := {20, 104} tii[14,54] := {11, 82} tii[14,55] := {35, 123} tii[14,56] := {6, 62} tii[14,57] := {53, 108} tii[14,58] := {3, 46} tii[14,59] := {76, 124} tii[14,60] := {99, 100} tii[14,61] := {126} tii[14,62] := {105, 137} tii[14,63] := {79} tii[14,64] := {112, 148} tii[14,65] := {61, 97} tii[14,66] := {43, 84} tii[14,67] := {40} tii[14,68] := {87, 135} tii[14,69] := {28, 57} tii[14,70] := {52, 107} tii[14,71] := {17, 45} tii[14,72] := {10, 56} tii[14,73] := {14} tii[14,74] := {67, 114} tii[14,75] := {8, 25} tii[14,76] := {4, 18} tii[14,77] := {36, 83} tii[14,78] := {13, 74} tii[14,79] := {2, 24} tii[14,80] := {0, 19} tii[14,81] := {49, 89} tii[14,82] := {22, 63} tii[14,83] := {7, 54} tii[14,84] := {1, 31} cell#88 , |C| = 126 special orbit = [5, 5, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1]] , dim = 126 cell rep = phi[[2],[3, 1, 1]] TII depth = 6 TII multiplicity polynomial = 126*X TII subcells: tii[19,1] := {26} tii[19,2] := {55} tii[19,3] := {80} tii[19,4] := {45} tii[19,5] := {13} tii[19,6] := {73} tii[19,7] := {24} tii[19,8] := {95} tii[19,9] := {64} tii[19,10] := {44} tii[19,11] := {89} tii[19,12] := {58} tii[19,13] := {57} tii[19,14] := {105} tii[19,15] := {101} tii[19,16] := {88} tii[19,17] := {111} tii[19,18] := {116} tii[19,19] := {65} tii[19,20] := {28} tii[19,21] := {90} tii[19,22] := {42} tii[19,23] := {106} tii[19,24] := {82} tii[19,25] := {63} tii[19,26] := {20} tii[19,27] := {102} tii[19,28] := {77} tii[19,29] := {76} tii[19,30] := {34} tii[19,31] := {112} tii[19,32] := {36} tii[19,33] := {109} tii[19,34] := {52} tii[19,35] := {100} tii[19,36] := {53} tii[19,37] := {117} tii[19,38] := {69} tii[19,39] := {120} tii[19,40] := {96} tii[19,41] := {81} tii[19,42] := {110} tii[19,43] := {93} tii[19,44] := {92} tii[19,45] := {118} tii[19,46] := {72} tii[19,47] := {115} tii[19,48] := {108} tii[19,49] := {87} tii[19,50] := {86} tii[19,51] := {121} tii[19,52] := {99} tii[19,53] := {98} tii[19,54] := {122} tii[19,55] := {119} tii[19,56] := {114} tii[19,57] := {123} tii[19,58] := {113} tii[19,59] := {124} tii[19,60] := {125} tii[19,61] := {4} tii[19,62] := {11} tii[19,63] := {14} tii[19,64] := {3} tii[19,65] := {6} tii[19,66] := {25} tii[19,67] := {10} tii[19,68] := {12} tii[19,69] := {38} tii[19,70] := {21} tii[19,71] := {22} tii[19,72] := {37} tii[19,73] := {29} tii[19,74] := {7} tii[19,75] := {18} tii[19,76] := {16} tii[19,77] := {43} tii[19,78] := {19} tii[19,79] := {27} tii[19,80] := {5} tii[19,81] := {31} tii[19,82] := {59} tii[19,83] := {32} tii[19,84] := {40} tii[19,85] := {39} tii[19,86] := {49} tii[19,87] := {23} tii[19,88] := {56} tii[19,89] := {35} tii[19,90] := {78} tii[19,91] := {50} tii[19,92] := {51} tii[19,93] := {66} tii[19,94] := {67} tii[19,95] := {74} tii[19,96] := {83} tii[19,97] := {47} tii[19,98] := {62} tii[19,99] := {30} tii[19,100] := {46} tii[19,101] := {15} tii[19,102] := {79} tii[19,103] := {61} tii[19,104] := {60} tii[19,105] := {41} tii[19,106] := {75} tii[19,107] := {54} tii[19,108] := {8} tii[19,109] := {94} tii[19,110] := {71} tii[19,111] := {70} tii[19,112] := {33} tii[19,113] := {91} tii[19,114] := {85} tii[19,115] := {84} tii[19,116] := {68} tii[19,117] := {97} tii[19,118] := {104} tii[19,119] := {103} tii[19,120] := {107} tii[19,121] := {1} tii[19,122] := {0} tii[19,123] := {9} tii[19,124] := {2} tii[19,125] := {17} tii[19,126] := {48} cell#89 , |C| = 553 special orbit = [5, 3, 3, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1]] , dim = 210 cell rep = phi[[2, 1],[2, 1, 1]]+phi[[1, 1],[3, 1, 1]]+phi[[2],[2, 2, 1]]+phi[[1],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 49*X+70*X^2+91*X^4 TII subcells: tii[15,1] := {287} tii[15,2] := {202, 331} tii[15,3] := {132, 410} tii[15,4] := {350} tii[15,5] := {329} tii[15,6] := {141, 391} tii[15,7] := {165, 257, 386, 494} tii[15,8] := {234, 340, 456, 520} tii[15,9] := {408} tii[15,10] := {201, 445} tii[15,11] := {441} tii[15,12] := {72, 256, 359, 491} tii[15,13] := {409, 499} tii[15,14] := {121, 341, 425, 516} tii[15,15] := {253, 489} tii[15,16] := {223, 343, 511, 512} tii[15,17] := {188, 439} tii[15,18] := {411} tii[15,19] := {96, 446} tii[15,20] := {390} tii[15,21] := {226, 325, 418, 508} tii[15,22] := {296, 400, 476, 528} tii[15,23] := {249, 380} tii[15,24] := {460} tii[15,25] := {330} tii[15,26] := {190, 327} tii[15,27] := {140, 492} tii[15,28] := {490} tii[15,29] := {43, 196, 417, 523} tii[15,30] := {166, 360, 387, 470} tii[15,31] := {131, 267, 271, 371} tii[15,32] := {461, 526} tii[15,33] := {78, 277, 475, 538} tii[15,34] := {235, 426, 455, 502} tii[15,35] := {385} tii[15,36] := {115, 300, 443, 448} tii[15,37] := {194, 522} tii[15,38] := {67, 242, 379, 395} tii[15,39] := {352, 458} tii[15,40] := {163, 279, 534, 535} tii[15,41] := {176, 369, 485, 498} tii[15,42] := {230, 433, 434, 525} tii[15,43] := {487} tii[15,44] := {200, 524} tii[15,45] := {505} tii[15,46] := {71, 236, 469, 531} tii[15,47] := {488, 537} tii[15,48] := {120, 306, 514, 542} tii[15,49] := {468} tii[15,50] := {44, 177, 506, 509} tii[15,51] := {254, 541} tii[15,52] := {16, 127, 466, 473} tii[15,53] := {224, 344, 547, 548} tii[15,54] := {440, 515} tii[15,55] := {79, 243, 529, 536} tii[15,56] := {389, 527} tii[15,57] := {117, 311, 519, 545} tii[15,58] := {297, 544} tii[15,59] := {250, 370, 549, 550} tii[15,60] := {199, 413, 543, 552} tii[15,61] := {41} tii[15,62] := {170} tii[15,63] := {47, 95} tii[15,64] := {82, 156} tii[15,65] := {69} tii[15,66] := {89, 353} tii[15,67] := {228} tii[15,68] := {113} tii[15,69] := {263} tii[15,70] := {58, 138} tii[15,71] := {114, 197, 324, 449} tii[15,72] := {54, 290} tii[15,73] := {174} tii[15,74] := {105, 217} tii[15,75] := {175, 276, 401, 486} tii[15,76] := {37, 104, 232, 345} tii[15,77] := {94, 193} tii[15,78] := {75, 238, 258, 392} tii[15,79] := {321} tii[15,80] := {154, 274} tii[15,81] := {42, 182, 211, 335} tii[15,82] := {288, 402} tii[15,83] := {124, 308, 342, 436} tii[15,84] := {171, 282, 375, 376} tii[15,85] := {189, 317} tii[15,86] := {109} tii[15,87] := {90, 354} tii[15,88] := {291} tii[15,89] := {262} tii[15,90] := {134, 260} tii[15,91] := {164} tii[15,92] := {112, 298, 323, 420} tii[15,93] := {31, 195} tii[15,94] := {66, 155, 294, 404} tii[15,95] := {87, 206, 212, 309} tii[15,96] := {233} tii[15,97] := {173, 367, 399, 463} tii[15,98] := {61, 275} tii[15,99] := {73, 237, 383, 393} tii[15,100] := {384} tii[15,101] := {191} tii[15,102] := {57, 252} tii[15,103] := {46, 198, 299, 447} tii[15,104] := {322} tii[15,105] := {91, 204} tii[15,106] := {110, 209, 333, 451} tii[15,107] := {351, 457} tii[15,108] := {38, 181, 316, 336} tii[15,109] := {102, 338} tii[15,110] := {289, 403} tii[15,111] := {122, 307, 438, 454} tii[15,112] := {272} tii[15,113] := {19, 150, 241, 394} tii[15,114] := {81, 278, 368, 483} tii[15,115] := {53, 149, 153, 247} tii[15,116] := {169, 373, 374, 493} tii[15,117] := {292, 406} tii[15,118] := {36, 106, 203, 221} tii[15,119] := {118, 219, 431, 432} tii[15,120] := {45, 178, 415, 421} tii[15,121] := {358} tii[15,122] := {93, 319} tii[15,123] := {40, 208, 303, 450} tii[15,124] := {18, 128, 357, 366} tii[15,125] := {152, 397} tii[15,126] := {80, 244, 464, 474} tii[15,127] := {318, 428} tii[15,128] := {261, 462} tii[15,129] := {119, 312, 435, 507} tii[15,130] := {168, 284, 478, 479} tii[15,131] := {12, 85, 301, 310} tii[15,132] := {145, 377, 465, 533} tii[15,133] := {161} tii[15,134] := {355} tii[15,135] := {133, 388} tii[15,136] := {225} tii[15,137] := {13, 255} tii[15,138] := {295} tii[15,139] := {108, 216, 332, 429} tii[15,140] := {33, 339} tii[15,141] := {29, 320} tii[15,142] := {135, 265} tii[15,143] := {251} tii[15,144] := {22, 139, 361, 495} tii[15,145] := {444} tii[15,146] := {162, 270, 363, 472} tii[15,147] := {60, 398} tii[15,148] := {88, 210, 215, 313} tii[15,149] := {412, 500} tii[15,150] := {337} tii[15,151] := {6, 99, 305, 452} tii[15,152] := {49, 218, 427, 521} tii[15,153] := {65, 157, 264, 285} tii[15,154] := {356, 459} tii[15,155] := {76, 159, 480, 481} tii[15,156] := {416} tii[15,157] := {192} tii[15,158] := {21, 126, 467, 471} tii[15,159] := {55, 382} tii[15,160] := {111, 304, 334, 423} tii[15,161] := {17, 147, 364, 496} tii[15,162] := {381, 477} tii[15,163] := {5, 83, 414, 424} tii[15,164] := {273} tii[15,165] := {101, 453} tii[15,166] := {48, 183, 503, 513} tii[15,167] := {328, 501} tii[15,168] := {50, 184, 326, 347} tii[15,169] := {293, 407} tii[15,170] := {116, 220, 517, 518} tii[15,171] := {77, 246, 482, 532} tii[15,172] := {2, 51, 362, 372} tii[15,173] := {266, 484} tii[15,174] := {97, 315, 504, 546} tii[15,175] := {92, 442} tii[15,176] := {39, 180, 422, 510} tii[15,177] := {151, 497} tii[15,178] := {11, 84, 419, 430} tii[15,179] := {167, 283, 539, 540} tii[15,180] := {143, 378, 530, 551} tii[15,181] := {23} tii[15,182] := {10, 34} tii[15,183] := {74} tii[15,184] := {30, 231} tii[15,185] := {25, 59} tii[15,186] := {123} tii[15,187] := {20, 62, 172, 286} tii[15,188] := {8, 86, 125, 222} tii[15,189] := {137} tii[15,190] := {56, 144} tii[15,191] := {32, 98} tii[15,192] := {70, 148, 268, 396} tii[15,193] := {214} tii[15,194] := {28, 100, 103, 186} tii[15,195] := {24, 130, 158, 281} tii[15,196] := {15, 63, 142, 160} tii[15,197] := {229, 349} tii[15,198] := {7, 35, 179, 187} tii[15,199] := {136} tii[15,200] := {68, 240, 269, 365} tii[15,201] := {14, 146} tii[15,202] := {213} tii[15,203] := {26, 129, 259, 280} tii[15,204] := {9, 107, 185, 346} tii[15,205] := {227, 348} tii[15,206] := {3, 52, 239, 248} tii[15,207] := {205, 437} tii[15,208] := {4, 207} tii[15,209] := {1, 64, 245, 405} tii[15,210] := {0, 27, 302, 314} cell#90 , |C| = 105 special orbit = [3, 3, 3, 3, 1, 1, 1] special rep = [[1, 1], [2, 2, 1]] , dim = 105 cell rep = phi[[1, 1],[2, 2, 1]] TII depth = 4 TII multiplicity polynomial = 105*X TII subcells: tii[9,1] := {42} tii[9,2] := {69} tii[9,3] := {76} tii[9,4] := {56} tii[9,5] := {70} tii[9,6] := {48} tii[9,7] := {84} tii[9,8] := {61} tii[9,9] := {91} tii[9,10] := {82} tii[9,11] := {88} tii[9,12] := {87} tii[9,13] := {85} tii[9,14] := {94} tii[9,15] := {96} tii[9,16] := {102} tii[9,17] := {101} tii[9,18] := {104} tii[9,19] := {30} tii[9,20] := {6} tii[9,21] := {14} tii[9,22] := {43} tii[9,23] := {53} tii[9,24] := {31} tii[9,25] := {35} tii[9,26] := {55} tii[9,27] := {12} tii[9,28] := {49} tii[9,29] := {22} tii[9,30] := {19} tii[9,31] := {57} tii[9,32] := {24} tii[9,33] := {68} tii[9,34] := {17} tii[9,35] := {32} tii[9,36] := {66} tii[9,37] := {75} tii[9,38] := {74} tii[9,39] := {44} tii[9,40] := {38} tii[9,41] := {51} tii[9,42] := {52} tii[9,43] := {83} tii[9,44] := {58} tii[9,45] := {90} tii[9,46] := {89} tii[9,47] := {98} tii[9,48] := {77} tii[9,49] := {20} tii[9,50] := {33} tii[9,51] := {29} tii[9,52] := {36} tii[9,53] := {71} tii[9,54] := {46} tii[9,55] := {50} tii[9,56] := {26} tii[9,57] := {80} tii[9,58] := {59} tii[9,59] := {65} tii[9,60] := {64} tii[9,61] := {93} tii[9,62] := {41} tii[9,63] := {37} tii[9,64] := {72} tii[9,65] := {100} tii[9,66] := {60} tii[9,67] := {99} tii[9,68] := {103} tii[9,69] := {79} tii[9,70] := {78} tii[9,71] := {92} tii[9,72] := {97} tii[9,73] := {73} tii[9,74] := {95} tii[9,75] := {3} tii[9,76] := {8} tii[9,77] := {1} tii[9,78] := {15} tii[9,79] := {11} tii[9,80] := {16} tii[9,81] := {4} tii[9,82] := {27} tii[9,83] := {9} tii[9,84] := {21} tii[9,85] := {39} tii[9,86] := {23} tii[9,87] := {40} tii[9,88] := {5} tii[9,89] := {54} tii[9,90] := {28} tii[9,91] := {25} tii[9,92] := {7} tii[9,93] := {45} tii[9,94] := {34} tii[9,95] := {10} tii[9,96] := {63} tii[9,97] := {62} tii[9,98] := {86} tii[9,99] := {67} tii[9,100] := {13} tii[9,101] := {18} tii[9,102] := {47} tii[9,103] := {81} tii[9,104] := {0} tii[9,105] := {2} cell#91 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {120} tii[8,2] := {89} tii[8,3] := {126} tii[8,4] := {70} tii[8,5] := {115} tii[8,6] := {58, 137} tii[8,7] := {84, 139} tii[8,8] := {122} tii[8,9] := {111, 130} tii[8,10] := {80} tii[8,11] := {93} tii[8,12] := {75, 109} tii[8,13] := {20} tii[8,14] := {107} tii[8,15] := {34} tii[8,16] := {47} tii[8,17] := {74} tii[8,18] := {90} tii[8,19] := {49} tii[8,20] := {73} tii[8,21] := {40, 135} tii[8,22] := {21} tii[8,23] := {99} tii[8,24] := {68} tii[8,25] := {62, 138} tii[8,26] := {92} tii[8,27] := {88} tii[8,28] := {71} tii[8,29] := {25, 127} tii[8,30] := {110} tii[8,31] := {33} tii[8,32] := {17, 117} tii[8,33] := {108} tii[8,34] := {94, 121} tii[8,35] := {52} tii[8,36] := {43, 134} tii[8,37] := {57, 129} tii[8,38] := {48} tii[8,39] := {100} tii[8,40] := {72} tii[8,41] := {82, 114} tii[8,42] := {64, 105} tii[8,43] := {12} tii[8,44] := {78} tii[8,45] := {103} tii[8,46] := {98} tii[8,47] := {42, 131} tii[8,48] := {50} tii[8,49] := {18} tii[8,50] := {118} tii[8,51] := {63, 136} tii[8,52] := {30, 123} tii[8,53] := {35} tii[8,54] := {77, 133} tii[8,55] := {31} tii[8,56] := {81} tii[8,57] := {79} tii[8,58] := {46, 132} tii[8,59] := {51} tii[8,60] := {60, 97} tii[8,61] := {102} tii[8,62] := {95, 124} tii[8,63] := {44, 86} tii[8,64] := {41} tii[8,65] := {61} tii[8,66] := {56, 96} tii[8,67] := {3} tii[8,68] := {8} tii[8,69] := {4} tii[8,70] := {32} tii[8,71] := {13} tii[8,72] := {53} tii[8,73] := {24} tii[8,74] := {37} tii[8,75] := {16, 116} tii[8,76] := {69} tii[8,77] := {10} tii[8,78] := {38} tii[8,79] := {26, 125} tii[8,80] := {9, 101} tii[8,81] := {91} tii[8,82] := {22} tii[8,83] := {54} tii[8,84] := {39, 119} tii[8,85] := {6, 85} tii[8,86] := {28, 106} tii[8,87] := {5} tii[8,88] := {59} tii[8,89] := {29, 128} tii[8,90] := {55} tii[8,91] := {14} tii[8,92] := {83} tii[8,93] := {11, 104} tii[8,94] := {36} tii[8,95] := {76, 113} tii[8,96] := {45, 87} tii[8,97] := {1} tii[8,98] := {67} tii[8,99] := {7} tii[8,100] := {19, 112} tii[8,101] := {23} tii[8,102] := {27, 66} tii[8,103] := {0} tii[8,104] := {15} tii[8,105] := {2, 65} cell#92 , |C| = 154 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[2],[2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 14*X+70*X^2 TII subcells: tii[14,1] := {69} tii[14,2] := {61, 100} tii[14,3] := {82, 113} tii[14,4] := {88} tii[14,5] := {98} tii[14,6] := {40, 115} tii[14,7] := {90, 120} tii[14,8] := {62, 129} tii[14,9] := {59, 132} tii[14,10] := {48, 141} tii[14,11] := {83, 143} tii[14,12] := {95, 150} tii[14,13] := {74} tii[14,14] := {92} tii[14,15] := {25, 109} tii[14,16] := {75, 110} tii[14,17] := {42, 124} tii[14,18] := {72} tii[14,19] := {38, 126} tii[14,20] := {29, 139} tii[14,21] := {55, 94} tii[14,22] := {63, 140} tii[14,23] := {37, 106} tii[14,24] := {76, 149} tii[14,25] := {31, 108} tii[14,26] := {21, 118} tii[14,27] := {54, 119} tii[14,28] := {11, 105} tii[14,29] := {68, 136} tii[14,30] := {45, 117} tii[14,31] := {89} tii[14,32] := {99} tii[14,33] := {13, 116} tii[14,34] := {91, 121} tii[14,35] := {27, 131} tii[14,36] := {80} tii[14,37] := {23, 133} tii[14,38] := {15, 142} tii[14,39] := {71, 104} tii[14,40] := {43, 145} tii[14,41] := {53, 112} tii[14,42] := {56, 151} tii[14,43] := {60} tii[14,44] := {17, 125} tii[14,45] := {49, 84} tii[14,46] := {10, 137} tii[14,47] := {35, 138} tii[14,48] := {4, 122} tii[14,49] := {33, 96} tii[14,50] := {47, 148} tii[14,51] := {20, 86} tii[14,52] := {28, 135} tii[14,53] := {24, 134} tii[14,54] := {16, 144} tii[14,55] := {44, 146} tii[14,56] := {8, 130} tii[14,57] := {57, 152} tii[14,58] := {2, 114} tii[14,59] := {46, 147} tii[14,60] := {58, 153} tii[14,61] := {51} tii[14,62] := {34, 65} tii[14,63] := {79} tii[14,64] := {41, 81} tii[14,65] := {70, 103} tii[14,66] := {52, 111} tii[14,67] := {50} tii[14,68] := {26, 101} tii[14,69] := {36, 73} tii[14,70] := {32, 127} tii[14,71] := {22, 87} tii[14,72] := {12, 66} tii[14,73] := {39} tii[14,74] := {14, 93} tii[14,75] := {30, 64} tii[14,76] := {19, 77} tii[14,77] := {18, 123} tii[14,78] := {5, 85} tii[14,79] := {9, 67} tii[14,80] := {3, 78} tii[14,81] := {6, 102} tii[14,82] := {7, 128} tii[14,83] := {1, 107} tii[14,84] := {0, 97} cell#93 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {125} tii[7,2] := {110} tii[7,3] := {52, 142} tii[7,4] := {74, 145} tii[7,5] := {118} tii[7,6] := {102, 130} tii[7,7] := {89} tii[7,8] := {40, 139} tii[7,9] := {56, 144} tii[7,10] := {29, 126} tii[7,11] := {100} tii[7,12] := {24, 112} tii[7,13] := {80, 116} tii[7,14] := {44, 138} tii[7,15] := {50, 128} tii[7,16] := {90} tii[7,17] := {72, 109} tii[7,18] := {58, 95} tii[7,19] := {70} tii[7,20] := {28, 143} tii[7,21] := {43, 146} tii[7,22] := {78} tii[7,23] := {19, 133} tii[7,24] := {14, 121} tii[7,25] := {62, 98} tii[7,26] := {30, 141} tii[7,27] := {36, 137} tii[7,28] := {11, 119} tii[7,29] := {71} tii[7,30] := {8, 103} tii[7,31] := {21, 131} tii[7,32] := {54, 87} tii[7,33] := {5, 83} tii[7,34] := {45, 76} tii[7,35] := {26, 123} tii[7,36] := {22, 129} tii[7,37] := {79} tii[7,38] := {63, 99} tii[7,39] := {49, 85} tii[7,40] := {37, 97} tii[7,41] := {68} tii[7,42] := {93} tii[7,43] := {88} tii[7,44] := {42, 132} tii[7,45] := {113} tii[7,46] := {57, 140} tii[7,47] := {35, 120} tii[7,48] := {66, 136} tii[7,49] := {69} tii[7,50] := {20, 111} tii[7,51] := {47, 134} tii[7,52] := {92} tii[7,53] := {15, 91} tii[7,54] := {31, 124} tii[7,55] := {82, 122} tii[7,56] := {38, 114} tii[7,57] := {10, 75} tii[7,58] := {33, 96} tii[7,59] := {53} tii[7,60] := {7, 101} tii[7,61] := {34, 127} tii[7,62] := {73} tii[7,63] := {4, 81} tii[7,64] := {12, 117} tii[7,65] := {16, 94} tii[7,66] := {2, 65} tii[7,67] := {17, 107} tii[7,68] := {64, 106} tii[7,69] := {13, 115} tii[7,70] := {46, 77} tii[7,71] := {1, 51} tii[7,72] := {18, 108} tii[7,73] := {41} tii[7,74] := {23, 135} tii[7,75] := {55} tii[7,76] := {9, 105} tii[7,77] := {48, 84} tii[7,78] := {3, 67} tii[7,79] := {32, 60} tii[7,80] := {27, 86} tii[7,81] := {61} tii[7,82] := {25, 104} tii[7,83] := {6, 59} tii[7,84] := {0, 39} cell#94 , |C| = 140 special orbit = [3, 3, 3, 2, 2, 1, 1] special rep = [[1, 1, 1], [2, 1, 1]] , dim = 105 cell rep = phi[[1, 1, 1],[2, 1, 1]]+phi[[1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 70*X+35*X^2 TII subcells: tii[8,1] := {78} tii[8,2] := {77} tii[8,3] := {99} tii[8,4] := {98} tii[8,5] := {119} tii[8,6] := {86, 134} tii[8,7] := {107, 139} tii[8,8] := {132} tii[8,9] := {135, 136} tii[8,10] := {118} tii[8,11] := {133} tii[8,12] := {137, 138} tii[8,13] := {8} tii[8,14] := {59} tii[8,15] := {14} tii[8,16] := {20} tii[8,17] := {34} tii[8,18] := {44} tii[8,19] := {19} tii[8,20] := {33} tii[8,21] := {67, 117} tii[8,22] := {21} tii[8,23] := {97} tii[8,24] := {30} tii[8,25] := {87, 126} tii[8,26] := {47} tii[8,27] := {41} tii[8,28] := {60} tii[8,29] := {50, 100} tii[8,30] := {115} tii[8,31] := {29} tii[8,32] := {38, 81} tii[8,33] := {63} tii[8,34] := {122, 123} tii[8,35] := {46} tii[8,36] := {70, 114} tii[8,37] := {91, 92} tii[8,38] := {40} tii[8,39] := {96} tii[8,40] := {62} tii[8,41] := {105, 106} tii[8,42] := {89, 90} tii[8,43] := {31} tii[8,44] := {43} tii[8,45] := {65} tii[8,46] := {58} tii[8,47] := {68, 120} tii[8,48] := {79} tii[8,49] := {42} tii[8,50] := {84} tii[8,51] := {88, 131} tii[8,52] := {52, 102} tii[8,53] := {64} tii[8,54] := {112, 113} tii[8,55] := {57} tii[8,56] := {116} tii[8,57] := {76} tii[8,58] := {69, 121} tii[8,59] := {83} tii[8,60] := {124, 125} tii[8,61] := {104} tii[8,62] := {129, 130} tii[8,63] := {110, 111} tii[8,64] := {75} tii[8,65] := {103} tii[8,66] := {127, 128} tii[8,67] := {1} tii[8,68] := {3} tii[8,69] := {2} tii[8,70] := {13} tii[8,71] := {5} tii[8,72] := {24} tii[8,73] := {9} tii[8,74] := {17} tii[8,75] := {37, 80} tii[8,76] := {28} tii[8,77] := {4} tii[8,78] := {15} tii[8,79] := {53, 95} tii[8,80] := {26, 61} tii[8,81] := {45} tii[8,82] := {10} tii[8,83] := {25} tii[8,84] := {71, 72} tii[8,85] := {18, 48} tii[8,86] := {54, 55} tii[8,87] := {7} tii[8,88] := {56} tii[8,89] := {51, 101} tii[8,90] := {22} tii[8,91] := {16} tii[8,92] := {82} tii[8,93] := {27, 66} tii[8,94] := {35} tii[8,95] := {108, 109} tii[8,96] := {73, 74} tii[8,97] := {12} tii[8,98] := {32} tii[8,99] := {23} tii[8,100] := {39, 85} tii[8,101] := {49} tii[8,102] := {93, 94} tii[8,103] := {0} tii[8,104] := {6} tii[8,105] := {11, 36} cell#95 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {32} tii[11,2] := {24} tii[11,3] := {30, 31} tii[11,4] := {22} tii[11,5] := {28, 29} tii[11,6] := {34, 35} tii[11,7] := {13} tii[11,8] := {20, 21} tii[11,9] := {26, 27} tii[11,10] := {19, 33} tii[11,11] := {7} tii[11,12] := {11, 12} tii[11,13] := {17, 18} tii[11,14] := {10, 25} tii[11,15] := {4, 23} tii[11,16] := {2} tii[11,17] := {5, 6} tii[11,18] := {8, 9} tii[11,19] := {3, 15} tii[11,20] := {1, 14} tii[11,21] := {0, 16} cell#96 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {27} tii[6,2] := {32} tii[6,3] := {23} tii[6,4] := {16} tii[6,5] := {30} tii[6,6] := {34} tii[6,7] := {17} tii[6,8] := {13} tii[6,9] := {25} tii[6,10] := {9} tii[6,11] := {29} tii[6,12] := {33} tii[6,13] := {14} tii[6,14] := {10} tii[6,15] := {19} tii[6,16] := {6} tii[6,17] := {24} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {31} tii[6,21] := {11} tii[6,22] := {7} tii[6,23] := {15} tii[6,24] := {4} tii[6,25] := {18} tii[6,26] := {2} tii[6,27] := {21} tii[6,28] := {1} tii[6,29] := {26} tii[6,30] := {22} tii[6,31] := {20} tii[6,32] := {12} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#97 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {48} tii[7,2] := {66} tii[7,3] := {22, 80} tii[7,4] := {36, 103} tii[7,5] := {79} tii[7,6] := {60, 102} tii[7,7] := {83} tii[7,8] := {33, 100} tii[7,9] := {51, 118} tii[7,10] := {27, 113} tii[7,11] := {99} tii[7,12] := {17, 95} tii[7,13] := {77, 117} tii[7,14] := {42, 129} tii[7,15] := {55, 135} tii[7,16] := {112} tii[7,17] := {94, 128} tii[7,18] := {88, 136} tii[7,19] := {101} tii[7,20] := {45, 108} tii[7,21] := {68, 124} tii[7,22] := {114} tii[7,23] := {39, 121} tii[7,24] := {26, 106} tii[7,25] := {97, 130} tii[7,26] := {57, 134} tii[7,27] := {73, 139} tii[7,28] := {28, 107} tii[7,29] := {125} tii[7,30] := {18, 90} tii[7,31] := {43, 123} tii[7,32] := {111, 138} tii[7,33] := {9, 75} tii[7,34] := {105, 143} tii[7,35] := {56, 132} tii[7,36] := {72, 140} tii[7,37] := {131} tii[7,38] := {120, 142} tii[7,39] := {110, 144} tii[7,40] := {96, 146} tii[7,41] := {15} tii[7,42] := {25} tii[7,43] := {23} tii[7,44] := {14, 63} tii[7,45] := {37} tii[7,46] := {24, 86} tii[7,47] := {7, 50} tii[7,48] := {35, 70} tii[7,49] := {34} tii[7,50] := {20, 98} tii[7,51] := {13, 67} tii[7,52] := {52} tii[7,53] := {12, 76} tii[7,54] := {30, 116} tii[7,55] := {47, 87} tii[7,56] := {41, 126} tii[7,57] := {5, 64} tii[7,58] := {53, 115} tii[7,59] := {46} tii[7,60] := {19, 91} tii[7,61] := {21, 84} tii[7,62] := {69} tii[7,63] := {11, 74} tii[7,64] := {29, 109} tii[7,65] := {10, 81} tii[7,66] := {4, 58} tii[7,67] := {40, 122} tii[7,68] := {65, 104} tii[7,69] := {54, 133} tii[7,70] := {71, 127} tii[7,71] := {2, 44} tii[7,72] := {61, 141} tii[7,73] := {62} tii[7,74] := {32, 93} tii[7,75] := {85} tii[7,76] := {16, 92} tii[7,77] := {82, 119} tii[7,78] := {6, 59} tii[7,79] := {89, 137} tii[7,80] := {78, 145} tii[7,81] := {8} tii[7,82] := {3, 38} tii[7,83] := {1, 49} tii[7,84] := {0, 31} cell#98 , |C| = 105 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[2, 1],[1, 1, 1, 1]]+phi[[],[3, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[12,1] := {68} tii[12,2] := {62} tii[12,3] := {82} tii[12,4] := {42} tii[12,5] := {93} tii[12,6] := {83, 101} tii[12,7] := {59} tii[12,8] := {49, 78} tii[12,9] := {91} tii[12,10] := {27} tii[12,11] := {98} tii[12,12] := {92, 104} tii[12,13] := {87} tii[12,14] := {39} tii[12,15] := {32, 63} tii[12,16] := {75, 99} tii[12,17] := {61, 103} tii[12,18] := {54} tii[12,19] := {38, 72} tii[12,20] := {26, 86} tii[12,21] := {84} tii[12,22] := {13} tii[12,23] := {94} tii[12,24] := {85, 102} tii[12,25] := {24} tii[12,26] := {76} tii[12,27] := {16, 44} tii[12,28] := {67, 95} tii[12,29] := {51, 100} tii[12,30] := {60} tii[12,31] := {37} tii[12,32] := {50, 79} tii[12,33] := {22, 55} tii[12,34] := {12, 70} tii[12,35] := {34, 90} tii[12,36] := {21, 81} tii[12,37] := {25} tii[12,38] := {17, 45} tii[12,39] := {8, 57} tii[12,40] := {2, 47} tii[12,41] := {7} tii[12,42] := {52} tii[12,43] := {18} tii[12,44] := {36} tii[12,45] := {23} tii[12,46] := {77} tii[12,47] := {43} tii[12,48] := {69, 96} tii[12,49] := {53, 80} tii[12,50] := {11} tii[12,51] := {71} tii[12,52] := {29} tii[12,53] := {58, 88} tii[12,54] := {35, 65} tii[12,55] := {41, 97} tii[12,56] := {28, 89} tii[12,57] := {4} tii[12,58] := {40} tii[12,59] := {33, 64} tii[12,60] := {15} tii[12,61] := {19, 74} tii[12,62] := {20, 46} tii[12,63] := {10, 66} tii[12,64] := {14, 73} tii[12,65] := {3, 48} tii[12,66] := {1} tii[12,67] := {6} tii[12,68] := {9, 30} tii[12,69] := {5, 56} tii[12,70] := {0, 31} cell#99 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {64} tii[7,2] := {80} tii[7,3] := {53, 103} tii[7,4] := {70, 121} tii[7,5] := {100} tii[7,6] := {114, 115} tii[7,7] := {63} tii[7,8] := {38, 111} tii[7,9] := {54, 132} tii[7,10] := {27, 133} tii[7,11] := {78} tii[7,12] := {20, 142} tii[7,13] := {90, 91} tii[7,14] := {42, 143} tii[7,15] := {58, 146} tii[7,16] := {101} tii[7,17] := {116, 117} tii[7,18] := {94, 135} tii[7,19] := {48} tii[7,20] := {26, 104} tii[7,21] := {41, 123} tii[7,22] := {62} tii[7,23] := {17, 125} tii[7,24] := {12, 139} tii[7,25] := {68, 69} tii[7,26] := {30, 140} tii[7,27] := {43, 145} tii[7,28] := {11, 110} tii[7,29] := {79} tii[7,30] := {8, 129} tii[7,31] := {21, 130} tii[7,32] := {92, 93} tii[7,33] := {5, 109} tii[7,34] := {71, 113} tii[7,35] := {32, 141} tii[7,36] := {45, 126} tii[7,37] := {102} tii[7,38] := {118, 119} tii[7,39] := {95, 136} tii[7,40] := {76, 127} tii[7,41] := {25} tii[7,42] := {37} tii[7,43] := {35} tii[7,44] := {39, 81} tii[7,45] := {50} tii[7,46] := {55, 99} tii[7,47] := {29, 65} tii[7,48] := {74, 75} tii[7,49] := {47} tii[7,50] := {18, 124} tii[7,51] := {40, 83} tii[7,52] := {66} tii[7,53] := {13, 137} tii[7,54] := {31, 138} tii[7,55] := {96, 97} tii[7,56] := {44, 144} tii[7,57] := {10, 120} tii[7,58] := {60, 134} tii[7,59] := {34} tii[7,60] := {7, 87} tii[7,61] := {28, 89} tii[7,62] := {49} tii[7,63] := {4, 107} tii[7,64] := {14, 108} tii[7,65] := {15, 131} tii[7,66] := {2, 85} tii[7,67] := {23, 128} tii[7,68] := {72, 73} tii[7,69] := {33, 105} tii[7,70] := {77, 112} tii[7,71] := {1, 67} tii[7,72] := {46, 82} tii[7,73] := {24} tii[7,74] := {19, 84} tii[7,75] := {36} tii[7,76] := {9, 122} tii[7,77] := {56, 57} tii[7,78] := {3, 86} tii[7,79] := {59, 88} tii[7,80] := {61, 106} tii[7,81] := {16} tii[7,82] := {22, 51} tii[7,83] := {6, 98} tii[7,84] := {0, 52} cell#100 , |C| = 147 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1]] , dim = 84 cell rep = phi[[1, 1],[2, 1, 1, 1]]+phi[[1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 21*X+63*X^2 TII subcells: tii[7,1] := {51} tii[7,2] := {72} tii[7,3] := {38, 100} tii[7,4] := {64, 119} tii[7,5] := {98} tii[7,6] := {114, 115} tii[7,7] := {102} tii[7,8] := {61, 112} tii[7,9] := {90, 131} tii[7,10] := {86, 87} tii[7,11] := {124} tii[7,12] := {59, 63} tii[7,13] := {137, 138} tii[7,14] := {110, 118} tii[7,15] := {94, 134} tii[7,16] := {133} tii[7,17] := {142, 143} tii[7,18] := {132, 146} tii[7,19] := {83} tii[7,20] := {50, 101} tii[7,21] := {81, 120} tii[7,22] := {109} tii[7,23] := {71, 74} tii[7,24] := {47, 53} tii[7,25] := {129, 130} tii[7,26] := {95, 106} tii[7,27] := {82, 126} tii[7,28] := {49, 52} tii[7,29] := {125} tii[7,30] := {25, 31} tii[7,31] := {69, 80} tii[7,32] := {139, 140} tii[7,33] := {16, 19} tii[7,34] := {121, 145} tii[7,35] := {57, 103} tii[7,36] := {70, 127} tii[7,37] := {99} tii[7,38] := {116, 117} tii[7,39] := {91, 136} tii[7,40] := {68, 128} tii[7,41] := {6} tii[7,42] := {18} tii[7,43] := {15} tii[7,44] := {20, 75} tii[7,45] := {32} tii[7,46] := {42, 97} tii[7,47] := {12, 54} tii[7,48] := {65, 66} tii[7,49] := {26} tii[7,50] := {60, 62} tii[7,51] := {22, 77} tii[7,52] := {55} tii[7,53] := {37, 41} tii[7,54] := {84, 89} tii[7,55] := {92, 93} tii[7,56] := {67, 113} tii[7,57] := {21, 23} tii[7,58] := {85, 135} tii[7,59] := {48} tii[7,60] := {27, 29} tii[7,61] := {40, 88} tii[7,62] := {79} tii[7,63] := {14, 17} tii[7,64] := {45, 56} tii[7,65] := {39, 43} tii[7,66] := {7, 9} tii[7,67] := {35, 73} tii[7,68] := {122, 123} tii[7,69] := {46, 104} tii[7,70] := {111, 144} tii[7,71] := {2, 4} tii[7,72] := {24, 76} tii[7,73] := {36} tii[7,74] := {30, 78} tii[7,75] := {58} tii[7,76] := {28, 33} tii[7,77] := {107, 108} tii[7,78] := {8, 10} tii[7,79] := {96, 141} tii[7,80] := {44, 105} tii[7,81] := {3} tii[7,82] := {5, 34} tii[7,83] := {11, 13} tii[7,84] := {0, 1} cell#101 , |C| = 49 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[4,1] := {16} tii[4,2] := {23} tii[4,3] := {30} tii[4,4] := {20, 39} tii[4,5] := {31} tii[4,6] := {37} tii[4,7] := {29, 44} tii[4,8] := {41} tii[4,9] := {35, 47} tii[4,10] := {34, 48} tii[4,11] := {2} tii[4,12] := {10} tii[4,13] := {3} tii[4,14] := {7} tii[4,15] := {5} tii[4,16] := {21} tii[4,17] := {11} tii[4,18] := {13, 32} tii[4,19] := {9, 25} tii[4,20] := {36} tii[4,21] := {8} tii[4,22] := {28, 43} tii[4,23] := {17} tii[4,24] := {26, 45} tii[4,25] := {15, 33} tii[4,26] := {19, 42} tii[4,27] := {14} tii[4,28] := {24} tii[4,29] := {22, 40} tii[4,30] := {27, 46} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {4} tii[4,34] := {6, 18} tii[4,35] := {12, 38} cell#102 , |C| = 49 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[4,1] := {16} tii[4,2] := {23} tii[4,3] := {30} tii[4,4] := {20, 39} tii[4,5] := {31} tii[4,6] := {37} tii[4,7] := {29, 44} tii[4,8] := {41} tii[4,9] := {35, 47} tii[4,10] := {34, 48} tii[4,11] := {2} tii[4,12] := {10} tii[4,13] := {3} tii[4,14] := {7} tii[4,15] := {5} tii[4,16] := {21} tii[4,17] := {11} tii[4,18] := {13, 32} tii[4,19] := {9, 25} tii[4,20] := {36} tii[4,21] := {8} tii[4,22] := {28, 43} tii[4,23] := {17} tii[4,24] := {26, 45} tii[4,25] := {15, 33} tii[4,26] := {19, 42} tii[4,27] := {14} tii[4,28] := {24} tii[4,29] := {22, 40} tii[4,30] := {27, 46} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {4} tii[4,34] := {6, 18} tii[4,35] := {12, 38} cell#103 , |C| = 36 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[2],[1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+15*X^2 TII subcells: tii[11,1] := {29} tii[11,2] := {32} tii[11,3] := {30, 35} tii[11,4] := {26} tii[11,5] := {23, 33} tii[11,6] := {17, 34} tii[11,7] := {20} tii[11,8] := {16, 27} tii[11,9] := {11, 31} tii[11,10] := {8, 28} tii[11,11] := {12} tii[11,12] := {10, 21} tii[11,13] := {7, 25} tii[11,14] := {5, 22} tii[11,15] := {3, 24} tii[11,16] := {9} tii[11,17] := {6, 13} tii[11,18] := {4, 19} tii[11,19] := {2, 14} tii[11,20] := {1, 18} tii[11,21] := {0, 15} cell#104 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {19} tii[6,2] := {26} tii[6,3] := {22} tii[6,4] := {17} tii[6,5] := {30} tii[6,6] := {31} tii[6,7] := {18} tii[6,8] := {12} tii[6,9] := {25} tii[6,10] := {11} tii[6,11] := {27} tii[6,12] := {32} tii[6,13] := {13} tii[6,14] := {9} tii[6,15] := {21} tii[6,16] := {7} tii[6,17] := {23} tii[6,18] := {5} tii[6,19] := {28} tii[6,20] := {33} tii[6,21] := {10} tii[6,22] := {6} tii[6,23] := {16} tii[6,24] := {4} tii[6,25] := {20} tii[6,26] := {2} tii[6,27] := {24} tii[6,28] := {1} tii[6,29] := {29} tii[6,30] := {34} tii[6,31] := {15} tii[6,32] := {14} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#105 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {33} tii[6,2] := {34} tii[6,3] := {29} tii[6,4] := {25} tii[6,5] := {32} tii[6,6] := {31} tii[6,7] := {24} tii[6,8] := {18} tii[6,9] := {27} tii[6,10] := {11} tii[6,11] := {26} tii[6,12] := {28} tii[6,13] := {17} tii[6,14] := {10} tii[6,15] := {22} tii[6,16] := {7} tii[6,17] := {20} tii[6,18] := {5} tii[6,19] := {23} tii[6,20] := {21} tii[6,21] := {9} tii[6,22] := {6} tii[6,23] := {14} tii[6,24] := {4} tii[6,25] := {12} tii[6,26] := {2} tii[6,27] := {15} tii[6,28] := {1} tii[6,29] := {13} tii[6,30] := {16} tii[6,31] := {30} tii[6,32] := {19} tii[6,33] := {8} tii[6,34] := {3} tii[6,35] := {0} cell#106 , |C| = 49 special orbit = [3, 2, 2, 2, 2, 1, 1, 1, 1] special rep = [[1, 1, 1], [1, 1, 1, 1]] , dim = 35 cell rep = phi[[1, 1, 1],[1, 1, 1, 1]]+phi[[],[2, 2, 2, 1]] TII depth = 2 TII multiplicity polynomial = 21*X+14*X^2 TII subcells: tii[4,1] := {13} tii[4,2] := {20} tii[4,3] := {27} tii[4,4] := {35, 36} tii[4,5] := {22} tii[4,6] := {32} tii[4,7] := {39, 40} tii[4,8] := {38} tii[4,9] := {44, 45} tii[4,10] := {37, 48} tii[4,11] := {2} tii[4,12] := {8} tii[4,13] := {3} tii[4,14] := {6} tii[4,15] := {5} tii[4,16] := {19} tii[4,17] := {9} tii[4,18] := {23, 24} tii[4,19] := {17, 18} tii[4,20] := {33} tii[4,21] := {7} tii[4,22] := {41, 42} tii[4,23] := {14} tii[4,24] := {29, 47} tii[4,25] := {25, 26} tii[4,26] := {21, 43} tii[4,27] := {10} tii[4,28] := {16} tii[4,29] := {30, 31} tii[4,30] := {28, 46} tii[4,31] := {0} tii[4,32] := {1} tii[4,33] := {4} tii[4,34] := {11, 12} tii[4,35] := {15, 34} cell#107 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {7} tii[6,2] := {14} tii[6,3] := {16} tii[6,4] := {25} tii[6,5] := {27} tii[6,6] := {33} tii[6,7] := {10} tii[6,8] := {19} tii[6,9] := {20} tii[6,10] := {8} tii[6,11] := {29} tii[6,12] := {17} tii[6,13] := {15} tii[6,14] := {24} tii[6,15] := {26} tii[6,16] := {12} tii[6,17] := {32} tii[6,18] := {6} tii[6,19] := {28} tii[6,20] := {34} tii[6,21] := {11} tii[6,22] := {21} tii[6,23] := {22} tii[6,24] := {9} tii[6,25] := {30} tii[6,26] := {4} tii[6,27] := {23} tii[6,28] := {1} tii[6,29] := {31} tii[6,30] := {18} tii[6,31] := {3} tii[6,32] := {13} tii[6,33] := {5} tii[6,34] := {2} tii[6,35] := {0} cell#108 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {10} tii[3,2] := {16} tii[3,3] := {9, 21} tii[3,4] := {19} tii[3,5] := {14, 25} tii[3,6] := {11, 28} tii[3,7] := {22} tii[3,8] := {18, 27} tii[3,9] := {13, 31} tii[3,10] := {8, 34} tii[3,11] := {20} tii[3,12] := {15, 26} tii[3,13] := {12, 29} tii[3,14] := {6, 33} tii[3,15] := {2, 30} tii[3,16] := {1} tii[3,17] := {5} tii[3,18] := {4, 17} tii[3,19] := {7, 23} tii[3,20] := {3, 32} tii[3,21] := {0, 24} cell#109 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {5, 7} tii[2,3] := {4, 8} tii[2,4] := {3, 12} tii[2,5] := {2, 9} tii[2,6] := {1, 11} tii[2,7] := {0, 10} cell#110 , |C| = 35 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[1],[2, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 35*X TII subcells: tii[6,1] := {10} tii[6,2] := {17} tii[6,3] := {16} tii[6,4] := {9} tii[6,5] := {21} tii[6,6] := {23} tii[6,7] := {19} tii[6,8] := {14} tii[6,9] := {25} tii[6,10] := {11} tii[6,11] := {28} tii[6,12] := {32} tii[6,13] := {18} tii[6,14] := {13} tii[6,15] := {22} tii[6,16] := {8} tii[6,17] := {27} tii[6,18] := {3} tii[6,19] := {31} tii[6,20] := {24} tii[6,21] := {20} tii[6,22] := {15} tii[6,23] := {26} tii[6,24] := {12} tii[6,25] := {29} tii[6,26] := {7} tii[6,27] := {33} tii[6,28] := {2} tii[6,29] := {30} tii[6,30] := {34} tii[6,31] := {5} tii[6,32] := {4} tii[6,33] := {6} tii[6,34] := {1} tii[6,35] := {0} cell#111 , |C| = 35 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[1, 1],[1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+14*X^2 TII subcells: tii[3,1] := {6} tii[3,2] := {12} tii[3,3] := {19, 20} tii[3,4] := {17} tii[3,5] := {24, 26} tii[3,6] := {15, 33} tii[3,7] := {13} tii[3,8] := {21, 22} tii[3,9] := {9, 31} tii[3,10] := {5, 23} tii[3,11] := {18} tii[3,12] := {25, 27} tii[3,13] := {16, 34} tii[3,14] := {8, 29} tii[3,15] := {4, 32} tii[3,16] := {0} tii[3,17] := {3} tii[3,18] := {10, 11} tii[3,19] := {7, 28} tii[3,20] := {2, 14} tii[3,21] := {1, 30} cell#112 , |C| = 13 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+6*X^2 TII subcells: tii[2,1] := {5} tii[2,2] := {6, 7} tii[2,3] := {4, 10} tii[2,4] := {3, 8} tii[2,5] := {2, 11} tii[2,6] := {1, 9} tii[2,7] := {0, 12} cell#113 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}