TII subcells for the SO(13,4) x Sp(16,R) block of SO17 # cell#0 , |C| = 105 special orbit = [9, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[4], [1, 1, 1, 1]] , dim = 70 cell rep = phi[[4],[1, 1, 1, 1]]+phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X+35*X^2 TII subcells: tii[42,1] := {0} tii[42,2] := {25} tii[42,3] := {1} tii[42,4] := {31} tii[42,5] := {3, 53} tii[42,6] := {46} tii[42,7] := {22} tii[42,8] := {40} tii[42,9] := {23, 65} tii[42,10] := {2} tii[42,11] := {32} tii[42,12] := {5, 54} tii[42,13] := {50} tii[42,14] := {28, 72} tii[42,15] := {8, 84} tii[42,16] := {68} tii[42,17] := {44} tii[42,18] := {60} tii[42,19] := {45, 81} tii[42,20] := {19} tii[42,21] := {39} tii[42,22] := {20, 64} tii[42,23] := {62} tii[42,24] := {37, 79} tii[42,25] := {21, 90} tii[42,26] := {4} tii[42,27] := {33} tii[42,28] := {7, 55} tii[42,29] := {51} tii[42,30] := {29, 73} tii[42,31] := {10, 85} tii[42,32] := {70} tii[42,33] := {48, 87} tii[42,34] := {26, 94} tii[42,35] := {12, 99} tii[42,36] := {82} tii[42,37] := {66} tii[42,38] := {75} tii[42,39] := {67, 93} tii[42,40] := {41} tii[42,41] := {59} tii[42,42] := {42, 80} tii[42,43] := {77} tii[42,44] := {57, 92} tii[42,45] := {43, 98} tii[42,46] := {15} tii[42,47] := {38} tii[42,48] := {16, 63} tii[42,49] := {61} tii[42,50] := {36, 78} tii[42,51] := {17, 89} tii[42,52] := {76} tii[42,53] := {58, 91} tii[42,54] := {35, 97} tii[42,55] := {18, 102} tii[42,56] := {6} tii[42,57] := {34} tii[42,58] := {9, 56} tii[42,59] := {52} tii[42,60] := {30, 74} tii[42,61] := {11, 86} tii[42,62] := {71} tii[42,63] := {49, 88} tii[42,64] := {27, 95} tii[42,65] := {13, 100} tii[42,66] := {83} tii[42,67] := {69, 96} tii[42,68] := {47, 101} tii[42,69] := {24, 103} tii[42,70] := {14, 104} cell#1 , |C| = 384 special orbit = [7, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1, 1]] , dim = 224 cell rep = phi[[3],[2, 1, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 64*X+160*X^2 TII subcells: tii[32,1] := {59} tii[32,2] := {42} tii[32,3] := {10, 106} tii[32,4] := {23, 177} tii[32,5] := {101} tii[32,6] := {80} tii[32,7] := {131} tii[32,8] := {102} tii[32,9] := {16, 154} tii[32,10] := {142, 143} tii[32,11] := {40, 238} tii[32,12] := {132} tii[32,13] := {76} tii[32,14] := {11, 214} tii[32,15] := {112, 113} tii[32,16] := {25, 290} tii[32,17] := {32, 267} tii[32,18] := {53, 210} tii[32,19] := {54, 325} tii[32,20] := {87, 341} tii[32,21] := {150} tii[32,22] := {133} tii[32,23] := {185} tii[32,24] := {151} tii[32,25] := {47, 215} tii[32,26] := {200, 201} tii[32,27] := {74, 291} tii[32,28] := {246} tii[32,29] := {187} tii[32,30] := {129} tii[32,31] := {182} tii[32,32] := {15, 268} tii[32,33] := {169, 170} tii[32,34] := {230, 231} tii[32,35] := {38, 326} tii[32,36] := {152} tii[32,37] := {44, 312} tii[32,38] := {67, 262} tii[32,39] := {202, 203} tii[32,40] := {68, 343} tii[32,41] := {252, 253} tii[32,42] := {110, 353} tii[32,43] := {245} tii[32,44] := {183} tii[32,45] := {12, 313} tii[32,46] := {232, 233} tii[32,47] := {27, 344} tii[32,48] := {126} tii[32,49] := {33, 337} tii[32,50] := {55, 307} tii[32,51] := {163, 164} tii[32,52] := {56, 354} tii[32,53] := {216, 217} tii[32,54] := {89, 361} tii[32,55] := {62, 350} tii[32,56] := {97, 334} tii[32,57] := {98, 363} tii[32,58] := {138, 305} tii[32,59] := {139, 368} tii[32,60] := {191, 372} tii[32,61] := {206} tii[32,62] := {188} tii[32,63] := {244} tii[32,64] := {207} tii[32,65] := {83, 269} tii[32,66] := {256, 257} tii[32,67] := {124, 327} tii[32,68] := {247} tii[32,69] := {298} tii[32,70] := {184} tii[32,71] := {241} tii[32,72] := {46, 314} tii[32,73] := {234, 235} tii[32,74] := {282, 283} tii[32,75] := {72, 345} tii[32,76] := {208} tii[32,77] := {81, 338} tii[32,78] := {119, 308} tii[32,79] := {258, 259} tii[32,80] := {120, 355} tii[32,81] := {301, 302} tii[32,82] := {161, 362} tii[32,83] := {329} tii[32,84] := {297} tii[32,85] := {293} tii[32,86] := {243} tii[32,87] := {14, 339} tii[32,88] := {322, 323} tii[32,89] := {286, 287} tii[32,90] := {36, 356} tii[32,91] := {181} tii[32,92] := {239} tii[32,93] := {43, 351} tii[32,94] := {65, 335} tii[32,95] := {228, 229} tii[32,96] := {278, 279} tii[32,97] := {66, 364} tii[32,98] := {274, 275} tii[32,99] := {315, 316} tii[32,100] := {108, 369} tii[32,101] := {209} tii[32,102] := {77, 359} tii[32,103] := {260, 261} tii[32,104] := {114, 348} tii[32,105] := {115, 370} tii[32,106] := {156, 332} tii[32,107] := {303, 304} tii[32,108] := {157, 374} tii[32,109] := {330, 331} tii[32,110] := {212, 377} tii[32,111] := {328} tii[32,112] := {292} tii[32,113] := {13, 352} tii[32,114] := {320, 321} tii[32,115] := {29, 365} tii[32,116] := {240} tii[32,117] := {34, 360} tii[32,118] := {57, 349} tii[32,119] := {280, 281} tii[32,120] := {58, 371} tii[32,121] := {317, 318} tii[32,122] := {91, 375} tii[32,123] := {179} tii[32,124] := {63, 367} tii[32,125] := {224, 225} tii[32,126] := {99, 358} tii[32,127] := {100, 376} tii[32,128] := {140, 347} tii[32,129] := {270, 271} tii[32,130] := {141, 378} tii[32,131] := {309, 310} tii[32,132] := {193, 380} tii[32,133] := {105, 373} tii[32,134] := {148, 366} tii[32,135] := {149, 379} tii[32,136] := {198, 357} tii[32,137] := {199, 381} tii[32,138] := {250, 346} tii[32,139] := {251, 382} tii[32,140] := {295, 383} tii[32,141] := {30} tii[32,142] := {9} tii[32,143] := {0, 21} tii[32,144] := {79} tii[32,145] := {17} tii[32,146] := {60} tii[32,147] := {8, 41} tii[32,148] := {93, 94} tii[32,149] := {31} tii[32,150] := {1, 64} tii[32,151] := {51, 52} tii[32,152] := {22, 85} tii[32,153] := {186} tii[32,154] := {48} tii[32,155] := {128} tii[32,156] := {20, 75} tii[32,157] := {167, 168} tii[32,158] := {103} tii[32,159] := {45} tii[32,160] := {7, 118} tii[32,161] := {69, 70} tii[32,162] := {144, 145} tii[32,163] := {194, 195} tii[32,164] := {39, 111} tii[32,165] := {61} tii[32,166] := {2, 173} tii[32,167] := {95, 96} tii[32,168] := {24, 155} tii[32,169] := {136, 137} tii[32,170] := {86, 189} tii[32,171] := {296} tii[32,172] := {84} tii[32,173] := {242} tii[32,174] := {50, 125} tii[32,175] := {284, 285} tii[32,176] := {180} tii[32,177] := {82} tii[32,178] := {19, 174} tii[32,179] := {121, 122} tii[32,180] := {226, 227} tii[32,181] := {272, 273} tii[32,182] := {73, 162} tii[32,183] := {153} tii[32,184] := {78} tii[32,185] := {204, 205} tii[32,186] := {6, 236} tii[32,187] := {116, 117} tii[32,188] := {254, 255} tii[32,189] := {37, 220} tii[32,190] := {158, 159} tii[32,191] := {299, 300} tii[32,192] := {109, 213} tii[32,193] := {104} tii[32,194] := {3, 288} tii[32,195] := {146, 147} tii[32,196] := {196, 197} tii[32,197] := {26, 276} tii[32,198] := {88, 263} tii[32,199] := {248, 249} tii[32,200] := {190, 294} tii[32,201] := {135} tii[32,202] := {92, 178} tii[32,203] := {134} tii[32,204] := {49, 237} tii[32,205] := {175, 176} tii[32,206] := {123, 223} tii[32,207] := {130} tii[32,208] := {18, 289} tii[32,209] := {171, 172} tii[32,210] := {71, 277} tii[32,211] := {221, 222} tii[32,212] := {160, 266} tii[32,213] := {127} tii[32,214] := {5, 324} tii[32,215] := {165, 166} tii[32,216] := {218, 219} tii[32,217] := {35, 319} tii[32,218] := {107, 311} tii[32,219] := {264, 265} tii[32,220] := {211, 306} tii[32,221] := {4, 342} tii[32,222] := {28, 340} tii[32,223] := {90, 336} tii[32,224] := {192, 333} cell#2 , |C| = 384 special orbit = [7, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [2, 1, 1, 1]] , dim = 224 cell rep = phi[[3],[2, 1, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 64*X+160*X^2 TII subcells: tii[32,1] := {59} tii[32,2] := {42} tii[32,3] := {10, 106} tii[32,4] := {23, 177} tii[32,5] := {101} tii[32,6] := {80} tii[32,7] := {131} tii[32,8] := {102} tii[32,9] := {16, 154} tii[32,10] := {142, 143} tii[32,11] := {40, 238} tii[32,12] := {132} tii[32,13] := {76} tii[32,14] := {11, 214} tii[32,15] := {112, 113} tii[32,16] := {25, 290} tii[32,17] := {32, 267} tii[32,18] := {53, 210} tii[32,19] := {54, 325} tii[32,20] := {87, 341} tii[32,21] := {150} tii[32,22] := {133} tii[32,23] := {185} tii[32,24] := {151} tii[32,25] := {47, 215} tii[32,26] := {200, 201} tii[32,27] := {74, 291} tii[32,28] := {246} tii[32,29] := {187} tii[32,30] := {129} tii[32,31] := {182} tii[32,32] := {15, 268} tii[32,33] := {169, 170} tii[32,34] := {230, 231} tii[32,35] := {38, 326} tii[32,36] := {152} tii[32,37] := {44, 312} tii[32,38] := {67, 262} tii[32,39] := {202, 203} tii[32,40] := {68, 343} tii[32,41] := {252, 253} tii[32,42] := {110, 353} tii[32,43] := {245} tii[32,44] := {183} tii[32,45] := {12, 313} tii[32,46] := {232, 233} tii[32,47] := {27, 344} tii[32,48] := {126} tii[32,49] := {33, 337} tii[32,50] := {55, 307} tii[32,51] := {163, 164} tii[32,52] := {56, 354} tii[32,53] := {216, 217} tii[32,54] := {89, 361} tii[32,55] := {62, 350} tii[32,56] := {97, 334} tii[32,57] := {98, 363} tii[32,58] := {138, 305} tii[32,59] := {139, 368} tii[32,60] := {191, 372} tii[32,61] := {206} tii[32,62] := {188} tii[32,63] := {244} tii[32,64] := {207} tii[32,65] := {83, 269} tii[32,66] := {256, 257} tii[32,67] := {124, 327} tii[32,68] := {247} tii[32,69] := {298} tii[32,70] := {184} tii[32,71] := {241} tii[32,72] := {46, 314} tii[32,73] := {234, 235} tii[32,74] := {282, 283} tii[32,75] := {72, 345} tii[32,76] := {208} tii[32,77] := {81, 338} tii[32,78] := {119, 308} tii[32,79] := {258, 259} tii[32,80] := {120, 355} tii[32,81] := {301, 302} tii[32,82] := {161, 362} tii[32,83] := {329} tii[32,84] := {297} tii[32,85] := {293} tii[32,86] := {243} tii[32,87] := {14, 339} tii[32,88] := {322, 323} tii[32,89] := {286, 287} tii[32,90] := {36, 356} tii[32,91] := {181} tii[32,92] := {239} tii[32,93] := {43, 351} tii[32,94] := {65, 335} tii[32,95] := {228, 229} tii[32,96] := {278, 279} tii[32,97] := {66, 364} tii[32,98] := {274, 275} tii[32,99] := {315, 316} tii[32,100] := {108, 369} tii[32,101] := {209} tii[32,102] := {77, 359} tii[32,103] := {260, 261} tii[32,104] := {114, 348} tii[32,105] := {115, 370} tii[32,106] := {156, 332} tii[32,107] := {303, 304} tii[32,108] := {157, 374} tii[32,109] := {330, 331} tii[32,110] := {212, 377} tii[32,111] := {328} tii[32,112] := {292} tii[32,113] := {13, 352} tii[32,114] := {320, 321} tii[32,115] := {29, 365} tii[32,116] := {240} tii[32,117] := {34, 360} tii[32,118] := {57, 349} tii[32,119] := {280, 281} tii[32,120] := {58, 371} tii[32,121] := {317, 318} tii[32,122] := {91, 375} tii[32,123] := {179} tii[32,124] := {63, 367} tii[32,125] := {224, 225} tii[32,126] := {99, 358} tii[32,127] := {100, 376} tii[32,128] := {140, 347} tii[32,129] := {270, 271} tii[32,130] := {141, 378} tii[32,131] := {309, 310} tii[32,132] := {193, 380} tii[32,133] := {105, 373} tii[32,134] := {148, 366} tii[32,135] := {149, 379} tii[32,136] := {198, 357} tii[32,137] := {199, 381} tii[32,138] := {250, 346} tii[32,139] := {251, 382} tii[32,140] := {295, 383} tii[32,141] := {30} tii[32,142] := {9} tii[32,143] := {0, 21} tii[32,144] := {79} tii[32,145] := {17} tii[32,146] := {60} tii[32,147] := {8, 41} tii[32,148] := {93, 94} tii[32,149] := {31} tii[32,150] := {1, 64} tii[32,151] := {51, 52} tii[32,152] := {22, 85} tii[32,153] := {186} tii[32,154] := {48} tii[32,155] := {128} tii[32,156] := {20, 75} tii[32,157] := {167, 168} tii[32,158] := {103} tii[32,159] := {45} tii[32,160] := {7, 118} tii[32,161] := {69, 70} tii[32,162] := {144, 145} tii[32,163] := {194, 195} tii[32,164] := {39, 111} tii[32,165] := {61} tii[32,166] := {2, 173} tii[32,167] := {95, 96} tii[32,168] := {24, 155} tii[32,169] := {136, 137} tii[32,170] := {86, 189} tii[32,171] := {296} tii[32,172] := {84} tii[32,173] := {242} tii[32,174] := {50, 125} tii[32,175] := {284, 285} tii[32,176] := {180} tii[32,177] := {82} tii[32,178] := {19, 174} tii[32,179] := {121, 122} tii[32,180] := {226, 227} tii[32,181] := {272, 273} tii[32,182] := {73, 162} tii[32,183] := {153} tii[32,184] := {78} tii[32,185] := {204, 205} tii[32,186] := {6, 236} tii[32,187] := {116, 117} tii[32,188] := {254, 255} tii[32,189] := {37, 220} tii[32,190] := {158, 159} tii[32,191] := {299, 300} tii[32,192] := {109, 213} tii[32,193] := {104} tii[32,194] := {3, 288} tii[32,195] := {146, 147} tii[32,196] := {196, 197} tii[32,197] := {26, 276} tii[32,198] := {88, 263} tii[32,199] := {248, 249} tii[32,200] := {190, 294} tii[32,201] := {135} tii[32,202] := {92, 178} tii[32,203] := {134} tii[32,204] := {49, 237} tii[32,205] := {175, 176} tii[32,206] := {123, 223} tii[32,207] := {130} tii[32,208] := {18, 289} tii[32,209] := {171, 172} tii[32,210] := {71, 277} tii[32,211] := {221, 222} tii[32,212] := {160, 266} tii[32,213] := {127} tii[32,214] := {5, 324} tii[32,215] := {165, 166} tii[32,216] := {218, 219} tii[32,217] := {35, 319} tii[32,218] := {107, 311} tii[32,219] := {264, 265} tii[32,220] := {211, 306} tii[32,221] := {4, 342} tii[32,222] := {28, 340} tii[32,223] := {90, 336} tii[32,224] := {192, 333} cell#3 , |C| = 280 special orbit = [5, 5, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[2],[3, 1, 1, 1]] TII depth = 8 TII multiplicity polynomial = 280*X TII subcells: tii[24,1] := {33} tii[24,2] := {94} tii[24,3] := {137} tii[24,4] := {57} tii[24,5] := {71} tii[24,6] := {124} tii[24,7] := {108} tii[24,8] := {173} tii[24,9] := {86} tii[24,10] := {59} tii[24,11] := {158} tii[24,12] := {97} tii[24,13] := {30} tii[24,14] := {202} tii[24,15] := {187} tii[24,16] := {151} tii[24,17] := {224} tii[24,18] := {237} tii[24,19] := {85} tii[24,20] := {104} tii[24,21] := {159} tii[24,22] := {144} tii[24,23] := {203} tii[24,24] := {117} tii[24,25] := {88} tii[24,26] := {123} tii[24,27] := {188} tii[24,28] := {130} tii[24,29] := {51} tii[24,30] := {172} tii[24,31] := {225} tii[24,32] := {105} tii[24,33] := {215} tii[24,34] := {69} tii[24,35] := {181} tii[24,36] := {145} tii[24,37] := {239} tii[24,38] := {175} tii[24,39] := {249} tii[24,40] := {149} tii[24,41] := {118} tii[24,42] := {216} tii[24,43] := {167} tii[24,44] := {80} tii[24,45] := {240} tii[24,46] := {89} tii[24,47] := {233} tii[24,48] := {211} tii[24,49] := {131} tii[24,50] := {53} tii[24,51] := {250} tii[24,52] := {161} tii[24,53] := {27} tii[24,54] := {257} tii[24,55] := {246} tii[24,56] := {230} tii[24,57] := {259} tii[24,58] := {208} tii[24,59] := {264} tii[24,60] := {268} tii[24,61] := {116} tii[24,62] := {139} tii[24,63] := {189} tii[24,64] := {177} tii[24,65] := {226} tii[24,66] := {150} tii[24,67] := {119} tii[24,68] := {156} tii[24,69] := {217} tii[24,70] := {168} tii[24,71] := {79} tii[24,72] := {200} tii[24,73] := {241} tii[24,74] := {140} tii[24,75] := {234} tii[24,76] := {102} tii[24,77] := {212} tii[24,78] := {178} tii[24,79] := {251} tii[24,80] := {206} tii[24,81] := {258} tii[24,82] := {180} tii[24,83] := {186} tii[24,84] := {153} tii[24,85] := {235} tii[24,86] := {223} tii[24,87] := {197} tii[24,88] := {111} tii[24,89] := {252} tii[24,90] := {120} tii[24,91] := {155} tii[24,92] := {247} tii[24,93] := {113} tii[24,94] := {231} tii[24,95] := {169} tii[24,96] := {81} tii[24,97] := {199} tii[24,98] := {260} tii[24,99] := {192} tii[24,100] := {48} tii[24,101] := {220} tii[24,102] := {265} tii[24,103] := {141} tii[24,104] := {255} tii[24,105] := {103} tii[24,106] := {179} tii[24,107] := {244} tii[24,108] := {266} tii[24,109] := {67} tii[24,110] := {228} tii[24,111] := {207} tii[24,112] := {270} tii[24,113] := {227} tii[24,114] := {273} tii[24,115] := {210} tii[24,116] := {185} tii[24,117] := {248} tii[24,118] := {222} tii[24,119] := {147} tii[24,120] := {261} tii[24,121] := {154} tii[24,122] := {256} tii[24,123] := {245} tii[24,124] := {198} tii[24,125] := {112} tii[24,126] := {267} tii[24,127] := {219} tii[24,128] := {77} tii[24,129] := {271} tii[24,130] := {121} tii[24,131] := {263} tii[24,132] := {170} tii[24,133] := {82} tii[24,134] := {254} tii[24,135] := {272} tii[24,136] := {243} tii[24,137] := {193} tii[24,138] := {49} tii[24,139] := {274} tii[24,140] := {214} tii[24,141] := {26} tii[24,142] := {276} tii[24,143] := {269} tii[24,144] := {262} tii[24,145] := {275} tii[24,146] := {253} tii[24,147] := {277} tii[24,148] := {242} tii[24,149] := {278} tii[24,150] := {279} tii[24,151] := {11} tii[24,152] := {25} tii[24,153] := {15} tii[24,154] := {45} tii[24,155] := {8} tii[24,156] := {36} tii[24,157] := {75} tii[24,158] := {24} tii[24,159] := {62} tii[24,160] := {10} tii[24,161] := {47} tii[24,162] := {74} tii[24,163] := {34} tii[24,164] := {91} tii[24,165] := {19} tii[24,166] := {64} tii[24,167] := {133} tii[24,168] := {72} tii[24,169] := {35} tii[24,170] := {42} tii[24,171] := {96} tii[24,172] := {43} tii[24,173] := {63} tii[24,174] := {14} tii[24,175] := {109} tii[24,176] := {6} tii[24,177] := {95} tii[24,178] := {142} tii[24,179] := {46} tii[24,180] := {128} tii[24,181] := {23} tii[24,182] := {76} tii[24,183] := {125} tii[24,184] := {9} tii[24,185] := {107} tii[24,186] := {138} tii[24,187] := {58} tii[24,188] := {157} tii[24,189] := {100} tii[24,190] := {39} tii[24,191] := {201} tii[24,192] := {122} tii[24,193] := {61} tii[24,194] := {68} tii[24,195] := {129} tii[24,196] := {83} tii[24,197] := {99} tii[24,198] := {31} tii[24,199] := {171} tii[24,200] := {194} tii[24,201] := {17} tii[24,202] := {127} tii[24,203] := {106} tii[24,204] := {60} tii[24,205] := {70} tii[24,206] := {146} tii[24,207] := {84} tii[24,208] := {165} tii[24,209] := {98} tii[24,210] := {32} tii[24,211] := {41} tii[24,212] := {40} tii[24,213] := {176} tii[24,214] := {160} tii[24,215] := {126} tii[24,216] := {13} tii[24,217] := {205} tii[24,218] := {5} tii[24,219] := {152} tii[24,220] := {73} tii[24,221] := {195} tii[24,222] := {110} tii[24,223] := {44} tii[24,224] := {21} tii[24,225] := {143} tii[24,226] := {190} tii[24,227] := {7} tii[24,228] := {174} tii[24,229] := {182} tii[24,230] := {204} tii[24,231] := {87} tii[24,232] := {136} tii[24,233] := {65} tii[24,234] := {93} tii[24,235] := {101} tii[24,236] := {166} tii[24,237] := {135} tii[24,238] := {52} tii[24,239] := {164} tii[24,240] := {37} tii[24,241] := {92} tii[24,242] := {114} tii[24,243] := {196} tii[24,244] := {134} tii[24,245] := {55} tii[24,246] := {66} tii[24,247] := {191} tii[24,248] := {163} tii[24,249] := {28} tii[24,250] := {16} tii[24,251] := {184} tii[24,252] := {90} tii[24,253] := {148} tii[24,254] := {221} tii[24,255] := {132} tii[24,256] := {54} tii[24,257] := {78} tii[24,258] := {162} tii[24,259] := {29} tii[24,260] := {218} tii[24,261] := {38} tii[24,262] := {213} tii[24,263] := {183} tii[24,264] := {12} tii[24,265] := {4} tii[24,266] := {209} tii[24,267] := {238} tii[24,268] := {236} tii[24,269] := {232} tii[24,270] := {229} tii[24,271] := {0} tii[24,272] := {22} tii[24,273] := {1} tii[24,274] := {56} tii[24,275] := {20} tii[24,276] := {2} tii[24,277] := {115} tii[24,278] := {50} tii[24,279] := {18} tii[24,280] := {3} cell#4 , |C| = 1260 special orbit = [5, 3, 3, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [2, 1, 1, 1]] , dim = 448 cell rep = phi[[2, 1],[2, 1, 1, 1]]+phi[[1, 1],[3, 1, 1, 1]]+phi[[2],[2, 2, 1, 1]]+phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 84*X+140*X^2+224*X^4 TII subcells: tii[17,1] := {93} tii[17,2] := {140, 141} tii[17,3] := {199, 200} tii[17,4] := {155} tii[17,5] := {139} tii[17,6] := {220, 221} tii[17,7] := {169, 170, 403, 404} tii[17,8] := {288, 289, 501, 502} tii[17,9] := {240} tii[17,10] := {333, 334} tii[17,11] := {319} tii[17,12] := {167, 168, 466, 467} tii[17,13] := {241, 487} tii[17,14] := {286, 287, 579, 580} tii[17,15] := {458, 459} tii[17,16] := {557, 558, 559, 560} tii[17,17] := {311, 312} tii[17,18] := {243} tii[17,19] := {337, 338} tii[17,20] := {218} tii[17,21] := {264, 265, 547, 548} tii[17,22] := {421, 422, 654, 655} tii[17,23] := {441, 442} tii[17,24] := {356} tii[17,25] := {336} tii[17,26] := {521, 522} tii[17,27] := {469, 470} tii[17,28] := {460} tii[17,29] := {262, 263, 622, 623} tii[17,30] := {391, 392, 692, 693} tii[17,31] := {443, 444, 724, 725} tii[17,32] := {357, 640} tii[17,33] := {419, 420, 736, 737} tii[17,34] := {569, 570, 799, 800} tii[17,35] := {465} tii[17,36] := {527, 528, 811, 812} tii[17,37] := {611, 612} tii[17,38] := {373, 374, 924, 925} tii[17,39] := {318, 639} tii[17,40] := {708, 709, 710, 711} tii[17,41] := {720, 721, 926, 927} tii[17,42] := {833, 834, 1031, 1032} tii[17,43] := {491} tii[17,44] := {624, 625} tii[17,45] := {615} tii[17,46] := {389, 390, 771, 772} tii[17,47] := {492, 786} tii[17,48] := {567, 568, 881, 882} tii[17,49] := {768} tii[17,50] := {525, 526, 896, 897} tii[17,51] := {760, 761} tii[17,52] := {371, 372, 974, 975} tii[17,53] := {849, 850, 851, 852} tii[17,54] := {607, 916} tii[17,55] := {718, 719, 976, 977} tii[17,56] := {493, 1022} tii[17,57] := {831, 832, 1069, 1070} tii[17,58] := {892, 893} tii[17,59] := {970, 971, 972, 973} tii[17,60] := {1051, 1052, 1053, 1054} tii[17,61] := {360} tii[17,62] := {449, 450} tii[17,63] := {473, 474} tii[17,64] := {335} tii[17,65] := {395, 396, 698, 699} tii[17,66] := {573, 574, 803, 804} tii[17,67] := {600, 601} tii[17,68] := {495} tii[17,69] := {626, 627} tii[17,70] := {472} tii[17,71] := {676, 677} tii[17,72] := {616} tii[17,73] := {393, 394, 773, 774} tii[17,74] := {537, 538, 829, 830} tii[17,75] := {496, 787} tii[17,76] := {602, 603, 873, 874} tii[17,77] := {571, 572, 885, 886} tii[17,78] := {730, 731, 934, 935} tii[17,79] := {621} tii[17,80] := {762, 763} tii[17,81] := {686, 687, 938, 939} tii[17,82] := {515, 516, 1037, 1038} tii[17,83] := {853, 854, 855, 856} tii[17,84] := {456, 785} tii[17,85] := {869, 870, 1039, 1040} tii[17,86] := {954, 955, 1124, 1125} tii[17,87] := {750, 751} tii[17,88] := {644} tii[17,89] := {628} tii[17,90] := {775, 776} tii[17,91] := {813, 814} tii[17,92] := {690, 691, 946, 947} tii[17,93] := {766} tii[17,94] := {535, 536, 906, 907} tii[17,95] := {752, 753, 998, 999} tii[17,96] := {877, 878, 1043, 1044} tii[17,97] := {645, 919} tii[17,98] := {728, 729, 1002, 1003} tii[17,99] := {944, 945} tii[17,100] := {905} tii[17,101] := {684, 685, 1013, 1014} tii[17,102] := {770} tii[17,103] := {825, 826, 1047, 1048} tii[17,104] := {898, 899} tii[17,105] := {513, 514, 1087, 1088} tii[17,106] := {670, 671, 1130, 1131} tii[17,107] := {610, 918} tii[17,108] := {805, 806, 1099, 1100} tii[17,109] := {978, 979, 980, 981} tii[17,110] := {757, 1027} tii[17,111] := {867, 868, 1089, 1090} tii[17,112] := {996, 997, 1132, 1133} tii[17,113] := {754, 755, 1156, 1157} tii[17,114] := {646, 1115} tii[17,115] := {952, 953, 1160, 1161} tii[17,116] := {1063, 1064, 1193, 1194} tii[17,117] := {942, 943, 1134, 1135} tii[17,118] := {904} tii[17,119] := {1008, 1009} tii[17,120] := {809, 810, 1195, 1196} tii[17,121] := {759, 1026} tii[17,122] := {1097, 1098, 1197, 1198} tii[17,123] := {1079, 1080, 1081, 1082} tii[17,124] := {658, 659, 1233, 1234} tii[17,125] := {606, 1114} tii[17,126] := {1144, 1145, 1146, 1147} tii[17,127] := {1154, 1155, 1235, 1236} tii[17,128] := {1201, 1202, 1252, 1253} tii[17,129] := {789} tii[17,130] := {908, 909} tii[17,131] := {902} tii[17,132] := {688, 689, 1019, 1020} tii[17,133] := {790, 1028} tii[17,134] := {875, 876, 1103, 1104} tii[17,135] := {1015, 1016} tii[17,136] := {1018} tii[17,137] := {823, 824, 1109, 1110} tii[17,138] := {668, 669, 1174, 1175} tii[17,139] := {1091, 1092, 1093, 1094} tii[17,140] := {894, 1117} tii[17,141] := {994, 995, 1176, 1177} tii[17,142] := {791, 1185} tii[17,143] := {1061, 1062, 1219, 1220} tii[17,144] := {1112} tii[17,145] := {940, 941, 1180, 1181} tii[17,146] := {1105, 1106} tii[17,147] := {1012, 1186} tii[17,148] := {807, 808, 1225, 1226} tii[17,149] := {1095, 1096, 1227, 1228} tii[17,150] := {1166, 1167, 1168, 1169} tii[17,151] := {656, 657, 1247, 1248} tii[17,152] := {1209, 1210, 1211, 1212} tii[17,153] := {891, 1230} tii[17,154] := {1152, 1153, 1249, 1250} tii[17,155] := {792, 1251} tii[17,156] := {1199, 1200, 1258, 1259} tii[17,157] := {1178, 1179} tii[17,158] := {1221, 1222, 1223, 1224} tii[17,159] := {1243, 1244, 1245, 1246} tii[17,160] := {1254, 1255, 1256, 1257} tii[17,161] := {1} tii[17,162] := {30} tii[17,163] := {8, 9} tii[17,164] := {26, 27} tii[17,165] := {6} tii[17,166] := {119, 120} tii[17,167] := {56} tii[17,168] := {15} tii[17,169] := {81} tii[17,170] := {20, 21} tii[17,171] := {99, 100, 274, 275} tii[17,172] := {77, 78} tii[17,173] := {31} tii[17,174] := {50, 51} tii[17,175] := {189, 190, 365, 366} tii[17,176] := {45, 46, 117, 118} tii[17,177] := {37, 38} tii[17,178] := {59, 60, 222, 223} tii[17,179] := {131} tii[17,180] := {87, 88} tii[17,181] := {32, 33, 144, 145} tii[17,182] := {94, 236} tii[17,183] := {113, 114, 302, 303} tii[17,184] := {195, 196, 197, 198} tii[17,185] := {14} tii[17,186] := {304, 305} tii[17,187] := {134, 135} tii[17,188] := {96} tii[17,189] := {29} tii[17,190] := {219} tii[17,191] := {39, 40} tii[17,192] := {381, 382} tii[17,193] := {260, 261, 543, 544} tii[17,194] := {82, 83, 193, 194} tii[17,195] := {58} tii[17,196] := {89, 90} tii[17,197] := {306, 307, 565, 566} tii[17,198] := {417, 418, 650, 651} tii[17,199] := {212} tii[17,200] := {36} tii[17,201] := {73, 74} tii[17,202] := {101, 102, 339, 340} tii[17,203] := {383, 384, 672, 673} tii[17,204] := {326} tii[17,205] := {258, 259} tii[17,206] := {107, 108, 284, 285} tii[17,207] := {156, 351} tii[17,208] := {148, 149} tii[17,209] := {248, 249, 793, 794} tii[17,210] := {86} tii[17,211] := {65, 66, 226, 227} tii[17,212] := {191, 192, 439, 440} tii[17,213] := {205, 486} tii[17,214] := {561, 562, 795, 796} tii[17,215] := {201, 202, 425, 426} tii[17,216] := {97, 239} tii[17,217] := {296, 297, 298, 299} tii[17,218] := {694, 695, 922, 923} tii[17,219] := {136, 137, 499, 500} tii[17,220] := {125, 126} tii[17,221] := {256, 257, 613, 614} tii[17,222] := {463} tii[17,223] := {109, 110, 341, 342} tii[17,224] := {228, 229} tii[17,225] := {161, 162, 712, 713} tii[17,226] := {415, 416, 714, 715} tii[17,227] := {310, 638} tii[17,228] := {429, 430, 431, 432} tii[17,229] := {242, 777} tii[17,230] := {545, 546, 845, 846} tii[17,231] := {103, 104, 577, 578} tii[17,232] := {700, 701, 702, 703} tii[17,233] := {28} tii[17,234] := {593, 594} tii[17,235] := {158} tii[17,236] := {213, 214} tii[17,237] := {471} tii[17,238] := {55} tii[17,239] := {75, 76} tii[17,240] := {674, 675} tii[17,241] := {533, 534, 827, 828} tii[17,242] := {98} tii[17,243] := {142, 143, 294, 295} tii[17,244] := {150, 151} tii[17,245] := {595, 596, 871, 872} tii[17,246] := {726, 727, 930, 931} tii[17,247] := {129, 130} tii[17,248] := {819, 820} tii[17,249] := {387, 388} tii[17,250] := {71} tii[17,251] := {171, 172, 475, 476} tii[17,252] := {620} tii[17,253] := {682, 683, 936, 937} tii[17,254] := {325} tii[17,255] := {179, 180, 413, 414} tii[17,256] := {232, 233} tii[17,257] := {313, 314, 575, 576} tii[17,258] := {244, 488} tii[17,259] := {511, 512, 1033, 1034} tii[17,260] := {457, 784} tii[17,261] := {660, 661, 990, 991} tii[17,262] := {146} tii[17,263] := {111, 112, 343, 344} tii[17,264] := {290, 291, 591, 592} tii[17,265] := {865, 866, 1035, 1036} tii[17,266] := {597, 598, 1059, 1060} tii[17,267] := {215, 216, 652, 653} tii[17,268] := {950, 951, 1120, 1121} tii[17,269] := {159, 355} tii[17,270] := {433, 434, 435, 436} tii[17,271] := {815, 816, 1045, 1046} tii[17,272] := {619} tii[17,273] := {767} tii[17,274] := {128} tii[17,275] := {385, 386, 764, 765} tii[17,276] := {680, 681} tii[17,277] := {206, 207} tii[17,278] := {662, 663, 1126, 1127} tii[17,279] := {986, 987, 1128, 1129} tii[17,280] := {280, 281, 549, 550} tii[17,281] := {183, 184, 477, 478} tii[17,282] := {448, 783} tii[17,283] := {250, 251, 857, 858} tii[17,284] := {609, 915} tii[17,285] := {231} tii[17,286] := {345, 346} tii[17,287] := {563, 564, 859, 860} tii[17,288] := {509, 510, 863, 864} tii[17,289] := {358, 910} tii[17,290] := {503, 504, 1187, 1188} tii[17,291] := {268, 269, 797, 798} tii[17,292] := {447, 1021} tii[17,293] := {1055, 1056, 1189, 1190} tii[17,294] := {217, 489} tii[17,295] := {581, 582, 583, 584} tii[17,296] := {696, 697, 968, 969} tii[17,297] := {445, 446, 956, 957} tii[17,298] := {175, 176, 734, 735} tii[17,299] := {1136, 1137, 1231, 1232} tii[17,300] := {245, 778} tii[17,301] := {315, 316, 1029, 1030} tii[17,302] := {839, 840, 841, 842} tii[17,303] := {678, 679, 1010, 1011} tii[17,304] := {903} tii[17,305] := {320, 321} tii[17,306] := {278, 279, 632, 633} tii[17,307] := {481, 482} tii[17,308] := {507, 508, 1083, 1084} tii[17,309] := {861, 862, 1085, 1086} tii[17,310] := {758, 1025} tii[17,311] := {367, 368, 1148, 1149} tii[17,312] := {270, 271, 879, 880} tii[17,313] := {948, 949, 1150, 1151} tii[17,314] := {599, 1113} tii[17,315] := {738, 739, 740, 741} tii[17,316] := {494, 1182} tii[17,317] := {1049, 1050, 1207, 1208} tii[17,318] := {958, 959, 960, 961} tii[17,319] := {252, 253, 1067, 1068} tii[17,320] := {1140, 1141, 1142, 1143} tii[17,321] := {54} tii[17,322] := {246} tii[17,323] := {327, 328} tii[17,324] := {95} tii[17,325] := {132, 133} tii[17,326] := {160} tii[17,327] := {224, 225, 427, 428} tii[17,328] := {234, 235} tii[17,329] := {210, 211} tii[17,330] := {127} tii[17,331] := {266, 267, 629, 630} tii[17,332] := {464} tii[17,333] := {531, 532} tii[17,334] := {276, 277, 555, 556} tii[17,335] := {349, 350} tii[17,336] := {361, 641} tii[17,337] := {230} tii[17,338] := {185, 186, 479, 480} tii[17,339] := {423, 424, 748, 749} tii[17,340] := {451, 452, 732, 733} tii[17,341] := {247, 490} tii[17,342] := {329, 330, 801, 802} tii[17,343] := {585, 586, 587, 588} tii[17,344] := {821, 822} tii[17,345] := {322, 323} tii[17,346] := {209} tii[17,347] := {769} tii[17,348] := {529, 530, 900, 901} tii[17,349] := {282, 283, 634, 635} tii[17,350] := {411, 412, 706, 707} tii[17,351] := {483, 484} tii[17,352] := {666, 667, 992, 993} tii[17,353] := {375, 376, 982, 983} tii[17,354] := {348} tii[17,355] := {608, 917} tii[17,356] := {722, 723, 984, 985} tii[17,357] := {397, 398, 932, 933} tii[17,358] := {742, 743, 744, 745} tii[17,359] := {604, 605, 1065, 1066} tii[17,360] := {497, 1023} tii[17,361] := {331, 643} tii[17,362] := {835, 836, 1077, 1078} tii[17,363] := {272, 273, 883, 884} tii[17,364] := {453, 454, 1122, 1123} tii[17,365] := {362, 912} tii[17,366] := {962, 963, 964, 965} tii[17,367] := {1017} tii[17,368] := {324} tii[17,369] := {817, 818, 1107, 1108} tii[17,370] := {461, 462} tii[17,371] := {553, 554, 847, 848} tii[17,372] := {895, 1116} tii[17,373] := {409, 410, 779, 780} tii[17,374] := {485} tii[17,375] := {636, 637} tii[17,376] := {664, 665, 1170, 1171} tii[17,377] := {988, 989, 1172, 1173} tii[17,378] := {756, 1184} tii[17,379] := {505, 506, 1213, 1214} tii[17,380] := {541, 542, 1041, 1042} tii[17,381] := {468, 788} tii[17,382] := {401, 402, 1000, 1001} tii[17,383] := {1057, 1058, 1215, 1216} tii[17,384] := {887, 888, 889, 890} tii[17,385] := {647, 1229} tii[17,386] := {517, 518, 1191, 1192} tii[17,387] := {455, 1024} tii[17,388] := {1071, 1072, 1073, 1074} tii[17,389] := {1138, 1139, 1241, 1242} tii[17,390] := {379, 380, 1158, 1159} tii[17,391] := {498, 1183} tii[17,392] := {1203, 1204, 1205, 1206} tii[17,393] := {617, 618} tii[17,394] := {551, 552, 913, 914} tii[17,395] := {781, 782} tii[17,396] := {1004, 1005, 1006, 1007} tii[17,397] := {539, 540, 1101, 1102} tii[17,398] := {519, 520, 1217, 1218} tii[17,399] := {1162, 1163, 1164, 1165} tii[17,400] := {1237, 1238, 1239, 1240} tii[17,401] := {0} tii[17,402] := {2, 3} tii[17,403] := {7} tii[17,404] := {41, 42} tii[17,405] := {4, 5} tii[17,406] := {16} tii[17,407] := {24, 25, 69, 70} tii[17,408] := {12, 13, 52, 53} tii[17,409] := {19} tii[17,410] := {165, 166} tii[17,411] := {10, 11} tii[17,412] := {63, 64, 187, 188} tii[17,413] := {49} tii[17,414] := {121, 122, 292, 293} tii[17,415] := {17, 18, 91, 92} tii[17,416] := {57, 154} tii[17,417] := {79, 80, 363, 364} tii[17,418] := {43, 44, 300, 301} tii[17,419] := {72} tii[17,420] := {523, 524} tii[17,421] := {22, 23} tii[17,422] := {181, 182, 405, 406} tii[17,423] := {369, 370, 716, 717} tii[17,424] := {147} tii[17,425] := {173, 174, 648, 649} tii[17,426] := {34, 35, 152, 153} tii[17,427] := {308, 309, 837, 838} tii[17,428] := {138, 354} tii[17,429] := {203, 204, 920, 921} tii[17,430] := {61, 62, 437, 438} tii[17,431] := {157, 631} tii[17,432] := {123, 124, 843, 844} tii[17,433] := {208} tii[17,434] := {47, 48} tii[17,435] := {407, 408, 704, 705} tii[17,436] := {347} tii[17,437] := {399, 400, 928, 929} tii[17,438] := {67, 68, 237, 238} tii[17,439] := {332, 642} tii[17,440] := {377, 378, 1118, 1119} tii[17,441] := {317, 911} tii[17,442] := {105, 106, 589, 590} tii[17,443] := {163, 164, 966, 967} tii[17,444] := {359, 1111} tii[17,445] := {84, 85} tii[17,446] := {115, 116, 352, 353} tii[17,447] := {177, 178, 746, 747} tii[17,448] := {254, 255, 1075, 1076} cell#5 , |C| = 91 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1, 1]] , dim = 56 cell rep = phi[[3],[1, 1, 1, 1, 1]]+phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X+35*X^2 TII subcells: tii[29,1] := {65} tii[29,2] := {51} tii[29,3] := {57} tii[29,4] := {52, 74} tii[29,5] := {36} tii[29,6] := {46} tii[29,7] := {37, 64} tii[29,8] := {60} tii[29,9] := {43, 73} tii[29,10] := {38, 81} tii[29,11] := {20} tii[29,12] := {33} tii[29,13] := {21, 50} tii[29,14] := {48} tii[29,15] := {31, 63} tii[29,16] := {22, 70} tii[29,17] := {59} tii[29,18] := {45, 72} tii[29,19] := {29, 80} tii[29,20] := {23, 85} tii[29,21] := {6} tii[29,22] := {19} tii[29,23] := {7, 35} tii[29,24] := {34} tii[29,25] := {18, 49} tii[29,26] := {8, 61} tii[29,27] := {47} tii[29,28] := {32, 62} tii[29,29] := {17, 69} tii[29,30] := {9, 78} tii[29,31] := {58} tii[29,32] := {44, 71} tii[29,33] := {30, 79} tii[29,34] := {16, 84} tii[29,35] := {10, 88} tii[29,36] := {0} tii[29,37] := {15} tii[29,38] := {1, 28} tii[29,39] := {27} tii[29,40] := {14, 42} tii[29,41] := {2, 55} tii[29,42] := {41} tii[29,43] := {26, 56} tii[29,44] := {13, 67} tii[29,45] := {3, 75} tii[29,46] := {54} tii[29,47] := {40, 68} tii[29,48] := {25, 76} tii[29,49] := {12, 82} tii[29,50] := {4, 86} tii[29,51] := {66} tii[29,52] := {53, 77} tii[29,53] := {39, 83} tii[29,54] := {24, 87} tii[29,55] := {11, 89} tii[29,56] := {5, 90} cell#6 , |C| = 91 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1, 1]] , dim = 56 cell rep = phi[[3],[1, 1, 1, 1, 1]]+phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X+35*X^2 TII subcells: tii[29,1] := {9} tii[29,2] := {21} tii[29,3] := {10} tii[29,4] := {26, 27} tii[29,5] := {49} tii[29,6] := {19} tii[29,7] := {42, 43} tii[29,8] := {11} tii[29,9] := {28, 29} tii[29,10] := {52, 53} tii[29,11] := {77} tii[29,12] := {46} tii[29,13] := {70, 71} tii[29,14] := {17} tii[29,15] := {38, 39} tii[29,16] := {62, 63} tii[29,17] := {12} tii[29,18] := {30, 31} tii[29,19] := {54, 55} tii[29,20] := {78, 79} tii[29,21] := {90} tii[29,22] := {73} tii[29,23] := {86, 87} tii[29,24] := {44} tii[29,25] := {66, 67} tii[29,26] := {84, 85} tii[29,27] := {16} tii[29,28] := {36, 37} tii[29,29] := {60, 61} tii[29,30] := {82, 83} tii[29,31] := {13} tii[29,32] := {32, 33} tii[29,33] := {56, 57} tii[29,34] := {80, 81} tii[29,35] := {88, 89} tii[29,36] := {76} tii[29,37] := {45} tii[29,38] := {68, 69} tii[29,39] := {18} tii[29,40] := {40, 41} tii[29,41] := {64, 65} tii[29,42] := {4} tii[29,43] := {14, 15} tii[29,44] := {34, 35} tii[29,45] := {58, 59} tii[29,46] := {3} tii[29,47] := {7, 8} tii[29,48] := {24, 25} tii[29,49] := {50, 51} tii[29,50] := {74, 75} tii[29,51] := {0} tii[29,52] := {1, 2} tii[29,53] := {5, 6} tii[29,54] := {22, 23} tii[29,55] := {47, 48} tii[29,56] := {20, 72} cell#7 , |C| = 91 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[3], [1, 1, 1, 1, 1]] , dim = 56 cell rep = phi[[3],[1, 1, 1, 1, 1]]+phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X+35*X^2 TII subcells: tii[29,1] := {9} tii[29,2] := {21} tii[29,3] := {10} tii[29,4] := {26, 27} tii[29,5] := {49} tii[29,6] := {19} tii[29,7] := {42, 43} tii[29,8] := {11} tii[29,9] := {28, 29} tii[29,10] := {52, 53} tii[29,11] := {77} tii[29,12] := {46} tii[29,13] := {70, 71} tii[29,14] := {17} tii[29,15] := {38, 39} tii[29,16] := {62, 63} tii[29,17] := {12} tii[29,18] := {30, 31} tii[29,19] := {54, 55} tii[29,20] := {78, 79} tii[29,21] := {90} tii[29,22] := {73} tii[29,23] := {86, 87} tii[29,24] := {44} tii[29,25] := {66, 67} tii[29,26] := {84, 85} tii[29,27] := {16} tii[29,28] := {36, 37} tii[29,29] := {60, 61} tii[29,30] := {82, 83} tii[29,31] := {13} tii[29,32] := {32, 33} tii[29,33] := {56, 57} tii[29,34] := {80, 81} tii[29,35] := {88, 89} tii[29,36] := {76} tii[29,37] := {45} tii[29,38] := {68, 69} tii[29,39] := {18} tii[29,40] := {40, 41} tii[29,41] := {64, 65} tii[29,42] := {4} tii[29,43] := {14, 15} tii[29,44] := {34, 35} tii[29,45] := {58, 59} tii[29,46] := {3} tii[29,47] := {7, 8} tii[29,48] := {24, 25} tii[29,49] := {50, 51} tii[29,50] := {74, 75} tii[29,51] := {0} tii[29,52] := {1, 2} tii[29,53] := {5, 6} tii[29,54] := {22, 23} tii[29,55] := {47, 48} tii[29,56] := {20, 72} cell#8 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {71} tii[16,2] := {82, 128} tii[16,3] := {113, 170} tii[16,4] := {93} tii[16,5] := {72} tii[16,6] := {100, 157} tii[16,7] := {46, 106} tii[16,8] := {141, 192} tii[16,9] := {83, 184} tii[16,10] := {57, 150} tii[16,11] := {114, 205} tii[16,12] := {144, 216} tii[16,13] := {119} tii[16,14] := {94} tii[16,15] := {127, 185} tii[16,16] := {64, 135} tii[16,17] := {169, 206} tii[16,18] := {73} tii[16,19] := {98, 201} tii[16,20] := {68, 180} tii[16,21] := {47, 107} tii[16,22] := {139, 217} tii[16,23] := {27, 130} tii[16,24] := {162, 225} tii[16,25] := {84, 213} tii[16,26] := {58, 198} tii[16,27] := {115, 226} tii[16,28] := {37, 176} tii[16,29] := {145, 233} tii[16,30] := {173, 238} tii[16,31] := {149} tii[16,32] := {123} tii[16,33] := {156, 202} tii[16,34] := {88, 165} tii[16,35] := {191, 218} tii[16,36] := {95} tii[16,37] := {125, 214} tii[16,38] := {90, 199} tii[16,39] := {65, 136} tii[16,40] := {167, 227} tii[16,41] := {41, 159} tii[16,42] := {188, 234} tii[16,43] := {74} tii[16,44] := {97, 223} tii[16,45] := {48, 108} tii[16,46] := {67, 211} tii[16,47] := {138, 235} tii[16,48] := {43, 196} tii[16,49] := {28, 131} tii[16,50] := {161, 240} tii[16,51] := {14, 152} tii[16,52] := {183, 244} tii[16,53] := {85, 231} tii[16,54] := {59, 221} tii[16,55] := {116, 242} tii[16,56] := {38, 209} tii[16,57] := {146, 246} tii[16,58] := {22, 194} tii[16,59] := {174, 249} tii[16,60] := {193, 253} tii[16,61] := {179} tii[16,62] := {155} tii[16,63] := {126, 215} tii[16,64] := {117, 190} tii[16,65] := {168, 228} tii[16,66] := {124} tii[16,67] := {99, 224} tii[16,68] := {69, 212} tii[16,69] := {89, 166} tii[16,70] := {140, 236} tii[16,71] := {62, 187} tii[16,72] := {163, 241} tii[16,73] := {96} tii[16,74] := {76, 232} tii[16,75] := {50, 222} tii[16,76] := {66, 137} tii[16,77] := {110, 243} tii[16,78] := {30, 210} tii[16,79] := {42, 160} tii[16,80] := {133, 247} tii[16,81] := {25, 182} tii[16,82] := {154, 250} tii[16,83] := {75} tii[16,84] := {60, 239} tii[16,85] := {49, 109} tii[16,86] := {39, 230} tii[16,87] := {87, 248} tii[16,88] := {29, 132} tii[16,89] := {23, 220} tii[16,90] := {112, 251} tii[16,91] := {12, 208} tii[16,92] := {15, 153} tii[16,93] := {143, 254} tii[16,94] := {7, 178} tii[16,95] := {172, 256} tii[16,96] := {40, 245} tii[16,97] := {24, 237} tii[16,98] := {61, 252} tii[16,99] := {13, 229} tii[16,100] := {86, 255} tii[16,101] := {6, 219} tii[16,102] := {111, 257} tii[16,103] := {2, 207} tii[16,104] := {142, 258} tii[16,105] := {171, 259} tii[16,106] := {51} tii[16,107] := {35, 81} tii[16,108] := {55} tii[16,109] := {56, 105} tii[16,110] := {31, 80} tii[16,111] := {20, 104} tii[16,112] := {54} tii[16,113] := {70, 134} tii[16,114] := {34, 79} tii[16,115] := {36, 129} tii[16,116] := {17, 103} tii[16,117] := {10, 122} tii[16,118] := {53} tii[16,119] := {92, 164} tii[16,120] := {33, 78} tii[16,121] := {44, 158} tii[16,122] := {19, 102} tii[16,123] := {21, 151} tii[16,124] := {8, 121} tii[16,125] := {4, 148} tii[16,126] := {52} tii[16,127] := {118, 189} tii[16,128] := {32, 77} tii[16,129] := {18, 101} tii[16,130] := {63, 186} tii[16,131] := {9, 120} tii[16,132] := {26, 181} tii[16,133] := {11, 177} tii[16,134] := {3, 147} tii[16,135] := {1, 175} tii[16,136] := {91, 204} tii[16,137] := {45, 203} tii[16,138] := {16, 200} tii[16,139] := {5, 197} tii[16,140] := {0, 195} cell#9 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {91} tii[16,2] := {40, 131} tii[16,3] := {58, 171} tii[16,4] := {121} tii[16,5] := {90} tii[16,6] := {22, 160} tii[16,7] := {113, 114} tii[16,8] := {36, 192} tii[16,9] := {39, 184} tii[16,10] := {55, 154} tii[16,11] := {56, 205} tii[16,12] := {77, 216} tii[16,13] := {150} tii[16,14] := {118} tii[16,15] := {11, 185} tii[16,16] := {143, 144} tii[16,17] := {19, 206} tii[16,18] := {89} tii[16,19] := {21, 201} tii[16,20] := {33, 180} tii[16,21] := {111, 112} tii[16,22] := {34, 217} tii[16,23] := {136, 137} tii[16,24] := {50, 225} tii[16,25] := {38, 213} tii[16,26] := {53, 198} tii[16,27] := {54, 226} tii[16,28] := {74, 176} tii[16,29] := {75, 233} tii[16,30] := {99, 238} tii[16,31] := {174} tii[16,32] := {147} tii[16,33] := {3, 202} tii[16,34] := {168, 169} tii[16,35] := {9, 218} tii[16,36] := {117} tii[16,37] := {10, 214} tii[16,38] := {16, 199} tii[16,39] := {141, 142} tii[16,40] := {17, 227} tii[16,41] := {163, 164} tii[16,42] := {30, 234} tii[16,43] := {88} tii[16,44] := {20, 223} tii[16,45] := {109, 110} tii[16,46] := {31, 211} tii[16,47] := {32, 235} tii[16,48] := {47, 196} tii[16,49] := {134, 135} tii[16,50] := {48, 240} tii[16,51] := {157, 158} tii[16,52] := {71, 244} tii[16,53] := {37, 231} tii[16,54] := {51, 221} tii[16,55] := {52, 242} tii[16,56] := {72, 209} tii[16,57] := {73, 246} tii[16,58] := {96, 194} tii[16,59] := {97, 249} tii[16,60] := {125, 253} tii[16,61] := {193} tii[16,62] := {173} tii[16,63] := {2, 215} tii[16,64] := {189, 190} tii[16,65] := {6, 228} tii[16,66] := {146} tii[16,67] := {7, 224} tii[16,68] := {13, 212} tii[16,69] := {166, 167} tii[16,70] := {14, 236} tii[16,71] := {186, 187} tii[16,72] := {24, 241} tii[16,73] := {116} tii[16,74] := {15, 232} tii[16,75] := {26, 222} tii[16,76] := {139, 140} tii[16,77] := {27, 243} tii[16,78] := {41, 210} tii[16,79] := {161, 162} tii[16,80] := {42, 247} tii[16,81] := {181, 182} tii[16,82] := {64, 250} tii[16,83] := {87} tii[16,84] := {28, 239} tii[16,85] := {107, 108} tii[16,86] := {43, 230} tii[16,87] := {44, 248} tii[16,88] := {132, 133} tii[16,89] := {65, 220} tii[16,90] := {66, 251} tii[16,91] := {92, 208} tii[16,92] := {155, 156} tii[16,93] := {93, 254} tii[16,94] := {177, 178} tii[16,95] := {120, 256} tii[16,96] := {46, 245} tii[16,97] := {68, 237} tii[16,98] := {69, 252} tii[16,99] := {94, 229} tii[16,100] := {95, 255} tii[16,101] := {122, 219} tii[16,102] := {123, 257} tii[16,103] := {148, 207} tii[16,104] := {149, 258} tii[16,105] := {172, 259} tii[16,106] := {67} tii[16,107] := {45, 86} tii[16,108] := {62} tii[16,109] := {25, 115} tii[16,110] := {84, 85} tii[16,111] := {57, 106} tii[16,112] := {61} tii[16,113] := {12, 145} tii[16,114] := {82, 83} tii[16,115] := {35, 138} tii[16,116] := {104, 105} tii[16,117] := {76, 130} tii[16,118] := {60} tii[16,119] := {4, 170} tii[16,120] := {80, 81} tii[16,121] := {18, 165} tii[16,122] := {102, 103} tii[16,123] := {49, 159} tii[16,124] := {128, 129} tii[16,125] := {98, 153} tii[16,126] := {59} tii[16,127] := {1, 191} tii[16,128] := {78, 79} tii[16,129] := {100, 101} tii[16,130] := {8, 188} tii[16,131] := {126, 127} tii[16,132] := {29, 183} tii[16,133] := {70, 179} tii[16,134] := {151, 152} tii[16,135] := {124, 175} tii[16,136] := {0, 204} tii[16,137] := {5, 203} tii[16,138] := {23, 200} tii[16,139] := {63, 197} tii[16,140] := {119, 195} cell#10 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {48} tii[12,2] := {34} tii[12,3] := {43, 44} tii[12,4] := {20} tii[12,5] := {30, 31} tii[12,6] := {41, 42} tii[12,7] := {11} tii[12,8] := {18, 19} tii[12,9] := {28, 29} tii[12,10] := {39, 40} tii[12,11] := {4} tii[12,12] := {9, 10} tii[12,13] := {16, 17} tii[12,14] := {26, 27} tii[12,15] := {37, 38} tii[12,16] := {3} tii[12,17] := {7, 8} tii[12,18] := {14, 15} tii[12,19] := {24, 25} tii[12,20] := {35, 36} tii[12,21] := {46, 47} tii[12,22] := {0} tii[12,23] := {1, 2} tii[12,24] := {5, 6} tii[12,25] := {12, 13} tii[12,26] := {22, 23} tii[12,27] := {32, 33} tii[12,28] := {21, 45} cell#11 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {91} tii[16,2] := {40, 131} tii[16,3] := {58, 171} tii[16,4] := {121} tii[16,5] := {90} tii[16,6] := {22, 160} tii[16,7] := {113, 114} tii[16,8] := {36, 192} tii[16,9] := {39, 184} tii[16,10] := {55, 154} tii[16,11] := {56, 205} tii[16,12] := {77, 216} tii[16,13] := {150} tii[16,14] := {118} tii[16,15] := {11, 185} tii[16,16] := {143, 144} tii[16,17] := {19, 206} tii[16,18] := {89} tii[16,19] := {21, 201} tii[16,20] := {33, 180} tii[16,21] := {111, 112} tii[16,22] := {34, 217} tii[16,23] := {136, 137} tii[16,24] := {50, 225} tii[16,25] := {38, 213} tii[16,26] := {53, 198} tii[16,27] := {54, 226} tii[16,28] := {74, 176} tii[16,29] := {75, 233} tii[16,30] := {99, 238} tii[16,31] := {174} tii[16,32] := {147} tii[16,33] := {3, 202} tii[16,34] := {168, 169} tii[16,35] := {9, 218} tii[16,36] := {117} tii[16,37] := {10, 214} tii[16,38] := {16, 199} tii[16,39] := {141, 142} tii[16,40] := {17, 227} tii[16,41] := {163, 164} tii[16,42] := {30, 234} tii[16,43] := {88} tii[16,44] := {20, 223} tii[16,45] := {109, 110} tii[16,46] := {31, 211} tii[16,47] := {32, 235} tii[16,48] := {47, 196} tii[16,49] := {134, 135} tii[16,50] := {48, 240} tii[16,51] := {157, 158} tii[16,52] := {71, 244} tii[16,53] := {37, 231} tii[16,54] := {51, 221} tii[16,55] := {52, 242} tii[16,56] := {72, 209} tii[16,57] := {73, 246} tii[16,58] := {96, 194} tii[16,59] := {97, 249} tii[16,60] := {125, 253} tii[16,61] := {193} tii[16,62] := {173} tii[16,63] := {2, 215} tii[16,64] := {189, 190} tii[16,65] := {6, 228} tii[16,66] := {146} tii[16,67] := {7, 224} tii[16,68] := {13, 212} tii[16,69] := {166, 167} tii[16,70] := {14, 236} tii[16,71] := {186, 187} tii[16,72] := {24, 241} tii[16,73] := {116} tii[16,74] := {15, 232} tii[16,75] := {26, 222} tii[16,76] := {139, 140} tii[16,77] := {27, 243} tii[16,78] := {41, 210} tii[16,79] := {161, 162} tii[16,80] := {42, 247} tii[16,81] := {181, 182} tii[16,82] := {64, 250} tii[16,83] := {87} tii[16,84] := {28, 239} tii[16,85] := {107, 108} tii[16,86] := {43, 230} tii[16,87] := {44, 248} tii[16,88] := {132, 133} tii[16,89] := {65, 220} tii[16,90] := {66, 251} tii[16,91] := {92, 208} tii[16,92] := {155, 156} tii[16,93] := {93, 254} tii[16,94] := {177, 178} tii[16,95] := {120, 256} tii[16,96] := {46, 245} tii[16,97] := {68, 237} tii[16,98] := {69, 252} tii[16,99] := {94, 229} tii[16,100] := {95, 255} tii[16,101] := {122, 219} tii[16,102] := {123, 257} tii[16,103] := {148, 207} tii[16,104] := {149, 258} tii[16,105] := {172, 259} tii[16,106] := {67} tii[16,107] := {45, 86} tii[16,108] := {62} tii[16,109] := {25, 115} tii[16,110] := {84, 85} tii[16,111] := {57, 106} tii[16,112] := {61} tii[16,113] := {12, 145} tii[16,114] := {82, 83} tii[16,115] := {35, 138} tii[16,116] := {104, 105} tii[16,117] := {76, 130} tii[16,118] := {60} tii[16,119] := {4, 170} tii[16,120] := {80, 81} tii[16,121] := {18, 165} tii[16,122] := {102, 103} tii[16,123] := {49, 159} tii[16,124] := {128, 129} tii[16,125] := {98, 153} tii[16,126] := {59} tii[16,127] := {1, 191} tii[16,128] := {78, 79} tii[16,129] := {100, 101} tii[16,130] := {8, 188} tii[16,131] := {126, 127} tii[16,132] := {29, 183} tii[16,133] := {70, 179} tii[16,134] := {151, 152} tii[16,135] := {124, 175} tii[16,136] := {0, 204} tii[16,137] := {5, 203} tii[16,138] := {23, 200} tii[16,139] := {63, 197} tii[16,140] := {119, 195} cell#12 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {48} tii[12,2] := {34} tii[12,3] := {43, 44} tii[12,4] := {20} tii[12,5] := {30, 31} tii[12,6] := {41, 42} tii[12,7] := {11} tii[12,8] := {18, 19} tii[12,9] := {28, 29} tii[12,10] := {39, 40} tii[12,11] := {4} tii[12,12] := {9, 10} tii[12,13] := {16, 17} tii[12,14] := {26, 27} tii[12,15] := {37, 38} tii[12,16] := {3} tii[12,17] := {7, 8} tii[12,18] := {14, 15} tii[12,19] := {24, 25} tii[12,20] := {35, 36} tii[12,21] := {46, 47} tii[12,22] := {0} tii[12,23] := {1, 2} tii[12,24] := {5, 6} tii[12,25] := {12, 13} tii[12,26] := {22, 23} tii[12,27] := {32, 33} tii[12,28] := {21, 45} cell#13 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {37} tii[6,2] := {45} tii[6,3] := {31} tii[6,4] := {25} tii[6,5] := {39} tii[6,6] := {44} tii[6,7] := {26} tii[6,8] := {21} tii[6,9] := {33} tii[6,10] := {16} tii[6,11] := {38} tii[6,12] := {43} tii[6,13] := {22} tii[6,14] := {17} tii[6,15] := {27} tii[6,16] := {13} tii[6,17] := {32} tii[6,18] := {9} tii[6,19] := {36} tii[6,20] := {42} tii[6,21] := {18} tii[6,22] := {14} tii[6,23] := {24} tii[6,24] := {10} tii[6,25] := {29} tii[6,26] := {7} tii[6,27] := {35} tii[6,28] := {4} tii[6,29] := {41} tii[6,30] := {47} tii[6,31] := {15} tii[6,32] := {11} tii[6,33] := {19} tii[6,34] := {8} tii[6,35] := {23} tii[6,36] := {5} tii[6,37] := {28} tii[6,38] := {3} tii[6,39] := {34} tii[6,40] := {1} tii[6,41] := {40} tii[6,42] := {46} tii[6,43] := {30} tii[6,44] := {20} tii[6,45] := {12} tii[6,46] := {6} tii[6,47] := {2} tii[6,48] := {0} cell#14 , |C| = 280 special orbit = [5, 5, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[2],[3, 1, 1, 1]] TII depth = 8 TII multiplicity polynomial = 280*X TII subcells: tii[24,1] := {11} tii[24,2] := {35} tii[24,3] := {51} tii[24,4] := {24} tii[24,5] := {17} tii[24,6] := {62} tii[24,7] := {39} tii[24,8] := {79} tii[24,9] := {42} tii[24,10] := {55} tii[24,11] := {92} tii[24,12] := {98} tii[24,13] := {43} tii[24,14] := {111} tii[24,15] := {120} tii[24,16] := {142} tii[24,17] := {143} tii[24,18] := {174} tii[24,19] := {45} tii[24,20] := {33} tii[24,21] := {93} tii[24,22] := {68} tii[24,23] := {113} tii[24,24] := {71} tii[24,25] := {85} tii[24,26] := {58} tii[24,27] := {127} tii[24,28] := {134} tii[24,29] := {72} tii[24,30] := {99} tii[24,31] := {145} tii[24,32] := {87} tii[24,33] := {152} tii[24,34] := {53} tii[24,35] := {175} tii[24,36] := {133} tii[24,37] := {176} tii[24,38] := {160} tii[24,39] := {201} tii[24,40] := {102} tii[24,41] := {121} tii[24,42] := {158} tii[24,43] := {166} tii[24,44] := {103} tii[24,45] := {178} tii[24,46] := {155} tii[24,47] := {184} tii[24,48] := {202} tii[24,49] := {196} tii[24,50] := {116} tii[24,51] := {203} tii[24,52] := {215} tii[24,53] := {104} tii[24,54] := {223} tii[24,55] := {208} tii[24,56] := {226} tii[24,57] := {227} tii[24,58] := {241} tii[24,59] := {242} tii[24,60] := {256} tii[24,61] := {75} tii[24,62] := {59} tii[24,63] := {129} tii[24,64] := {100} tii[24,65] := {147} tii[24,66] := {106} tii[24,67] := {122} tii[24,68] := {90} tii[24,69] := {159} tii[24,70] := {167} tii[24,71] := {107} tii[24,72] := {136} tii[24,73] := {180} tii[24,74] := {125} tii[24,75] := {185} tii[24,76] := {83} tii[24,77] := {204} tii[24,78] := {165} tii[24,79] := {205} tii[24,80] := {192} tii[24,81] := {225} tii[24,82] := {138} tii[24,83] := {126} tii[24,84] := {153} tii[24,85] := {190} tii[24,86] := {168} tii[24,87] := {199} tii[24,88] := {139} tii[24,89] := {207} tii[24,90] := {189} tii[24,91] := {157} tii[24,92] := {210} tii[24,93] := {119} tii[24,94] := {228} tii[24,95] := {220} tii[24,96] := {149} tii[24,97] := {198} tii[24,98] := {229} tii[24,99] := {238} tii[24,100] := {140} tii[24,101] := {216} tii[24,102] := {244} tii[24,103] := {188} tii[24,104] := {232} tii[24,105] := {151} tii[24,106] := {219} tii[24,107] := {245} tii[24,108] := {246} tii[24,109] := {115} tii[24,110] := {257} tii[24,111] := {237} tii[24,112] := {258} tii[24,113] := {250} tii[24,114] := {267} tii[24,115] := {169} tii[24,116] := {186} tii[24,117] := {213} tii[24,118] := {221} tii[24,119] := {170} tii[24,120] := {231} tii[24,121] := {212} tii[24,122] := {233} tii[24,123] := {247} tii[24,124] := {240} tii[24,125] := {182} tii[24,126] := {248} tii[24,127] := {253} tii[24,128] := {171} tii[24,129] := {260} tii[24,130] := {235} tii[24,131] := {249} tii[24,132] := {254} tii[24,133] := {209} tii[24,134] := {261} tii[24,135] := {262} tii[24,136] := {268} tii[24,137] := {265} tii[24,138] := {181} tii[24,139] := {269} tii[24,140] := {272} tii[24,141] := {172} tii[24,142] := {274} tii[24,143] := {263} tii[24,144] := {270} tii[24,145] := {271} tii[24,146] := {275} tii[24,147] := {276} tii[24,148] := {277} tii[24,149] := {278} tii[24,150] := {279} tii[24,151] := {1} tii[24,152] := {4} tii[24,153] := {5} tii[24,154] := {8} tii[24,155] := {2} tii[24,156] := {10} tii[24,157] := {22} tii[24,158] := {16} tii[24,159] := {21} tii[24,160] := {12} tii[24,161] := {40} tii[24,162] := {50} tii[24,163] := {13} tii[24,164] := {32} tii[24,165] := {7} tii[24,166] := {23} tii[24,167] := {67} tii[24,168] := {56} tii[24,169] := {31} tii[24,170] := {9} tii[24,171] := {38} tii[24,172] := {30} tii[24,173] := {69} tii[24,174] := {25} tii[24,175] := {97} tii[24,176] := {14} tii[24,177] := {78} tii[24,178] := {128} tii[24,179] := {86} tii[24,180] := {63} tii[24,181] := {52} tii[24,182] := {132} tii[24,183] := {110} tii[24,184] := {44} tii[24,185] := {161} tii[24,186] := {173} tii[24,187] := {27} tii[24,188] := {89} tii[24,189] := {41} tii[24,190] := {15} tii[24,191] := {135} tii[24,192] := {124} tii[24,193] := {57} tii[24,194] := {19} tii[24,195] := {66} tii[24,196] := {82} tii[24,197] := {101} tii[24,198] := {46} tii[24,199] := {164} tii[24,200] := {191} tii[24,201] := {28} tii[24,202] := {112} tii[24,203] := {154} tii[24,204] := {123} tii[24,205] := {117} tii[24,206] := {195} tii[24,207] := {37} tii[24,208] := {94} tii[24,209] := {163} tii[24,210] := {81} tii[24,211] := {80} tii[24,212] := {34} tii[24,213] := {214} tii[24,214] := {144} tii[24,215] := {193} tii[24,216] := {73} tii[24,217] := {234} tii[24,218] := {47} tii[24,219] := {200} tii[24,220] := {187} tii[24,221] := {130} tii[24,222] := {218} tii[24,223] := {150} tii[24,224] := {114} tii[24,225] := {236} tii[24,226] := {177} tii[24,227] := {105} tii[24,228] := {251} tii[24,229] := {222} tii[24,230] := {255} tii[24,231] := {48} tii[24,232] := {70} tii[24,233] := {29} tii[24,234] := {88} tii[24,235] := {36} tii[24,236] := {96} tii[24,237] := {137} tii[24,238] := {76} tii[24,239] := {146} tii[24,240] := {49} tii[24,241] := {156} tii[24,242] := {65} tii[24,243] := {131} tii[24,244] := {197} tii[24,245] := {118} tii[24,246] := {60} tii[24,247] := {179} tii[24,248] := {217} tii[24,249] := {108} tii[24,250] := {77} tii[24,251] := {224} tii[24,252] := {211} tii[24,253] := {95} tii[24,254] := {162} tii[24,255] := {239} tii[24,256] := {183} tii[24,257] := {91} tii[24,258] := {252} tii[24,259] := {148} tii[24,260] := {206} tii[24,261] := {84} tii[24,262] := {243} tii[24,263] := {264} tii[24,264] := {141} tii[24,265] := {109} tii[24,266] := {266} tii[24,267] := {194} tii[24,268] := {230} tii[24,269] := {259} tii[24,270] := {273} tii[24,271] := {0} tii[24,272] := {3} tii[24,273] := {6} tii[24,274] := {20} tii[24,275] := {18} tii[24,276] := {26} tii[24,277] := {64} tii[24,278] := {61} tii[24,279] := {54} tii[24,280] := {74} cell#15 , |C| = 252 special orbit = [3, 3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1, 1],[2, 2, 1, 1]] TII depth = 5 TII multiplicity polynomial = 252*X TII subcells: tii[10,1] := {40} tii[10,2] := {69} tii[10,3] := {87} tii[10,4] := {61} tii[10,5] := {82} tii[10,6] := {96} tii[10,7] := {97} tii[10,8] := {120} tii[10,9] := {119} tii[10,10] := {110} tii[10,11] := {137} tii[10,12] := {136} tii[10,13] := {129} tii[10,14] := {153} tii[10,15] := {161} tii[10,16] := {183} tii[10,17] := {181} tii[10,18] := {205} tii[10,19] := {83} tii[10,20] := {112} tii[10,21] := {130} tii[10,22] := {131} tii[10,23] := {158} tii[10,24] := {157} tii[10,25] := {143} tii[10,26] := {171} tii[10,27] := {172} tii[10,28] := {144} tii[10,29] := {164} tii[10,30] := {165} tii[10,31] := {190} tii[10,32] := {189} tii[10,33] := {193} tii[10,34] := {194} tii[10,35] := {176} tii[10,36] := {213} tii[10,37] := {216} tii[10,38] := {202} tii[10,39] := {203} tii[10,40] := {215} tii[10,41] := {214} tii[10,42] := {230} tii[10,43] := {229} tii[10,44] := {204} tii[10,45] := {225} tii[10,46] := {226} tii[10,47] := {239} tii[10,48] := {238} tii[10,49] := {195} tii[10,50] := {217} tii[10,51] := {220} tii[10,52] := {235} tii[10,53] := {234} tii[10,54] := {243} tii[10,55] := {236} tii[10,56] := {246} tii[10,57] := {245} tii[10,58] := {250} tii[10,59] := {249} tii[10,60] := {251} tii[10,61] := {27} tii[10,62] := {4} tii[10,63] := {11} tii[10,64] := {31} tii[10,65] := {45} tii[10,66] := {21} tii[10,67] := {68} tii[10,68] := {60} tii[10,69] := {9} tii[10,70] := {88} tii[10,71] := {18} tii[10,72] := {16} tii[10,73] := {49} tii[10,74] := {48} tii[10,75] := {80} tii[10,76] := {28} tii[10,77] := {65} tii[10,78] := {32} tii[10,79] := {33} tii[10,80] := {105} tii[10,81] := {104} tii[10,82] := {66} tii[10,83] := {56} tii[10,84] := {57} tii[10,85] := {95} tii[10,86] := {51} tii[10,87] := {117} tii[10,88] := {115} tii[10,89] := {145} tii[10,90] := {89} tii[10,91] := {128} tii[10,92] := {111} tii[10,93] := {15} tii[10,94] := {154} tii[10,95] := {29} tii[10,96] := {160} tii[10,97] := {26} tii[10,98] := {70} tii[10,99] := {71} tii[10,100] := {142} tii[10,101] := {180} tii[10,102] := {182} tii[10,103] := {42} tii[10,104] := {92} tii[10,105] := {52} tii[10,106] := {91} tii[10,107] := {169} tii[10,108] := {170} tii[10,109] := {53} tii[10,110] := {206} tii[10,111] := {79} tii[10,112] := {78} tii[10,113] := {175} tii[10,114] := {127} tii[10,115] := {38} tii[10,116] := {126} tii[10,117] := {72} tii[10,118] := {73} tii[10,119] := {151} tii[10,120] := {148} tii[10,121] := {200} tii[10,122] := {201} tii[10,123] := {62} tii[10,124] := {149} tii[10,125] := {150} tii[10,126] := {118} tii[10,127] := {177} tii[10,128] := {222} tii[10,129] := {221} tii[10,130] := {178} tii[10,131] := {107} tii[10,132] := {106} tii[10,133] := {121} tii[10,134] := {166} tii[10,135] := {167} tii[10,136] := {192} tii[10,137] := {101} tii[10,138] := {212} tii[10,139] := {211} tii[10,140] := {155} tii[10,141] := {228} tii[10,142] := {227} tii[10,143] := {240} tii[10,144] := {207} tii[10,145] := {24} tii[10,146] := {43} tii[10,147] := {39} tii[10,148] := {98} tii[10,149] := {99} tii[10,150] := {63} tii[10,151] := {124} tii[10,152] := {123} tii[10,153] := {74} tii[10,154] := {75} tii[10,155] := {109} tii[10,156] := {108} tii[10,157] := {162} tii[10,158] := {59} tii[10,159] := {163} tii[10,160] := {102} tii[10,161] := {103} tii[10,162] := {184} tii[10,163] := {85} tii[10,164] := {186} tii[10,165] := {187} tii[10,166] := {185} tii[10,167] := {209} tii[10,168] := {140} tii[10,169] := {141} tii[10,170] := {156} tii[10,171] := {208} tii[10,172] := {159} tii[10,173] := {199} tii[10,174] := {198} tii[10,175] := {81} tii[10,176] := {219} tii[10,177] := {134} tii[10,178] := {135} tii[10,179] := {113} tii[10,180] := {233} tii[10,181] := {232} tii[10,182] := {188} tii[10,183] := {191} tii[10,184] := {242} tii[10,185] := {241} tii[10,186] := {173} tii[10,187] := {174} tii[10,188] := {248} tii[10,189] := {224} tii[10,190] := {223} tii[10,191] := {231} tii[10,192] := {247} tii[10,193] := {168} tii[10,194] := {218} tii[10,195] := {244} tii[10,196] := {2} tii[10,197] := {5} tii[10,198] := {1} tii[10,199] := {8} tii[10,200] := {10} tii[10,201] := {30} tii[10,202] := {3} tii[10,203] := {46} tii[10,204] := {20} tii[10,205] := {17} tii[10,206] := {36} tii[10,207] := {14} tii[10,208] := {37} tii[10,209] := {13} tii[10,210] := {47} tii[10,211] := {25} tii[10,212] := {94} tii[10,213] := {50} tii[10,214] := {6} tii[10,215] := {114} tii[10,216] := {116} tii[10,217] := {41} tii[10,218] := {23} tii[10,219] := {146} tii[10,220] := {22} tii[10,221] := {86} tii[10,222] := {77} tii[10,223] := {76} tii[10,224] := {132} tii[10,225] := {133} tii[10,226] := {67} tii[10,227] := {64} tii[10,228] := {147} tii[10,229] := {58} tii[10,230] := {100} tii[10,231] := {12} tii[10,232] := {84} tii[10,233] := {152} tii[10,234] := {34} tii[10,235] := {35} tii[10,236] := {138} tii[10,237] := {139} tii[10,238] := {93} tii[10,239] := {90} tii[10,240] := {197} tii[10,241] := {196} tii[10,242] := {237} tii[10,243] := {179} tii[10,244] := {19} tii[10,245] := {54} tii[10,246] := {55} tii[10,247] := {122} tii[10,248] := {125} tii[10,249] := {210} tii[10,250] := {0} tii[10,251] := {7} tii[10,252] := {44} cell#16 , |C| = 280 special orbit = [5, 5, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[2],[3, 1, 1, 1]] TII depth = 8 TII multiplicity polynomial = 280*X TII subcells: tii[24,1] := {11} tii[24,2] := {35} tii[24,3] := {51} tii[24,4] := {24} tii[24,5] := {17} tii[24,6] := {62} tii[24,7] := {39} tii[24,8] := {79} tii[24,9] := {42} tii[24,10] := {55} tii[24,11] := {92} tii[24,12] := {98} tii[24,13] := {43} tii[24,14] := {111} tii[24,15] := {120} tii[24,16] := {142} tii[24,17] := {143} tii[24,18] := {174} tii[24,19] := {45} tii[24,20] := {33} tii[24,21] := {93} tii[24,22] := {68} tii[24,23] := {113} tii[24,24] := {71} tii[24,25] := {85} tii[24,26] := {58} tii[24,27] := {127} tii[24,28] := {134} tii[24,29] := {72} tii[24,30] := {99} tii[24,31] := {145} tii[24,32] := {87} tii[24,33] := {152} tii[24,34] := {53} tii[24,35] := {175} tii[24,36] := {133} tii[24,37] := {176} tii[24,38] := {160} tii[24,39] := {201} tii[24,40] := {102} tii[24,41] := {121} tii[24,42] := {158} tii[24,43] := {166} tii[24,44] := {103} tii[24,45] := {178} tii[24,46] := {155} tii[24,47] := {184} tii[24,48] := {202} tii[24,49] := {196} tii[24,50] := {116} tii[24,51] := {203} tii[24,52] := {215} tii[24,53] := {104} tii[24,54] := {223} tii[24,55] := {208} tii[24,56] := {226} tii[24,57] := {227} tii[24,58] := {241} tii[24,59] := {242} tii[24,60] := {256} tii[24,61] := {75} tii[24,62] := {59} tii[24,63] := {129} tii[24,64] := {100} tii[24,65] := {147} tii[24,66] := {106} tii[24,67] := {122} tii[24,68] := {90} tii[24,69] := {159} tii[24,70] := {167} tii[24,71] := {107} tii[24,72] := {136} tii[24,73] := {180} tii[24,74] := {125} tii[24,75] := {185} tii[24,76] := {83} tii[24,77] := {204} tii[24,78] := {165} tii[24,79] := {205} tii[24,80] := {192} tii[24,81] := {225} tii[24,82] := {138} tii[24,83] := {126} tii[24,84] := {153} tii[24,85] := {190} tii[24,86] := {168} tii[24,87] := {199} tii[24,88] := {139} tii[24,89] := {207} tii[24,90] := {189} tii[24,91] := {157} tii[24,92] := {210} tii[24,93] := {119} tii[24,94] := {228} tii[24,95] := {220} tii[24,96] := {149} tii[24,97] := {198} tii[24,98] := {229} tii[24,99] := {238} tii[24,100] := {140} tii[24,101] := {216} tii[24,102] := {244} tii[24,103] := {188} tii[24,104] := {232} tii[24,105] := {151} tii[24,106] := {219} tii[24,107] := {245} tii[24,108] := {246} tii[24,109] := {115} tii[24,110] := {257} tii[24,111] := {237} tii[24,112] := {258} tii[24,113] := {250} tii[24,114] := {267} tii[24,115] := {169} tii[24,116] := {186} tii[24,117] := {213} tii[24,118] := {221} tii[24,119] := {170} tii[24,120] := {231} tii[24,121] := {212} tii[24,122] := {233} tii[24,123] := {247} tii[24,124] := {240} tii[24,125] := {182} tii[24,126] := {248} tii[24,127] := {253} tii[24,128] := {171} tii[24,129] := {260} tii[24,130] := {235} tii[24,131] := {249} tii[24,132] := {254} tii[24,133] := {209} tii[24,134] := {261} tii[24,135] := {262} tii[24,136] := {268} tii[24,137] := {265} tii[24,138] := {181} tii[24,139] := {269} tii[24,140] := {272} tii[24,141] := {172} tii[24,142] := {274} tii[24,143] := {263} tii[24,144] := {270} tii[24,145] := {271} tii[24,146] := {275} tii[24,147] := {276} tii[24,148] := {277} tii[24,149] := {278} tii[24,150] := {279} tii[24,151] := {1} tii[24,152] := {4} tii[24,153] := {5} tii[24,154] := {8} tii[24,155] := {2} tii[24,156] := {10} tii[24,157] := {22} tii[24,158] := {16} tii[24,159] := {21} tii[24,160] := {12} tii[24,161] := {40} tii[24,162] := {50} tii[24,163] := {13} tii[24,164] := {32} tii[24,165] := {7} tii[24,166] := {23} tii[24,167] := {67} tii[24,168] := {56} tii[24,169] := {31} tii[24,170] := {9} tii[24,171] := {38} tii[24,172] := {30} tii[24,173] := {69} tii[24,174] := {25} tii[24,175] := {97} tii[24,176] := {14} tii[24,177] := {78} tii[24,178] := {128} tii[24,179] := {86} tii[24,180] := {63} tii[24,181] := {52} tii[24,182] := {132} tii[24,183] := {110} tii[24,184] := {44} tii[24,185] := {161} tii[24,186] := {173} tii[24,187] := {27} tii[24,188] := {89} tii[24,189] := {41} tii[24,190] := {15} tii[24,191] := {135} tii[24,192] := {124} tii[24,193] := {57} tii[24,194] := {19} tii[24,195] := {66} tii[24,196] := {82} tii[24,197] := {101} tii[24,198] := {46} tii[24,199] := {164} tii[24,200] := {191} tii[24,201] := {28} tii[24,202] := {112} tii[24,203] := {154} tii[24,204] := {123} tii[24,205] := {117} tii[24,206] := {195} tii[24,207] := {37} tii[24,208] := {94} tii[24,209] := {163} tii[24,210] := {81} tii[24,211] := {80} tii[24,212] := {34} tii[24,213] := {214} tii[24,214] := {144} tii[24,215] := {193} tii[24,216] := {73} tii[24,217] := {234} tii[24,218] := {47} tii[24,219] := {200} tii[24,220] := {187} tii[24,221] := {130} tii[24,222] := {218} tii[24,223] := {150} tii[24,224] := {114} tii[24,225] := {236} tii[24,226] := {177} tii[24,227] := {105} tii[24,228] := {251} tii[24,229] := {222} tii[24,230] := {255} tii[24,231] := {48} tii[24,232] := {70} tii[24,233] := {29} tii[24,234] := {88} tii[24,235] := {36} tii[24,236] := {96} tii[24,237] := {137} tii[24,238] := {76} tii[24,239] := {146} tii[24,240] := {49} tii[24,241] := {156} tii[24,242] := {65} tii[24,243] := {131} tii[24,244] := {197} tii[24,245] := {118} tii[24,246] := {60} tii[24,247] := {179} tii[24,248] := {217} tii[24,249] := {108} tii[24,250] := {77} tii[24,251] := {224} tii[24,252] := {211} tii[24,253] := {95} tii[24,254] := {162} tii[24,255] := {239} tii[24,256] := {183} tii[24,257] := {91} tii[24,258] := {252} tii[24,259] := {148} tii[24,260] := {206} tii[24,261] := {84} tii[24,262] := {243} tii[24,263] := {264} tii[24,264] := {141} tii[24,265] := {109} tii[24,266] := {266} tii[24,267] := {194} tii[24,268] := {230} tii[24,269] := {259} tii[24,270] := {273} tii[24,271] := {0} tii[24,272] := {3} tii[24,273] := {6} tii[24,274] := {20} tii[24,275] := {18} tii[24,276] := {26} tii[24,277] := {64} tii[24,278] := {61} tii[24,279] := {54} tii[24,280] := {74} cell#17 , |C| = 252 special orbit = [3, 3, 3, 3, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1, 1],[2, 2, 1, 1]] TII depth = 5 TII multiplicity polynomial = 252*X TII subcells: tii[10,1] := {40} tii[10,2] := {69} tii[10,3] := {87} tii[10,4] := {61} tii[10,5] := {82} tii[10,6] := {96} tii[10,7] := {97} tii[10,8] := {120} tii[10,9] := {119} tii[10,10] := {110} tii[10,11] := {137} tii[10,12] := {136} tii[10,13] := {129} tii[10,14] := {153} tii[10,15] := {161} tii[10,16] := {183} tii[10,17] := {181} tii[10,18] := {205} tii[10,19] := {83} tii[10,20] := {112} tii[10,21] := {130} tii[10,22] := {131} tii[10,23] := {158} tii[10,24] := {157} tii[10,25] := {143} tii[10,26] := {171} tii[10,27] := {172} tii[10,28] := {144} tii[10,29] := {164} tii[10,30] := {165} tii[10,31] := {190} tii[10,32] := {189} tii[10,33] := {193} tii[10,34] := {194} tii[10,35] := {176} tii[10,36] := {213} tii[10,37] := {216} tii[10,38] := {202} tii[10,39] := {203} tii[10,40] := {215} tii[10,41] := {214} tii[10,42] := {230} tii[10,43] := {229} tii[10,44] := {204} tii[10,45] := {225} tii[10,46] := {226} tii[10,47] := {239} tii[10,48] := {238} tii[10,49] := {195} tii[10,50] := {217} tii[10,51] := {220} tii[10,52] := {235} tii[10,53] := {234} tii[10,54] := {243} tii[10,55] := {236} tii[10,56] := {246} tii[10,57] := {245} tii[10,58] := {250} tii[10,59] := {249} tii[10,60] := {251} tii[10,61] := {27} tii[10,62] := {4} tii[10,63] := {11} tii[10,64] := {31} tii[10,65] := {45} tii[10,66] := {21} tii[10,67] := {68} tii[10,68] := {60} tii[10,69] := {9} tii[10,70] := {88} tii[10,71] := {18} tii[10,72] := {16} tii[10,73] := {49} tii[10,74] := {48} tii[10,75] := {80} tii[10,76] := {28} tii[10,77] := {65} tii[10,78] := {32} tii[10,79] := {33} tii[10,80] := {105} tii[10,81] := {104} tii[10,82] := {66} tii[10,83] := {56} tii[10,84] := {57} tii[10,85] := {95} tii[10,86] := {51} tii[10,87] := {117} tii[10,88] := {115} tii[10,89] := {145} tii[10,90] := {89} tii[10,91] := {128} tii[10,92] := {111} tii[10,93] := {15} tii[10,94] := {154} tii[10,95] := {29} tii[10,96] := {160} tii[10,97] := {26} tii[10,98] := {70} tii[10,99] := {71} tii[10,100] := {142} tii[10,101] := {180} tii[10,102] := {182} tii[10,103] := {42} tii[10,104] := {92} tii[10,105] := {52} tii[10,106] := {91} tii[10,107] := {169} tii[10,108] := {170} tii[10,109] := {53} tii[10,110] := {206} tii[10,111] := {79} tii[10,112] := {78} tii[10,113] := {175} tii[10,114] := {127} tii[10,115] := {38} tii[10,116] := {126} tii[10,117] := {72} tii[10,118] := {73} tii[10,119] := {151} tii[10,120] := {148} tii[10,121] := {200} tii[10,122] := {201} tii[10,123] := {62} tii[10,124] := {149} tii[10,125] := {150} tii[10,126] := {118} tii[10,127] := {177} tii[10,128] := {222} tii[10,129] := {221} tii[10,130] := {178} tii[10,131] := {107} tii[10,132] := {106} tii[10,133] := {121} tii[10,134] := {166} tii[10,135] := {167} tii[10,136] := {192} tii[10,137] := {101} tii[10,138] := {212} tii[10,139] := {211} tii[10,140] := {155} tii[10,141] := {228} tii[10,142] := {227} tii[10,143] := {240} tii[10,144] := {207} tii[10,145] := {24} tii[10,146] := {43} tii[10,147] := {39} tii[10,148] := {98} tii[10,149] := {99} tii[10,150] := {63} tii[10,151] := {124} tii[10,152] := {123} tii[10,153] := {74} tii[10,154] := {75} tii[10,155] := {109} tii[10,156] := {108} tii[10,157] := {162} tii[10,158] := {59} tii[10,159] := {163} tii[10,160] := {102} tii[10,161] := {103} tii[10,162] := {184} tii[10,163] := {85} tii[10,164] := {186} tii[10,165] := {187} tii[10,166] := {185} tii[10,167] := {209} tii[10,168] := {140} tii[10,169] := {141} tii[10,170] := {156} tii[10,171] := {208} tii[10,172] := {159} tii[10,173] := {199} tii[10,174] := {198} tii[10,175] := {81} tii[10,176] := {219} tii[10,177] := {134} tii[10,178] := {135} tii[10,179] := {113} tii[10,180] := {233} tii[10,181] := {232} tii[10,182] := {188} tii[10,183] := {191} tii[10,184] := {242} tii[10,185] := {241} tii[10,186] := {173} tii[10,187] := {174} tii[10,188] := {248} tii[10,189] := {224} tii[10,190] := {223} tii[10,191] := {231} tii[10,192] := {247} tii[10,193] := {168} tii[10,194] := {218} tii[10,195] := {244} tii[10,196] := {2} tii[10,197] := {5} tii[10,198] := {1} tii[10,199] := {8} tii[10,200] := {10} tii[10,201] := {30} tii[10,202] := {3} tii[10,203] := {46} tii[10,204] := {20} tii[10,205] := {17} tii[10,206] := {36} tii[10,207] := {14} tii[10,208] := {37} tii[10,209] := {13} tii[10,210] := {47} tii[10,211] := {25} tii[10,212] := {94} tii[10,213] := {50} tii[10,214] := {6} tii[10,215] := {114} tii[10,216] := {116} tii[10,217] := {41} tii[10,218] := {23} tii[10,219] := {146} tii[10,220] := {22} tii[10,221] := {86} tii[10,222] := {77} tii[10,223] := {76} tii[10,224] := {132} tii[10,225] := {133} tii[10,226] := {67} tii[10,227] := {64} tii[10,228] := {147} tii[10,229] := {58} tii[10,230] := {100} tii[10,231] := {12} tii[10,232] := {84} tii[10,233] := {152} tii[10,234] := {34} tii[10,235] := {35} tii[10,236] := {138} tii[10,237] := {139} tii[10,238] := {93} tii[10,239] := {90} tii[10,240] := {197} tii[10,241] := {196} tii[10,242] := {237} tii[10,243] := {179} tii[10,244] := {19} tii[10,245] := {54} tii[10,246] := {55} tii[10,247] := {122} tii[10,248] := {125} tii[10,249] := {210} tii[10,250] := {0} tii[10,251] := {7} tii[10,252] := {44} cell#18 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {14} tii[16,2] := {8, 52} tii[16,3] := {30, 66} tii[16,4] := {32} tii[16,5] := {47} tii[16,6] := {24, 86} tii[16,7] := {33, 90} tii[16,8] := {55, 98} tii[16,9] := {48, 106} tii[16,10] := {20, 126} tii[16,11] := {89, 127} tii[16,12] := {117, 155} tii[16,13] := {61} tii[16,14] := {80} tii[16,15] := {50, 116} tii[16,16] := {62, 124} tii[16,17] := {92, 131} tii[16,18] := {113} tii[16,19] := {84, 135} tii[16,20] := {45, 158} tii[16,21] := {73, 151} tii[16,22] := {122, 159} tii[16,23] := {63, 174} tii[16,24] := {144, 186} tii[16,25] := {111, 163} tii[16,26] := {77, 189} tii[16,27] := {149, 190} tii[16,28] := {40, 212} tii[16,29] := {172, 213} tii[16,30] := {197, 234} tii[16,31] := {93} tii[16,32] := {107} tii[16,33] := {85, 141} tii[16,34] := {94, 153} tii[16,35] := {125, 161} tii[16,36] := {140} tii[16,37] := {114, 164} tii[16,38] := {78, 191} tii[16,39] := {101, 180} tii[16,40] := {152, 192} tii[16,41] := {95, 204} tii[16,42] := {175, 215} tii[16,43] := {168} tii[16,44] := {139, 194} tii[16,45] := {133, 208} tii[16,46] := {105, 218} tii[16,47] := {179, 219} tii[16,48] := {71, 237} tii[16,49] := {99, 230} tii[16,50] := {203, 238} tii[16,51] := {96, 247} tii[16,52] := {224, 251} tii[16,53] := {167, 220} tii[16,54] := {132, 239} tii[16,55] := {207, 240} tii[16,56] := {100, 252} tii[16,57] := {229, 253} tii[16,58] := {67, 257} tii[16,59] := {246, 258} tii[16,60] := {254, 259} tii[16,61] := {57} tii[16,62] := {79} tii[16,63] := {49, 115} tii[16,64] := {58, 123} tii[16,65] := {91, 129} tii[16,66] := {112} tii[16,67] := {83, 134} tii[16,68] := {44, 156} tii[16,69] := {72, 150} tii[16,70] := {121, 157} tii[16,71] := {59, 173} tii[16,72] := {143, 184} tii[16,73] := {137} tii[16,74] := {110, 162} tii[16,75] := {76, 187} tii[16,76] := {103, 177} tii[16,77] := {148, 188} tii[16,78] := {39, 210} tii[16,79] := {68, 201} tii[16,80] := {171, 211} tii[16,81] := {60, 223} tii[16,82] := {196, 232} tii[16,83] := {109} tii[16,84] := {136, 193} tii[16,85] := {75, 147} tii[16,86] := {102, 216} tii[16,87] := {176, 217} tii[16,88] := {38, 170} tii[16,89] := {69, 235} tii[16,90] := {200, 236} tii[16,91] := {36, 248} tii[16,92] := {31, 198} tii[16,93] := {222, 249} tii[16,94] := {13, 209} tii[16,95] := {241, 256} tii[16,96] := {108, 181} tii[16,97] := {74, 205} tii[16,98] := {146, 206} tii[16,99] := {37, 227} tii[16,100] := {169, 228} tii[16,101] := {17, 244} tii[16,102] := {195, 245} tii[16,103] := {7, 226} tii[16,104] := {221, 255} tii[16,105] := {242, 243} tii[16,106] := {5} tii[16,107] := {1, 11} tii[16,108] := {23} tii[16,109] := {3, 29} tii[16,110] := {15, 56} tii[16,111] := {6, 65} tii[16,112] := {82} tii[16,113] := {10, 53} tii[16,114] := {43, 120} tii[16,115] := {9, 97} tii[16,116] := {34, 145} tii[16,117] := {16, 154} tii[16,118] := {138} tii[16,119] := {28, 88} tii[16,120] := {104, 178} tii[16,121] := {26, 130} tii[16,122] := {70, 202} tii[16,123] := {21, 185} tii[16,124] := {64, 225} tii[16,125] := {35, 233} tii[16,126] := {81} tii[16,127] := {54, 118} tii[16,128] := {42, 119} tii[16,129] := {18, 142} tii[16,130] := {51, 160} tii[16,131] := {12, 165} tii[16,132] := {46, 214} tii[16,133] := {41, 250} tii[16,134] := {4, 182} tii[16,135] := {0, 166} tii[16,136] := {27, 87} tii[16,137] := {25, 128} tii[16,138] := {22, 183} tii[16,139] := {19, 231} tii[16,140] := {2, 199} cell#19 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {14} tii[16,2] := {8, 52} tii[16,3] := {30, 66} tii[16,4] := {32} tii[16,5] := {47} tii[16,6] := {24, 86} tii[16,7] := {33, 90} tii[16,8] := {55, 98} tii[16,9] := {48, 106} tii[16,10] := {20, 126} tii[16,11] := {89, 127} tii[16,12] := {117, 155} tii[16,13] := {61} tii[16,14] := {80} tii[16,15] := {50, 116} tii[16,16] := {62, 124} tii[16,17] := {92, 131} tii[16,18] := {113} tii[16,19] := {84, 135} tii[16,20] := {45, 158} tii[16,21] := {73, 151} tii[16,22] := {122, 159} tii[16,23] := {63, 174} tii[16,24] := {144, 186} tii[16,25] := {111, 163} tii[16,26] := {77, 189} tii[16,27] := {149, 190} tii[16,28] := {40, 212} tii[16,29] := {172, 213} tii[16,30] := {197, 234} tii[16,31] := {93} tii[16,32] := {107} tii[16,33] := {85, 141} tii[16,34] := {94, 153} tii[16,35] := {125, 161} tii[16,36] := {140} tii[16,37] := {114, 164} tii[16,38] := {78, 191} tii[16,39] := {101, 180} tii[16,40] := {152, 192} tii[16,41] := {95, 204} tii[16,42] := {175, 215} tii[16,43] := {168} tii[16,44] := {139, 194} tii[16,45] := {133, 208} tii[16,46] := {105, 218} tii[16,47] := {179, 219} tii[16,48] := {71, 237} tii[16,49] := {99, 230} tii[16,50] := {203, 238} tii[16,51] := {96, 247} tii[16,52] := {224, 251} tii[16,53] := {167, 220} tii[16,54] := {132, 239} tii[16,55] := {207, 240} tii[16,56] := {100, 252} tii[16,57] := {229, 253} tii[16,58] := {67, 257} tii[16,59] := {246, 258} tii[16,60] := {254, 259} tii[16,61] := {57} tii[16,62] := {79} tii[16,63] := {49, 115} tii[16,64] := {58, 123} tii[16,65] := {91, 129} tii[16,66] := {112} tii[16,67] := {83, 134} tii[16,68] := {44, 156} tii[16,69] := {72, 150} tii[16,70] := {121, 157} tii[16,71] := {59, 173} tii[16,72] := {143, 184} tii[16,73] := {137} tii[16,74] := {110, 162} tii[16,75] := {76, 187} tii[16,76] := {103, 177} tii[16,77] := {148, 188} tii[16,78] := {39, 210} tii[16,79] := {68, 201} tii[16,80] := {171, 211} tii[16,81] := {60, 223} tii[16,82] := {196, 232} tii[16,83] := {109} tii[16,84] := {136, 193} tii[16,85] := {75, 147} tii[16,86] := {102, 216} tii[16,87] := {176, 217} tii[16,88] := {38, 170} tii[16,89] := {69, 235} tii[16,90] := {200, 236} tii[16,91] := {36, 248} tii[16,92] := {31, 198} tii[16,93] := {222, 249} tii[16,94] := {13, 209} tii[16,95] := {241, 256} tii[16,96] := {108, 181} tii[16,97] := {74, 205} tii[16,98] := {146, 206} tii[16,99] := {37, 227} tii[16,100] := {169, 228} tii[16,101] := {17, 244} tii[16,102] := {195, 245} tii[16,103] := {7, 226} tii[16,104] := {221, 255} tii[16,105] := {242, 243} tii[16,106] := {5} tii[16,107] := {1, 11} tii[16,108] := {23} tii[16,109] := {3, 29} tii[16,110] := {15, 56} tii[16,111] := {6, 65} tii[16,112] := {82} tii[16,113] := {10, 53} tii[16,114] := {43, 120} tii[16,115] := {9, 97} tii[16,116] := {34, 145} tii[16,117] := {16, 154} tii[16,118] := {138} tii[16,119] := {28, 88} tii[16,120] := {104, 178} tii[16,121] := {26, 130} tii[16,122] := {70, 202} tii[16,123] := {21, 185} tii[16,124] := {64, 225} tii[16,125] := {35, 233} tii[16,126] := {81} tii[16,127] := {54, 118} tii[16,128] := {42, 119} tii[16,129] := {18, 142} tii[16,130] := {51, 160} tii[16,131] := {12, 165} tii[16,132] := {46, 214} tii[16,133] := {41, 250} tii[16,134] := {4, 182} tii[16,135] := {0, 166} tii[16,136] := {27, 87} tii[16,137] := {25, 128} tii[16,138] := {22, 183} tii[16,139] := {19, 231} tii[16,140] := {2, 199} cell#20 , |C| = 176 special orbit = [5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2, 1], [1, 1, 1, 1, 1]] , dim = 112 cell rep = phi[[2, 1],[1, 1, 1, 1, 1]]+phi[[],[3, 2, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 48*X+64*X^2 TII subcells: tii[13,1] := {13} tii[13,2] := {11} tii[13,3] := {29} tii[13,4] := {24} tii[13,5] := {41} tii[13,6] := {30, 70} tii[13,7] := {42} tii[13,8] := {19, 69} tii[13,9] := {50} tii[13,10] := {45} tii[13,11] := {64} tii[13,12] := {51, 95} tii[13,13] := {89} tii[13,14] := {67} tii[13,15] := {40, 94} tii[13,16] := {60, 119} tii[13,17] := {52, 131} tii[13,18] := {88} tii[13,19] := {62, 118} tii[13,20] := {35, 130} tii[13,21] := {73} tii[13,22] := {68} tii[13,23] := {86} tii[13,24] := {74, 121} tii[13,25] := {90} tii[13,26] := {113} tii[13,27] := {63, 120} tii[13,28] := {82, 136} tii[13,29] := {75, 146} tii[13,30] := {127} tii[13,31] := {112} tii[13,32] := {108, 149} tii[13,33] := {85, 135} tii[13,34] := {59, 145} tii[13,35] := {79, 157} tii[13,36] := {76, 164} tii[13,37] := {126} tii[13,38] := {107, 148} tii[13,39] := {81, 156} tii[13,40] := {56, 163} tii[13,41] := {97} tii[13,42] := {44} tii[13,43] := {109} tii[13,44] := {98, 137} tii[13,45] := {66} tii[13,46] := {128} tii[13,47] := {39, 93} tii[13,48] := {105, 150} tii[13,49] := {99, 158} tii[13,50] := {142} tii[13,51] := {87} tii[13,52] := {61, 117} tii[13,53] := {124, 160} tii[13,54] := {36, 129} tii[13,55] := {103, 166} tii[13,56] := {100, 171} tii[13,57] := {154} tii[13,58] := {110} tii[13,59] := {138, 167} tii[13,60] := {83, 133} tii[13,61] := {122, 172} tii[13,62] := {58, 143} tii[13,63] := {33, 151} tii[13,64] := {102, 174} tii[13,65] := {101, 175} tii[13,66] := {125} tii[13,67] := {106, 147} tii[13,68] := {80, 155} tii[13,69] := {55, 162} tii[13,70] := {49, 168} tii[13,71] := {0} tii[13,72] := {6} tii[13,73] := {1} tii[13,74] := {3} tii[13,75] := {2} tii[13,76] := {21} tii[13,77] := {5} tii[13,78] := {14, 47} tii[13,79] := {7, 27} tii[13,80] := {4} tii[13,81] := {65} tii[13,82] := {12} tii[13,83] := {37, 92} tii[13,84] := {10, 48} tii[13,85] := {31, 114} tii[13,86] := {15, 91} tii[13,87] := {9} tii[13,88] := {111} tii[13,89] := {26} tii[13,90] := {84, 134} tii[13,91] := {23, 72} tii[13,92] := {57, 144} tii[13,93] := {17, 116} tii[13,94] := {53, 152} tii[13,95] := {32, 140} tii[13,96] := {20} tii[13,97] := {141} tii[13,98] := {123, 159} tii[13,99] := {46} tii[13,100] := {104, 165} tii[13,101] := {43, 96} tii[13,102] := {78, 170} tii[13,103] := {38, 132} tii[13,104] := {77, 173} tii[13,105] := {34, 153} tii[13,106] := {54, 169} tii[13,107] := {8} tii[13,108] := {25} tii[13,109] := {22, 71} tii[13,110] := {18, 115} tii[13,111] := {16, 139} tii[13,112] := {28, 161} cell#21 , |C| = 252 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[1, 1],[2, 1, 1, 1, 1]]+phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[7,1] := {22} tii[7,2] := {37} tii[7,3] := {17, 59} tii[7,4] := {33, 77} tii[7,5] := {57} tii[7,6] := {72, 73} tii[7,7] := {60} tii[7,8] := {30, 82} tii[7,9] := {52, 102} tii[7,10] := {47, 106} tii[7,11] := {80} tii[7,12] := {27, 122} tii[7,13] := {94, 95} tii[7,14] := {74, 123} tii[7,15] := {91, 144} tii[7,16] := {105} tii[7,17] := {120, 121} tii[7,18] := {139, 140} tii[7,19] := {83} tii[7,20] := {48, 108} tii[7,21] := {75, 129} tii[7,22] := {107} tii[7,23] := {69, 134} tii[7,24] := {45, 151} tii[7,25] := {124, 125} tii[7,26] := {99, 152} tii[7,27] := {115, 173} tii[7,28] := {89, 160} tii[7,29] := {132} tii[7,30] := {66, 178} tii[7,31] := {126, 179} tii[7,32] := {147, 148} tii[7,33] := {42, 196} tii[7,34] := {166, 167} tii[7,35] := {141, 197} tii[7,36] := {163, 216} tii[7,37] := {159} tii[7,38] := {176, 177} tii[7,39] := {194, 195} tii[7,40] := {212, 213} tii[7,41] := {109} tii[7,42] := {70, 136} tii[7,43] := {100, 158} tii[7,44] := {135} tii[7,45] := {90, 162} tii[7,46] := {67, 182} tii[7,47] := {153, 154} tii[7,48] := {127, 183} tii[7,49] := {142, 202} tii[7,50] := {113, 187} tii[7,51] := {161} tii[7,52] := {88, 207} tii[7,53] := {180, 181} tii[7,54] := {156, 208} tii[7,55] := {65, 223} tii[7,56] := {198, 199} tii[7,57] := {171, 224} tii[7,58] := {189, 237} tii[7,59] := {138, 210} tii[7,60] := {185} tii[7,61] := {111, 227} tii[7,62] := {184, 228} tii[7,63] := {203, 204} tii[7,64] := {86, 240} tii[7,65] := {200, 241} tii[7,66] := {219, 220} tii[7,67] := {63, 247} tii[7,68] := {232, 233} tii[7,69] := {214, 248} tii[7,70] := {229, 251} tii[7,71] := {209} tii[7,72] := {225, 226} tii[7,73] := {238, 239} tii[7,74] := {245, 246} tii[7,75] := {249, 250} tii[7,76] := {2} tii[7,77] := {6} tii[7,78] := {5} tii[7,79] := {8, 38} tii[7,80] := {12} tii[7,81] := {20, 56} tii[7,82] := {4, 23} tii[7,83] := {34, 35} tii[7,84] := {11} tii[7,85] := {29, 81} tii[7,86] := {10, 39} tii[7,87] := {24} tii[7,88] := {15, 96} tii[7,89] := {51, 97} tii[7,90] := {53, 54} tii[7,91] := {71, 119} tii[7,92] := {9, 76} tii[7,93] := {92, 93} tii[7,94] := {21} tii[7,95] := {68, 133} tii[7,96] := {19, 61} tii[7,97] := {40} tii[7,98] := {44, 149} tii[7,99] := {98, 150} tii[7,100] := {18, 101} tii[7,101] := {25, 168} tii[7,102] := {78, 79} tii[7,103] := {114, 169} tii[7,104] := {116, 117} tii[7,105] := {137, 193} tii[7,106] := {16, 143} tii[7,107] := {164, 165} tii[7,108] := {36} tii[7,109] := {112, 186} tii[7,110] := {32, 84} tii[7,111] := {62} tii[7,112] := {87, 205} tii[7,113] := {155, 206} tii[7,114] := {31, 128} tii[7,115] := {64, 221} tii[7,116] := {170, 222} tii[7,117] := {103, 104} tii[7,118] := {28, 172} tii[7,119] := {41, 234} tii[7,120] := {188, 235} tii[7,121] := {145, 146} tii[7,122] := {211, 244} tii[7,123] := {190, 191} tii[7,124] := {26, 215} tii[7,125] := {230, 231} tii[7,126] := {58} tii[7,127] := {50, 110} tii[7,128] := {85} tii[7,129] := {49, 157} tii[7,130] := {130, 131} tii[7,131] := {46, 201} tii[7,132] := {174, 175} tii[7,133] := {43, 236} tii[7,134] := {217, 218} tii[7,135] := {242, 243} tii[7,136] := {0} tii[7,137] := {1, 13} tii[7,138] := {3, 55} tii[7,139] := {7, 118} tii[7,140] := {14, 192} cell#22 , |C| = 252 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[1, 1],[2, 1, 1, 1, 1]]+phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[7,1] := {22} tii[7,2] := {37} tii[7,3] := {17, 59} tii[7,4] := {33, 77} tii[7,5] := {57} tii[7,6] := {72, 73} tii[7,7] := {60} tii[7,8] := {30, 82} tii[7,9] := {52, 102} tii[7,10] := {47, 106} tii[7,11] := {80} tii[7,12] := {27, 122} tii[7,13] := {94, 95} tii[7,14] := {74, 123} tii[7,15] := {91, 144} tii[7,16] := {105} tii[7,17] := {120, 121} tii[7,18] := {139, 140} tii[7,19] := {83} tii[7,20] := {48, 108} tii[7,21] := {75, 129} tii[7,22] := {107} tii[7,23] := {69, 134} tii[7,24] := {45, 151} tii[7,25] := {124, 125} tii[7,26] := {99, 152} tii[7,27] := {115, 173} tii[7,28] := {89, 160} tii[7,29] := {132} tii[7,30] := {66, 178} tii[7,31] := {126, 179} tii[7,32] := {147, 148} tii[7,33] := {42, 196} tii[7,34] := {166, 167} tii[7,35] := {141, 197} tii[7,36] := {163, 216} tii[7,37] := {159} tii[7,38] := {176, 177} tii[7,39] := {194, 195} tii[7,40] := {212, 213} tii[7,41] := {109} tii[7,42] := {70, 136} tii[7,43] := {100, 158} tii[7,44] := {135} tii[7,45] := {90, 162} tii[7,46] := {67, 182} tii[7,47] := {153, 154} tii[7,48] := {127, 183} tii[7,49] := {142, 202} tii[7,50] := {113, 187} tii[7,51] := {161} tii[7,52] := {88, 207} tii[7,53] := {180, 181} tii[7,54] := {156, 208} tii[7,55] := {65, 223} tii[7,56] := {198, 199} tii[7,57] := {171, 224} tii[7,58] := {189, 237} tii[7,59] := {138, 210} tii[7,60] := {185} tii[7,61] := {111, 227} tii[7,62] := {184, 228} tii[7,63] := {203, 204} tii[7,64] := {86, 240} tii[7,65] := {200, 241} tii[7,66] := {219, 220} tii[7,67] := {63, 247} tii[7,68] := {232, 233} tii[7,69] := {214, 248} tii[7,70] := {229, 251} tii[7,71] := {209} tii[7,72] := {225, 226} tii[7,73] := {238, 239} tii[7,74] := {245, 246} tii[7,75] := {249, 250} tii[7,76] := {2} tii[7,77] := {6} tii[7,78] := {5} tii[7,79] := {8, 38} tii[7,80] := {12} tii[7,81] := {20, 56} tii[7,82] := {4, 23} tii[7,83] := {34, 35} tii[7,84] := {11} tii[7,85] := {29, 81} tii[7,86] := {10, 39} tii[7,87] := {24} tii[7,88] := {15, 96} tii[7,89] := {51, 97} tii[7,90] := {53, 54} tii[7,91] := {71, 119} tii[7,92] := {9, 76} tii[7,93] := {92, 93} tii[7,94] := {21} tii[7,95] := {68, 133} tii[7,96] := {19, 61} tii[7,97] := {40} tii[7,98] := {44, 149} tii[7,99] := {98, 150} tii[7,100] := {18, 101} tii[7,101] := {25, 168} tii[7,102] := {78, 79} tii[7,103] := {114, 169} tii[7,104] := {116, 117} tii[7,105] := {137, 193} tii[7,106] := {16, 143} tii[7,107] := {164, 165} tii[7,108] := {36} tii[7,109] := {112, 186} tii[7,110] := {32, 84} tii[7,111] := {62} tii[7,112] := {87, 205} tii[7,113] := {155, 206} tii[7,114] := {31, 128} tii[7,115] := {64, 221} tii[7,116] := {170, 222} tii[7,117] := {103, 104} tii[7,118] := {28, 172} tii[7,119] := {41, 234} tii[7,120] := {188, 235} tii[7,121] := {145, 146} tii[7,122] := {211, 244} tii[7,123] := {190, 191} tii[7,124] := {26, 215} tii[7,125] := {230, 231} tii[7,126] := {58} tii[7,127] := {50, 110} tii[7,128] := {85} tii[7,129] := {49, 157} tii[7,130] := {130, 131} tii[7,131] := {46, 201} tii[7,132] := {174, 175} tii[7,133] := {43, 236} tii[7,134] := {217, 218} tii[7,135] := {242, 243} tii[7,136] := {0} tii[7,137] := {1, 13} tii[7,138] := {3, 55} tii[7,139] := {7, 118} tii[7,140] := {14, 192} cell#23 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {8} tii[16,2] := {4, 41} tii[16,3] := {22, 53} tii[16,4] := {24} tii[16,5] := {36} tii[16,6] := {16, 68} tii[16,7] := {25, 71} tii[16,8] := {44, 80} tii[16,9] := {37, 89} tii[16,10] := {12, 108} tii[16,11] := {70, 109} tii[16,12] := {96, 136} tii[16,13] := {47} tii[16,14] := {63} tii[16,15] := {39, 95} tii[16,16] := {48, 101} tii[16,17] := {73, 111} tii[16,18] := {93} tii[16,19] := {66, 119} tii[16,20] := {34, 137} tii[16,21] := {59, 132} tii[16,22] := {100, 138} tii[16,23] := {49, 153} tii[16,24] := {127, 161} tii[16,25] := {92, 142} tii[16,26] := {61, 162} tii[16,27] := {131, 163} tii[16,28] := {30, 183} tii[16,29] := {152, 184} tii[16,30] := {172, 204} tii[16,31] := {74} tii[16,32] := {90} tii[16,33] := {67, 125} tii[16,34] := {75, 134} tii[16,35] := {102, 140} tii[16,36] := {124} tii[16,37] := {94, 145} tii[16,38] := {62, 164} tii[16,39] := {85, 158} tii[16,40] := {133, 165} tii[16,41] := {76, 178} tii[16,42] := {154, 186} tii[16,43] := {148} tii[16,44] := {123, 168} tii[16,45] := {118, 181} tii[16,46] := {88, 187} tii[16,47] := {157, 188} tii[16,48] := {58, 205} tii[16,49] := {82, 199} tii[16,50] := {177, 206} tii[16,51] := {77, 217} tii[16,52] := {194, 222} tii[16,53] := {147, 191} tii[16,54] := {117, 209} tii[16,55] := {180, 210} tii[16,56] := {84, 223} tii[16,57] := {198, 224} tii[16,58] := {55, 236} tii[16,59] := {216, 237} tii[16,60] := {230, 247} tii[16,61] := {103} tii[16,62] := {120} tii[16,63] := {38, 150} tii[16,64] := {104, 159} tii[16,65] := {72, 167} tii[16,66] := {149} tii[16,67] := {65, 170} tii[16,68] := {33, 189} tii[16,69] := {115, 182} tii[16,70] := {99, 190} tii[16,71] := {105, 200} tii[16,72] := {126, 208} tii[16,73] := {174} tii[16,74] := {91, 192} tii[16,75] := {60, 211} tii[16,76] := {144, 202} tii[16,77] := {130, 212} tii[16,78] := {29, 225} tii[16,79] := {113, 219} tii[16,80] := {151, 226} tii[16,81] := {106, 233} tii[16,82] := {171, 239} tii[16,83] := {196} tii[16,84] := {121, 213} tii[16,85] := {169, 220} tii[16,86] := {86, 227} tii[16,87] := {155, 228} tii[16,88] := {141, 234} tii[16,89] := {56, 240} tii[16,90] := {175, 241} tii[16,91] := {28, 248} tii[16,92] := {112, 245} tii[16,93] := {193, 249} tii[16,94] := {107, 252} tii[16,95] := {214, 254} tii[16,96] := {146, 229} tii[16,97] := {116, 242} tii[16,98] := {179, 243} tii[16,99] := {83, 250} tii[16,100] := {197, 251} tii[16,101] := {54, 255} tii[16,102] := {215, 256} tii[16,103] := {46, 257} tii[16,104] := {231, 258} tii[16,105] := {235, 259} tii[16,106] := {2} tii[16,107] := {0, 7} tii[16,108] := {15} tii[16,109] := {1, 21} tii[16,110] := {9, 45} tii[16,111] := {3, 52} tii[16,112] := {64} tii[16,113] := {6, 42} tii[16,114] := {32, 98} tii[16,115] := {5, 79} tii[16,116] := {26, 128} tii[16,117] := {10, 135} tii[16,118] := {122} tii[16,119] := {20, 69} tii[16,120] := {87, 156} tii[16,121] := {18, 110} tii[16,122] := {57, 176} tii[16,123] := {13, 160} tii[16,124] := {50, 195} tii[16,125] := {27, 203} tii[16,126] := {173} tii[16,127] := {43, 97} tii[16,128] := {143, 201} tii[16,129] := {114, 218} tii[16,130] := {40, 139} tii[16,131] := {81, 232} tii[16,132] := {35, 185} tii[16,133] := {31, 221} tii[16,134] := {78, 244} tii[16,135] := {51, 246} tii[16,136] := {19, 129} tii[16,137] := {17, 166} tii[16,138] := {14, 207} tii[16,139] := {11, 238} tii[16,140] := {23, 253} cell#24 , |C| = 252 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[1, 1],[2, 1, 1, 1, 1]]+phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[7,1] := {12} tii[7,2] := {21} tii[7,3] := {29, 30} tii[7,4] := {42, 43} tii[7,5] := {36} tii[7,6] := {53, 54} tii[7,7] := {38} tii[7,8] := {49, 50} tii[7,9] := {73, 74} tii[7,10] := {78, 79} tii[7,11] := {60} tii[7,12] := {105, 108} tii[7,13] := {87, 88} tii[7,14] := {106, 107} tii[7,15] := {139, 140} tii[7,16] := {92} tii[7,17] := {126, 127} tii[7,18] := {161, 162} tii[7,19] := {61} tii[7,20] := {80, 81} tii[7,21] := {110, 111} tii[7,22] := {93} tii[7,23] := {116, 117} tii[7,24] := {148, 151} tii[7,25] := {128, 129} tii[7,26] := {149, 150} tii[7,27] := {179, 180} tii[7,28] := {155, 156} tii[7,29] := {131} tii[7,30] := {184, 187} tii[7,31] := {185, 186} tii[7,32] := {167, 168} tii[7,33] := {209, 212} tii[7,34] := {198, 199} tii[7,35] := {210, 211} tii[7,36] := {228, 229} tii[7,37] := {169} tii[7,38] := {200, 201} tii[7,39] := {224, 225} tii[7,40] := {238, 239} tii[7,41] := {37} tii[7,42] := {48, 119} tii[7,43] := {71, 152} tii[7,44] := {59} tii[7,45] := {77, 157} tii[7,46] := {103, 189} tii[7,47] := {85, 86} tii[7,48] := {104, 188} tii[7,49] := {137, 213} tii[7,50] := {113, 191} tii[7,51] := {91} tii[7,52] := {142, 218} tii[7,53] := {124, 125} tii[7,54] := {143, 217} tii[7,55] := {172, 234} tii[7,56] := {159, 160} tii[7,57] := {173, 233} tii[7,58] := {202, 243} tii[7,59] := {76, 219} tii[7,60] := {130} tii[7,61] := {101, 236} tii[7,62] := {102, 235} tii[7,63] := {165, 166} tii[7,64] := {134, 246} tii[7,65] := {135, 245} tii[7,66] := {196, 197} tii[7,67] := {96, 250} tii[7,68] := {220, 221} tii[7,69] := {170, 249} tii[7,70] := {158, 251} tii[7,71] := {154} tii[7,72] := {182, 183} tii[7,73] := {207, 208} tii[7,74] := {226, 227} tii[7,75] := {203, 240} tii[7,76] := {1} tii[7,77] := {3} tii[7,78] := {2} tii[7,79] := {14, 15} tii[7,80] := {7} tii[7,81] := {26, 27} tii[7,82] := {8, 9} tii[7,83] := {18, 19} tii[7,84] := {6} tii[7,85] := {46, 47} tii[7,86] := {16, 17} tii[7,87] := {13} tii[7,88] := {66, 69} tii[7,89] := {67, 68} tii[7,90] := {34, 35} tii[7,91] := {98, 99} tii[7,92] := {41, 44} tii[7,93] := {82, 83} tii[7,94] := {11} tii[7,95] := {114, 115} tii[7,96] := {32, 33} tii[7,97] := {23} tii[7,98] := {144, 147} tii[7,99] := {145, 146} tii[7,100] := {72, 75} tii[7,101] := {174, 177} tii[7,102] := {57, 58} tii[7,103] := {175, 176} tii[7,104] := {122, 123} tii[7,105] := {204, 205} tii[7,106] := {138, 141} tii[7,107] := {194, 195} tii[7,108] := {20} tii[7,109] := {45, 190} tii[7,110] := {51, 52} tii[7,111] := {39} tii[7,112] := {64, 216} tii[7,113] := {65, 215} tii[7,114] := {109, 112} tii[7,115] := {94, 232} tii[7,116] := {95, 231} tii[7,117] := {89, 90} tii[7,118] := {178, 181} tii[7,119] := {62, 242} tii[7,120] := {132, 241} tii[7,121] := {163, 164} tii[7,122] := {118, 248} tii[7,123] := {222, 223} tii[7,124] := {40, 230} tii[7,125] := {133, 247} tii[7,126] := {10} tii[7,127] := {31, 84} tii[7,128] := {22} tii[7,129] := {70, 153} tii[7,130] := {55, 56} tii[7,131] := {136, 214} tii[7,132] := {120, 121} tii[7,133] := {63, 244} tii[7,134] := {192, 193} tii[7,135] := {171, 237} tii[7,136] := {0} tii[7,137] := {4, 5} tii[7,138] := {25, 28} tii[7,139] := {97, 100} tii[7,140] := {24, 206} cell#25 , |C| = 260 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[16,1] := {8} tii[16,2] := {4, 41} tii[16,3] := {22, 53} tii[16,4] := {24} tii[16,5] := {36} tii[16,6] := {16, 68} tii[16,7] := {25, 71} tii[16,8] := {44, 80} tii[16,9] := {37, 89} tii[16,10] := {12, 108} tii[16,11] := {70, 109} tii[16,12] := {96, 136} tii[16,13] := {47} tii[16,14] := {63} tii[16,15] := {39, 95} tii[16,16] := {48, 101} tii[16,17] := {73, 111} tii[16,18] := {93} tii[16,19] := {66, 119} tii[16,20] := {34, 137} tii[16,21] := {59, 132} tii[16,22] := {100, 138} tii[16,23] := {49, 153} tii[16,24] := {127, 161} tii[16,25] := {92, 142} tii[16,26] := {61, 162} tii[16,27] := {131, 163} tii[16,28] := {30, 183} tii[16,29] := {152, 184} tii[16,30] := {172, 204} tii[16,31] := {74} tii[16,32] := {90} tii[16,33] := {67, 125} tii[16,34] := {75, 134} tii[16,35] := {102, 140} tii[16,36] := {124} tii[16,37] := {94, 145} tii[16,38] := {62, 164} tii[16,39] := {85, 158} tii[16,40] := {133, 165} tii[16,41] := {76, 178} tii[16,42] := {154, 186} tii[16,43] := {148} tii[16,44] := {123, 168} tii[16,45] := {118, 181} tii[16,46] := {88, 187} tii[16,47] := {157, 188} tii[16,48] := {58, 205} tii[16,49] := {82, 199} tii[16,50] := {177, 206} tii[16,51] := {77, 217} tii[16,52] := {194, 222} tii[16,53] := {147, 191} tii[16,54] := {117, 209} tii[16,55] := {180, 210} tii[16,56] := {84, 223} tii[16,57] := {198, 224} tii[16,58] := {55, 236} tii[16,59] := {216, 237} tii[16,60] := {230, 247} tii[16,61] := {103} tii[16,62] := {120} tii[16,63] := {38, 150} tii[16,64] := {104, 159} tii[16,65] := {72, 167} tii[16,66] := {149} tii[16,67] := {65, 170} tii[16,68] := {33, 189} tii[16,69] := {115, 182} tii[16,70] := {99, 190} tii[16,71] := {105, 200} tii[16,72] := {126, 208} tii[16,73] := {174} tii[16,74] := {91, 192} tii[16,75] := {60, 211} tii[16,76] := {144, 202} tii[16,77] := {130, 212} tii[16,78] := {29, 225} tii[16,79] := {113, 219} tii[16,80] := {151, 226} tii[16,81] := {106, 233} tii[16,82] := {171, 239} tii[16,83] := {196} tii[16,84] := {121, 213} tii[16,85] := {169, 220} tii[16,86] := {86, 227} tii[16,87] := {155, 228} tii[16,88] := {141, 234} tii[16,89] := {56, 240} tii[16,90] := {175, 241} tii[16,91] := {28, 248} tii[16,92] := {112, 245} tii[16,93] := {193, 249} tii[16,94] := {107, 252} tii[16,95] := {214, 254} tii[16,96] := {146, 229} tii[16,97] := {116, 242} tii[16,98] := {179, 243} tii[16,99] := {83, 250} tii[16,100] := {197, 251} tii[16,101] := {54, 255} tii[16,102] := {215, 256} tii[16,103] := {46, 257} tii[16,104] := {231, 258} tii[16,105] := {235, 259} tii[16,106] := {2} tii[16,107] := {0, 7} tii[16,108] := {15} tii[16,109] := {1, 21} tii[16,110] := {9, 45} tii[16,111] := {3, 52} tii[16,112] := {64} tii[16,113] := {6, 42} tii[16,114] := {32, 98} tii[16,115] := {5, 79} tii[16,116] := {26, 128} tii[16,117] := {10, 135} tii[16,118] := {122} tii[16,119] := {20, 69} tii[16,120] := {87, 156} tii[16,121] := {18, 110} tii[16,122] := {57, 176} tii[16,123] := {13, 160} tii[16,124] := {50, 195} tii[16,125] := {27, 203} tii[16,126] := {173} tii[16,127] := {43, 97} tii[16,128] := {143, 201} tii[16,129] := {114, 218} tii[16,130] := {40, 139} tii[16,131] := {81, 232} tii[16,132] := {35, 185} tii[16,133] := {31, 221} tii[16,134] := {78, 244} tii[16,135] := {51, 246} tii[16,136] := {19, 129} tii[16,137] := {17, 166} tii[16,138] := {14, 207} tii[16,139] := {11, 238} tii[16,140] := {23, 253} cell#26 , |C| = 252 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[1, 1],[2, 1, 1, 1, 1]]+phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[7,1] := {12} tii[7,2] := {21} tii[7,3] := {29, 30} tii[7,4] := {42, 43} tii[7,5] := {36} tii[7,6] := {53, 54} tii[7,7] := {38} tii[7,8] := {49, 50} tii[7,9] := {73, 74} tii[7,10] := {78, 79} tii[7,11] := {60} tii[7,12] := {105, 108} tii[7,13] := {87, 88} tii[7,14] := {106, 107} tii[7,15] := {139, 140} tii[7,16] := {92} tii[7,17] := {126, 127} tii[7,18] := {161, 162} tii[7,19] := {61} tii[7,20] := {80, 81} tii[7,21] := {110, 111} tii[7,22] := {93} tii[7,23] := {116, 117} tii[7,24] := {148, 151} tii[7,25] := {128, 129} tii[7,26] := {149, 150} tii[7,27] := {179, 180} tii[7,28] := {155, 156} tii[7,29] := {131} tii[7,30] := {184, 187} tii[7,31] := {185, 186} tii[7,32] := {167, 168} tii[7,33] := {209, 212} tii[7,34] := {198, 199} tii[7,35] := {210, 211} tii[7,36] := {228, 229} tii[7,37] := {169} tii[7,38] := {200, 201} tii[7,39] := {224, 225} tii[7,40] := {238, 239} tii[7,41] := {37} tii[7,42] := {48, 119} tii[7,43] := {71, 152} tii[7,44] := {59} tii[7,45] := {77, 157} tii[7,46] := {103, 189} tii[7,47] := {85, 86} tii[7,48] := {104, 188} tii[7,49] := {137, 213} tii[7,50] := {113, 191} tii[7,51] := {91} tii[7,52] := {142, 218} tii[7,53] := {124, 125} tii[7,54] := {143, 217} tii[7,55] := {172, 234} tii[7,56] := {159, 160} tii[7,57] := {173, 233} tii[7,58] := {202, 243} tii[7,59] := {76, 219} tii[7,60] := {130} tii[7,61] := {101, 236} tii[7,62] := {102, 235} tii[7,63] := {165, 166} tii[7,64] := {134, 246} tii[7,65] := {135, 245} tii[7,66] := {196, 197} tii[7,67] := {96, 250} tii[7,68] := {220, 221} tii[7,69] := {170, 249} tii[7,70] := {158, 251} tii[7,71] := {154} tii[7,72] := {182, 183} tii[7,73] := {207, 208} tii[7,74] := {226, 227} tii[7,75] := {203, 240} tii[7,76] := {1} tii[7,77] := {3} tii[7,78] := {2} tii[7,79] := {14, 15} tii[7,80] := {7} tii[7,81] := {26, 27} tii[7,82] := {8, 9} tii[7,83] := {18, 19} tii[7,84] := {6} tii[7,85] := {46, 47} tii[7,86] := {16, 17} tii[7,87] := {13} tii[7,88] := {66, 69} tii[7,89] := {67, 68} tii[7,90] := {34, 35} tii[7,91] := {98, 99} tii[7,92] := {41, 44} tii[7,93] := {82, 83} tii[7,94] := {11} tii[7,95] := {114, 115} tii[7,96] := {32, 33} tii[7,97] := {23} tii[7,98] := {144, 147} tii[7,99] := {145, 146} tii[7,100] := {72, 75} tii[7,101] := {174, 177} tii[7,102] := {57, 58} tii[7,103] := {175, 176} tii[7,104] := {122, 123} tii[7,105] := {204, 205} tii[7,106] := {138, 141} tii[7,107] := {194, 195} tii[7,108] := {20} tii[7,109] := {45, 190} tii[7,110] := {51, 52} tii[7,111] := {39} tii[7,112] := {64, 216} tii[7,113] := {65, 215} tii[7,114] := {109, 112} tii[7,115] := {94, 232} tii[7,116] := {95, 231} tii[7,117] := {89, 90} tii[7,118] := {178, 181} tii[7,119] := {62, 242} tii[7,120] := {132, 241} tii[7,121] := {163, 164} tii[7,122] := {118, 248} tii[7,123] := {222, 223} tii[7,124] := {40, 230} tii[7,125] := {133, 247} tii[7,126] := {10} tii[7,127] := {31, 84} tii[7,128] := {22} tii[7,129] := {70, 153} tii[7,130] := {55, 56} tii[7,131] := {136, 214} tii[7,132] := {120, 121} tii[7,133] := {63, 244} tii[7,134] := {192, 193} tii[7,135] := {171, 237} tii[7,136] := {0} tii[7,137] := {4, 5} tii[7,138] := {25, 28} tii[7,139] := {97, 100} tii[7,140] := {24, 206} cell#27 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {8} tii[12,2] := {18} tii[12,3] := {9, 24} tii[12,4] := {23} tii[12,5] := {16, 29} tii[12,6] := {10, 32} tii[12,7] := {27} tii[12,8] := {21, 34} tii[12,9] := {14, 37} tii[12,10] := {11, 42} tii[12,11] := {30} tii[12,12] := {25, 38} tii[12,13] := {19, 43} tii[12,14] := {13, 46} tii[12,15] := {12, 48} tii[12,16] := {26} tii[12,17] := {20, 33} tii[12,18] := {15, 36} tii[12,19] := {6, 41} tii[12,20] := {5, 45} tii[12,21] := {3, 47} tii[12,22] := {22} tii[12,23] := {17, 28} tii[12,24] := {7, 31} tii[12,25] := {4, 35} tii[12,26] := {2, 39} tii[12,27] := {1, 44} tii[12,28] := {0, 40} cell#28 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {8} tii[12,2] := {18} tii[12,3] := {9, 24} tii[12,4] := {23} tii[12,5] := {16, 29} tii[12,6] := {10, 32} tii[12,7] := {27} tii[12,8] := {21, 34} tii[12,9] := {14, 37} tii[12,10] := {11, 42} tii[12,11] := {30} tii[12,12] := {25, 38} tii[12,13] := {19, 43} tii[12,14] := {13, 46} tii[12,15] := {12, 48} tii[12,16] := {26} tii[12,17] := {20, 33} tii[12,18] := {15, 36} tii[12,19] := {6, 41} tii[12,20] := {5, 45} tii[12,21] := {3, 47} tii[12,22] := {22} tii[12,23] := {17, 28} tii[12,24] := {7, 31} tii[12,25] := {4, 35} tii[12,26] := {2, 39} tii[12,27] := {1, 44} tii[12,28] := {0, 40} cell#29 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {13} tii[6,2] := {19} tii[6,3] := {18} tii[6,4] := {12} tii[6,5] := {24} tii[6,6] := {28} tii[6,7] := {23} tii[6,8] := {17} tii[6,9] := {29} tii[6,10] := {11} tii[6,11] := {31} tii[6,12] := {34} tii[6,13] := {27} tii[6,14] := {22} tii[6,15] := {33} tii[6,16] := {16} tii[6,17] := {36} tii[6,18] := {10} tii[6,19] := {39} tii[6,20] := {42} tii[6,21] := {30} tii[6,22] := {25} tii[6,23] := {37} tii[6,24] := {20} tii[6,25] := {40} tii[6,26] := {14} tii[6,27] := {43} tii[6,28] := {8} tii[6,29] := {45} tii[6,30] := {46} tii[6,31] := {26} tii[6,32] := {21} tii[6,33] := {32} tii[6,34] := {15} tii[6,35] := {35} tii[6,36] := {9} tii[6,37] := {38} tii[6,38] := {2} tii[6,39] := {41} tii[6,40] := {1} tii[6,41] := {44} tii[6,42] := {47} tii[6,43] := {7} tii[6,44] := {6} tii[6,45] := {5} tii[6,46] := {4} tii[6,47] := {3} tii[6,48] := {0} cell#30 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {13} tii[6,2] := {19} tii[6,3] := {18} tii[6,4] := {12} tii[6,5] := {24} tii[6,6] := {28} tii[6,7] := {23} tii[6,8] := {17} tii[6,9] := {29} tii[6,10] := {11} tii[6,11] := {31} tii[6,12] := {34} tii[6,13] := {27} tii[6,14] := {22} tii[6,15] := {33} tii[6,16] := {16} tii[6,17] := {36} tii[6,18] := {10} tii[6,19] := {39} tii[6,20] := {42} tii[6,21] := {30} tii[6,22] := {25} tii[6,23] := {37} tii[6,24] := {20} tii[6,25] := {40} tii[6,26] := {14} tii[6,27] := {43} tii[6,28] := {8} tii[6,29] := {45} tii[6,30] := {46} tii[6,31] := {26} tii[6,32] := {21} tii[6,33] := {32} tii[6,34] := {15} tii[6,35] := {35} tii[6,36] := {9} tii[6,37] := {38} tii[6,38] := {2} tii[6,39] := {41} tii[6,40] := {1} tii[6,41] := {44} tii[6,42] := {47} tii[6,43] := {7} tii[6,44] := {6} tii[6,45] := {5} tii[6,46] := {4} tii[6,47] := {3} tii[6,48] := {0} cell#31 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {9} tii[6,7] := {7} tii[6,8] := {10} tii[6,9] := {11} tii[6,10] := {14} tii[6,11] := {15} tii[6,12] := {22} tii[6,13] := {12} tii[6,14] := {16} tii[6,15] := {17} tii[6,16] := {23} tii[6,17] := {24} tii[6,18] := {30} tii[6,19] := {31} tii[6,20] := {38} tii[6,21] := {18} tii[6,22] := {25} tii[6,23] := {26} tii[6,24] := {32} tii[6,25] := {33} tii[6,26] := {39} tii[6,27] := {40} tii[6,28] := {44} tii[6,29] := {45} tii[6,30] := {47} tii[6,31] := {13} tii[6,32] := {19} tii[6,33] := {20} tii[6,34] := {28} tii[6,35] := {29} tii[6,36] := {35} tii[6,37] := {36} tii[6,38] := {42} tii[6,39] := {43} tii[6,40] := {34} tii[6,41] := {46} tii[6,42] := {41} tii[6,43] := {0} tii[6,44] := {2} tii[6,45] := {8} tii[6,46] := {21} tii[6,47] := {37} tii[6,48] := {27} cell#32 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {9} tii[6,7] := {7} tii[6,8] := {10} tii[6,9] := {11} tii[6,10] := {14} tii[6,11] := {15} tii[6,12] := {22} tii[6,13] := {12} tii[6,14] := {16} tii[6,15] := {17} tii[6,16] := {23} tii[6,17] := {24} tii[6,18] := {30} tii[6,19] := {31} tii[6,20] := {38} tii[6,21] := {18} tii[6,22] := {25} tii[6,23] := {26} tii[6,24] := {32} tii[6,25] := {33} tii[6,26] := {39} tii[6,27] := {40} tii[6,28] := {44} tii[6,29] := {45} tii[6,30] := {47} tii[6,31] := {13} tii[6,32] := {19} tii[6,33] := {20} tii[6,34] := {28} tii[6,35] := {29} tii[6,36] := {35} tii[6,37] := {36} tii[6,38] := {42} tii[6,39] := {43} tii[6,40] := {34} tii[6,41] := {46} tii[6,42] := {41} tii[6,43] := {0} tii[6,44] := {2} tii[6,45] := {8} tii[6,46] := {21} tii[6,47] := {37} tii[6,48] := {27} cell#33 , |C| = 48 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X+20*X^2 TII subcells: tii[3,1] := {11} tii[3,2] := {17} tii[3,3] := {10, 23} tii[3,4] := {22} tii[3,5] := {16, 28} tii[3,6] := {9, 31} tii[3,7] := {26} tii[3,8] := {21, 32} tii[3,9] := {15, 35} tii[3,10] := {8, 37} tii[3,11] := {30} tii[3,12] := {25, 36} tii[3,13] := {20, 38} tii[3,14] := {14, 41} tii[3,15] := {7, 43} tii[3,16] := {34} tii[3,17] := {29, 39} tii[3,18] := {24, 42} tii[3,19] := {19, 44} tii[3,20] := {13, 46} tii[3,21] := {12, 47} tii[3,22] := {0} tii[3,23] := {5} tii[3,24] := {4, 18} tii[3,25] := {3, 27} tii[3,26] := {2, 33} tii[3,27] := {1, 40} tii[3,28] := {6, 45} cell#34 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {7} tii[2,2] := {6, 8} tii[2,3] := {5, 9} tii[2,4] := {4, 10} tii[2,5] := {3, 11} tii[2,6] := {2, 12} tii[2,7] := {1, 14} tii[2,8] := {0, 13} cell#35 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {7} tii[2,2] := {6, 8} tii[2,3] := {5, 9} tii[2,4] := {4, 10} tii[2,5] := {3, 11} tii[2,6] := {2, 12} tii[2,7] := {1, 14} tii[2,8] := {0, 13} cell#36 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {10} tii[6,2] := {17} tii[6,3] := {16} tii[6,4] := {9} tii[6,5] := {22} tii[6,6] := {26} tii[6,7] := {21} tii[6,8] := {15} tii[6,9] := {27} tii[6,10] := {8} tii[6,11] := {30} tii[6,12] := {32} tii[6,13] := {25} tii[6,14] := {20} tii[6,15] := {31} tii[6,16] := {14} tii[6,17] := {34} tii[6,18] := {7} tii[6,19] := {36} tii[6,20] := {39} tii[6,21] := {29} tii[6,22] := {24} tii[6,23] := {35} tii[6,24] := {19} tii[6,25] := {37} tii[6,26] := {13} tii[6,27] := {40} tii[6,28] := {6} tii[6,29] := {42} tii[6,30] := {44} tii[6,31] := {33} tii[6,32] := {28} tii[6,33] := {38} tii[6,34] := {23} tii[6,35] := {41} tii[6,36] := {18} tii[6,37] := {43} tii[6,38] := {12} tii[6,39] := {45} tii[6,40] := {11} tii[6,41] := {46} tii[6,42] := {47} tii[6,43] := {4} tii[6,44] := {3} tii[6,45] := {2} tii[6,46] := {1} tii[6,47] := {0} tii[6,48] := {5} cell#37 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {10} tii[6,2] := {17} tii[6,3] := {16} tii[6,4] := {9} tii[6,5] := {22} tii[6,6] := {26} tii[6,7] := {21} tii[6,8] := {15} tii[6,9] := {27} tii[6,10] := {8} tii[6,11] := {30} tii[6,12] := {32} tii[6,13] := {25} tii[6,14] := {20} tii[6,15] := {31} tii[6,16] := {14} tii[6,17] := {34} tii[6,18] := {7} tii[6,19] := {36} tii[6,20] := {39} tii[6,21] := {29} tii[6,22] := {24} tii[6,23] := {35} tii[6,24] := {19} tii[6,25] := {37} tii[6,26] := {13} tii[6,27] := {40} tii[6,28] := {6} tii[6,29] := {42} tii[6,30] := {44} tii[6,31] := {33} tii[6,32] := {28} tii[6,33] := {38} tii[6,34] := {23} tii[6,35] := {41} tii[6,36] := {18} tii[6,37] := {43} tii[6,38] := {12} tii[6,39] := {45} tii[6,40] := {11} tii[6,41] := {46} tii[6,42] := {47} tii[6,43] := {4} tii[6,44] := {3} tii[6,45] := {2} tii[6,46] := {1} tii[6,47] := {0} tii[6,48] := {5} cell#38 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {1} tii[6,2] := {4} tii[6,3] := {6} tii[6,4] := {10} tii[6,5] := {11} tii[6,6] := {19} tii[6,7] := {13} tii[6,8] := {22} tii[6,9] := {23} tii[6,10] := {30} tii[6,11] := {31} tii[6,12] := {40} tii[6,13] := {24} tii[6,14] := {32} tii[6,15] := {33} tii[6,16] := {41} tii[6,17] := {42} tii[6,18] := {45} tii[6,19] := {46} tii[6,20] := {47} tii[6,21] := {12} tii[6,22] := {20} tii[6,23] := {21} tii[6,24] := {28} tii[6,25] := {29} tii[6,26] := {37} tii[6,27] := {38} tii[6,28] := {27} tii[6,29] := {44} tii[6,30] := {43} tii[6,31] := {5} tii[6,32] := {8} tii[6,33] := {9} tii[6,34] := {16} tii[6,35] := {17} tii[6,36] := {25} tii[6,37] := {26} tii[6,38] := {14} tii[6,39] := {35} tii[6,40] := {7} tii[6,41] := {34} tii[6,42] := {36} tii[6,43] := {0} tii[6,44] := {3} tii[6,45] := {18} tii[6,46] := {39} tii[6,47] := {15} tii[6,48] := {2} cell#39 , |C| = 48 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X+20*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {11, 12} tii[3,6] := {14, 15} tii[3,7] := {13} tii[3,8] := {16, 17} tii[3,9] := {22, 23} tii[3,10] := {28, 29} tii[3,11] := {18} tii[3,12] := {24, 25} tii[3,13] := {30, 31} tii[3,14] := {37, 38} tii[3,15] := {42, 43} tii[3,16] := {19} tii[3,17] := {26, 27} tii[3,18] := {33, 34} tii[3,19] := {40, 41} tii[3,20] := {44, 45} tii[3,21] := {39, 47} tii[3,22] := {0} tii[3,23] := {1} tii[3,24] := {3, 4} tii[3,25] := {9, 10} tii[3,26] := {20, 21} tii[3,27] := {35, 36} tii[3,28] := {32, 46} cell#40 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {1} tii[6,2] := {4} tii[6,3] := {6} tii[6,4] := {10} tii[6,5] := {11} tii[6,6] := {19} tii[6,7] := {13} tii[6,8] := {22} tii[6,9] := {23} tii[6,10] := {30} tii[6,11] := {31} tii[6,12] := {40} tii[6,13] := {24} tii[6,14] := {32} tii[6,15] := {33} tii[6,16] := {41} tii[6,17] := {42} tii[6,18] := {45} tii[6,19] := {46} tii[6,20] := {47} tii[6,21] := {12} tii[6,22] := {20} tii[6,23] := {21} tii[6,24] := {28} tii[6,25] := {29} tii[6,26] := {37} tii[6,27] := {38} tii[6,28] := {27} tii[6,29] := {44} tii[6,30] := {43} tii[6,31] := {5} tii[6,32] := {8} tii[6,33] := {9} tii[6,34] := {16} tii[6,35] := {17} tii[6,36] := {25} tii[6,37] := {26} tii[6,38] := {14} tii[6,39] := {35} tii[6,40] := {7} tii[6,41] := {34} tii[6,42] := {36} tii[6,43] := {0} tii[6,44] := {3} tii[6,45] := {18} tii[6,46] := {39} tii[6,47] := {15} tii[6,48] := {2} cell#41 , |C| = 48 special orbit = [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]]+phi[[],[2, 2, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X+20*X^2 TII subcells: tii[3,1] := {2} tii[3,2] := {5} tii[3,3] := {6, 7} tii[3,4] := {8} tii[3,5] := {11, 12} tii[3,6] := {14, 15} tii[3,7] := {13} tii[3,8] := {16, 17} tii[3,9] := {22, 23} tii[3,10] := {28, 29} tii[3,11] := {18} tii[3,12] := {24, 25} tii[3,13] := {30, 31} tii[3,14] := {37, 38} tii[3,15] := {42, 43} tii[3,16] := {19} tii[3,17] := {26, 27} tii[3,18] := {33, 34} tii[3,19] := {40, 41} tii[3,20] := {44, 45} tii[3,21] := {39, 47} tii[3,22] := {0} tii[3,23] := {1} tii[3,24] := {3, 4} tii[3,25] := {9, 10} tii[3,26] := {20, 21} tii[3,27] := {35, 36} tii[3,28] := {32, 46} cell#42 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {2, 3} tii[2,3] := {5, 6} tii[2,4] := {8, 9} tii[2,5] := {10, 11} tii[2,6] := {7, 13} tii[2,7] := {4, 12} tii[2,8] := {1, 14} cell#43 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {2, 3} tii[2,3] := {5, 6} tii[2,4] := {8, 9} tii[2,5] := {10, 11} tii[2,6] := {7, 13} tii[2,7] := {4, 12} tii[2,8] := {1, 14} cell#44 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#45 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}