TII subcells for the Spin(15,2) x PSp(16,R) block of Spin17 # cell#0 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {0} tii[12,2] := {12} tii[12,3] := {1, 18} tii[12,4] := {17} tii[12,5] := {11, 23} tii[12,6] := {2, 27} tii[12,7] := {22} tii[12,8] := {16, 28} tii[12,9] := {10, 31} tii[12,10] := {3, 33} tii[12,11] := {26} tii[12,12] := {21, 32} tii[12,13] := {15, 35} tii[12,14] := {9, 37} tii[12,15] := {4, 40} tii[12,16] := {30} tii[12,17] := {25, 36} tii[12,18] := {20, 38} tii[12,19] := {14, 41} tii[12,20] := {8, 43} tii[12,21] := {5, 45} tii[12,22] := {34} tii[12,23] := {29, 39} tii[12,24] := {24, 42} tii[12,25] := {19, 44} tii[12,26] := {13, 46} tii[12,27] := {7, 47} tii[12,28] := {6, 48} cell#1 , |C| = 49 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[2],[1, 1, 1, 1, 1, 1]]+phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X+21*X^2 TII subcells: tii[12,1] := {0} tii[12,2] := {12} tii[12,3] := {1, 18} tii[12,4] := {17} tii[12,5] := {11, 23} tii[12,6] := {2, 27} tii[12,7] := {22} tii[12,8] := {16, 28} tii[12,9] := {10, 31} tii[12,10] := {3, 33} tii[12,11] := {26} tii[12,12] := {21, 32} tii[12,13] := {15, 35} tii[12,14] := {9, 37} tii[12,15] := {4, 40} tii[12,16] := {30} tii[12,17] := {25, 36} tii[12,18] := {20, 38} tii[12,19] := {14, 41} tii[12,20] := {8, 43} tii[12,21] := {5, 45} tii[12,22] := {34} tii[12,23] := {29, 39} tii[12,24] := {24, 42} tii[12,25] := {19, 44} tii[12,26] := {13, 46} tii[12,27] := {7, 47} tii[12,28] := {6, 48} cell#2 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {7} tii[2,2] := {6, 8} tii[2,3] := {5, 9} tii[2,4] := {4, 10} tii[2,5] := {3, 11} tii[2,6] := {2, 12} tii[2,7] := {1, 13} tii[2,8] := {0, 14} cell#3 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {7} tii[2,2] := {6, 8} tii[2,3] := {5, 9} tii[2,4] := {4, 10} tii[2,5] := {3, 11} tii[2,6] := {2, 12} tii[2,7] := {1, 13} tii[2,8] := {0, 14} cell#4 , |C| = 48 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[6,1] := {1} tii[6,2] := {3} tii[6,3] := {4} tii[6,4] := {5} tii[6,5] := {6} tii[6,6] := {9} tii[6,7] := {7} tii[6,8] := {10} tii[6,9] := {11} tii[6,10] := {13} tii[6,11] := {14} tii[6,12] := {19} tii[6,13] := {12} tii[6,14] := {15} tii[6,15] := {16} tii[6,16] := {20} tii[6,17] := {21} tii[6,18] := {25} tii[6,19] := {26} tii[6,20] := {32} tii[6,21] := {17} tii[6,22] := {22} tii[6,23] := {23} tii[6,24] := {27} tii[6,25] := {28} tii[6,26] := {33} tii[6,27] := {34} tii[6,28] := {37} tii[6,29] := {38} tii[6,30] := {42} tii[6,31] := {24} tii[6,32] := {29} tii[6,33] := {30} tii[6,34] := {35} tii[6,35] := {36} tii[6,36] := {39} tii[6,37] := {40} tii[6,38] := {43} tii[6,39] := {44} tii[6,40] := {45} tii[6,41] := {46} tii[6,42] := {47} tii[6,43] := {0} tii[6,44] := {2} tii[6,45] := {8} tii[6,46] := {18} tii[6,47] := {31} tii[6,48] := {41} cell#5 , |C| = 15 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]]+phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+7*X^2 TII subcells: tii[2,1] := {0} tii[2,2] := {1, 2} tii[2,3] := {3, 4} tii[2,4] := {5, 6} tii[2,5] := {7, 8} tii[2,6] := {10, 11} tii[2,7] := {12, 13} tii[2,8] := {9, 14} cell#6 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}