TII subcells for the Spin(9,8) x PSp(6,2) block of Spin17 # cell#0 , |C| = 1 special orbit = [17] special rep = [[8], []] , dim = 1 cell rep = phi[[8],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 15 special orbit = [15, 1, 1] special rep = [[7], [1]] , dim = 8 cell rep = phi[[7, 1],[]]+phi[[7],[1]] TII depth = 1 TII multiplicity polynomial = 7*X^2+X TII subcells: tii[59,1] := {6, 14} tii[59,2] := {4, 13} tii[59,3] := {2, 12} tii[59,4] := {0, 11} tii[59,5] := {1, 10} tii[59,6] := {3, 9} tii[59,7] := {5, 8} tii[59,8] := {7} cell#2 , |C| = 48 special orbit = [13, 3, 1] special rep = [[6], [2]] , dim = 28 cell rep = phi[[6, 2],[]]+phi[[6],[2]] TII depth = 1 TII multiplicity polynomial = 8*X+20*X^2 TII subcells: tii[58,1] := {0, 47} tii[58,2] := {4, 43} tii[58,3] := {12, 42} tii[58,4] := {18, 41} tii[58,5] := {27, 40} tii[58,6] := {39} tii[58,7] := {45} tii[58,8] := {2, 46} tii[58,9] := {5, 44} tii[58,10] := {8, 37} tii[58,11] := {11, 31} tii[58,12] := {14, 25} tii[58,13] := {20} tii[58,14] := {1, 38} tii[58,15] := {3, 32} tii[58,16] := {6, 26} tii[58,17] := {9, 21} tii[58,18] := {16} tii[58,19] := {7, 36} tii[58,20] := {10, 30} tii[58,21] := {13, 24} tii[58,22] := {19} tii[58,23] := {15, 35} tii[58,24] := {17, 29} tii[58,25] := {23} tii[58,26] := {22, 34} tii[58,27] := {28} tii[58,28] := {33} cell#3 , |C| = 48 special orbit = [13, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {25} tii[57,2] := {14} tii[57,3] := {2} tii[57,4] := {11} tii[57,5] := {22} tii[57,6] := {37} tii[57,7] := {47} tii[57,8] := {20} tii[57,9] := {46} tii[57,10] := {15} tii[57,11] := {45} tii[57,12] := {8} tii[57,13] := {43} tii[57,14] := {12} tii[57,15] := {40} tii[57,16] := {17} tii[57,17] := {30} tii[57,18] := {24} tii[57,19] := {44} tii[57,20] := {42} tii[57,21] := {7} tii[57,22] := {41} tii[57,23] := {3} tii[57,24] := {32} tii[57,25] := {6} tii[57,26] := {27} tii[57,27] := {10} tii[57,28] := {19} tii[57,29] := {39} tii[57,30] := {34} tii[57,31] := {0} tii[57,32] := {28} tii[57,33] := {1} tii[57,34] := {21} tii[57,35] := {4} tii[57,36] := {13} tii[57,37] := {38} tii[57,38] := {33} tii[57,39] := {5} tii[57,40] := {26} tii[57,41] := {9} tii[57,42] := {18} tii[57,43] := {36} tii[57,44] := {31} tii[57,45] := {16} tii[57,46] := {23} tii[57,47] := {35} tii[57,48] := {29} cell#4 , |C| = 252 special orbit = [11, 3, 3] special rep = [[5, 1], [2]] , dim = 140 cell rep = phi[[5, 2],[1]]+phi[[5, 1],[2]] TII depth = 5 TII multiplicity polynomial = 28*X+112*X^2 TII subcells: tii[54,1] := {162, 232} tii[54,2] := {60, 242} tii[54,3] := {157, 247} tii[54,4] := {235, 250} tii[54,5] := {251} tii[54,6] := {4, 243} tii[54,7] := {25, 211} tii[54,8] := {86, 182} tii[54,9] := {59, 207} tii[54,10] := {38, 174} tii[54,11] := {78, 166} tii[54,12] := {114, 200} tii[54,13] := {154, 161} tii[54,14] := {196} tii[54,15] := {229} tii[54,16] := {0, 245} tii[54,17] := {119, 212} tii[54,18] := {5, 236} tii[54,19] := {9, 181} tii[54,20] := {35, 173} tii[54,21] := {88, 187} tii[54,22] := {12, 220} tii[54,23] := {17, 209} tii[54,24] := {75, 165} tii[54,25] := {48, 201} tii[54,26] := {64, 144} tii[54,27] := {23, 214} tii[54,28] := {111, 197} tii[54,29] := {84, 104} tii[54,30] := {34, 178} tii[54,31] := {160} tii[54,32] := {71, 128} tii[54,33] := {205} tii[54,34] := {24, 191} tii[54,35] := {37, 230} tii[54,36] := {47, 151} tii[54,37] := {58, 208} tii[54,38] := {113, 199} tii[54,39] := {63, 143} tii[54,40] := {20, 213} tii[54,41] := {77, 226} tii[54,42] := {150, 223} tii[54,43] := {83, 101} tii[54,44] := {31, 177} tii[54,45] := {195} tii[54,46] := {68, 127} tii[54,47] := {228} tii[54,48] := {85, 217} tii[54,49] := {116, 239} tii[54,50] := {120, 189} tii[54,51] := {156, 225} tii[54,52] := {159, 176} tii[54,53] := {82, 231} tii[54,54] := {190, 238} tii[54,55] := {222} tii[54,56] := {126, 204} tii[54,57] := {241} tii[54,58] := {193, 234} tii[54,59] := {218, 246} tii[54,60] := {216, 221} tii[54,61] := {237} tii[54,62] := {203, 240} tii[54,63] := {248} tii[54,64] := {244} tii[54,65] := {249} tii[54,66] := {13, 233} tii[54,67] := {27, 215} tii[54,68] := {43, 185} tii[54,69] := {57, 137} tii[54,70] := {97} tii[54,71] := {1, 219} tii[54,72] := {3, 192} tii[54,73] := {62, 147} tii[54,74] := {11, 186} tii[54,75] := {8, 184} tii[54,76] := {42, 107} tii[54,77] := {22, 142} tii[54,78] := {16, 136} tii[54,79] := {56, 74} tii[54,80] := {33, 103} tii[54,81] := {46, 96} tii[54,82] := {70} tii[54,83] := {10, 155} tii[54,84] := {19, 145} tii[54,85] := {21, 141} tii[54,86] := {40, 179} tii[54,87] := {30, 102} tii[54,88] := {32, 100} tii[54,89] := {54, 134} tii[54,90] := {67, 69} tii[54,91] := {94} tii[54,92] := {36, 153} tii[54,93] := {50, 139} tii[54,94] := {52, 132} tii[54,95] := {80, 172} tii[54,96] := {90, 92} tii[54,97] := {124} tii[54,98] := {76, 152} tii[54,99] := {164} tii[54,100] := {122, 130} tii[54,101] := {2, 146} tii[54,102] := {7, 106} tii[54,103] := {15, 73} tii[54,104] := {45} tii[54,105] := {26, 112} tii[54,106] := {18, 140} tii[54,107] := {41, 108} tii[54,108] := {6, 183} tii[54,109] := {29, 99} tii[54,110] := {55, 72} tii[54,111] := {14, 135} tii[54,112] := {66} tii[54,113] := {44, 95} tii[54,114] := {61, 110} tii[54,115] := {81, 105} tii[54,116] := {28, 175} tii[54,117] := {49, 131} tii[54,118] := {65, 125} tii[54,119] := {89} tii[54,120] := {109, 115} tii[54,121] := {121} tii[54,122] := {98, 167} tii[54,123] := {39, 180} tii[54,124] := {53, 133} tii[54,125] := {93} tii[54,126] := {87, 149} tii[54,127] := {79, 171} tii[54,128] := {118, 138} tii[54,129] := {51, 210} tii[54,130] := {91, 169} tii[54,131] := {123} tii[54,132] := {148, 158} tii[54,133] := {163} tii[54,134] := {129, 202} tii[54,135] := {117, 206} tii[54,136] := {168} tii[54,137] := {188, 194} tii[54,138] := {198} tii[54,139] := {170, 227} tii[54,140] := {224} cell#5 , |C| = 252 special orbit = [9, 4, 4] special rep = [[4, 2], [2]] , dim = 252 cell rep = phi[[4, 2],[2]] TII depth = 6 TII multiplicity polynomial = 252*X TII subcells: tii[47,1] := {161} tii[47,2] := {237} tii[47,3] := {251} tii[47,4] := {179} tii[47,5] := {195} tii[47,6] := {55} tii[47,7] := {214} tii[47,8] := {153} tii[47,9] := {228} tii[47,10] := {4} tii[47,11] := {204} tii[47,12] := {22} tii[47,13] := {146} tii[47,14] := {218} tii[47,15] := {89} tii[47,16] := {54} tii[47,17] := {135} tii[47,18] := {31} tii[47,19] := {229} tii[47,20] := {185} tii[47,21] := {86} tii[47,22] := {239} tii[47,23] := {131} tii[47,24] := {178} tii[47,25] := {211} tii[47,26] := {126} tii[47,27] := {62} tii[47,28] := {232} tii[47,29] := {187} tii[47,30] := {125} tii[47,31] := {197} tii[47,32] := {240} tii[47,33] := {208} tii[47,34] := {92} tii[47,35] := {158} tii[47,36] := {159} tii[47,37] := {245} tii[47,38] := {61} tii[47,39] := {150} tii[47,40] := {191} tii[47,41] := {107} tii[47,42] := {222} tii[47,43] := {236} tii[47,44] := {226} tii[47,45] := {246} tii[47,46] := {225} tii[47,47] := {189} tii[47,48] := {249} tii[47,49] := {212} tii[47,50] := {210} tii[47,51] := {230} tii[47,52] := {242} tii[47,53] := {201} tii[47,54] := {247} tii[47,55] := {250} tii[47,56] := {243} tii[47,57] := {248} tii[47,58] := {112} tii[47,59] := {101} tii[47,60] := {96} tii[47,61] := {0} tii[47,62] := {147} tii[47,63] := {5} tii[47,64] := {9} tii[47,65] := {111} tii[47,66] := {28} tii[47,67] := {100} tii[47,68] := {117} tii[47,69] := {12} tii[47,70] := {14} tii[47,71] := {137} tii[47,72] := {52} tii[47,73] := {132} tii[47,74] := {77} tii[47,75] := {20} tii[47,76] := {95} tii[47,77] := {45} tii[47,78] := {143} tii[47,79] := {21} tii[47,80] := {119} tii[47,81] := {171} tii[47,82] := {38} tii[47,83] := {30} tii[47,84] := {53} tii[47,85] := {136} tii[47,86] := {82} tii[47,87] := {59} tii[47,88] := {148} tii[47,89] := {83} tii[47,90] := {166} tii[47,91] := {76} tii[47,92] := {130} tii[47,93] := {17} tii[47,94] := {105} tii[47,95] := {42} tii[47,96] := {177} tii[47,97] := {87} tii[47,98] := {152} tii[47,99] := {193} tii[47,100] := {120} tii[47,101] := {127} tii[47,102] := {118} tii[47,103] := {165} tii[47,104] := {173} tii[47,105] := {104} tii[47,106] := {203} tii[47,107] := {183} tii[47,108] := {209} tii[47,109] := {13} tii[47,110] := {181} tii[47,111] := {172} tii[47,112] := {24} tii[47,113] := {151} tii[47,114] := {167} tii[47,115] := {36} tii[47,116] := {115} tii[47,117] := {70} tii[47,118] := {37} tii[47,119] := {155} tii[47,120] := {198} tii[47,121] := {122} tii[47,122] := {57} tii[47,123] := {63} tii[47,124] := {11} tii[47,125] := {116} tii[47,126] := {170} tii[47,127] := {88} tii[47,128] := {114} tii[47,129] := {35} tii[47,130] := {94} tii[47,131] := {19} tii[47,132] := {75} tii[47,133] := {182} tii[47,134] := {123} tii[47,135] := {194} tii[47,136] := {164} tii[47,137] := {69} tii[47,138] := {142} tii[47,139] := {44} tii[47,140] := {202} tii[47,141] := {85} tii[47,142] := {124} tii[47,143] := {184} tii[47,144] := {216} tii[47,145] := {162} tii[47,146] := {78} tii[47,147] := {18} tii[47,148] := {33} tii[47,149] := {109} tii[47,150] := {156} tii[47,151] := {154} tii[47,152] := {192} tii[47,153] := {43} tii[47,154] := {199} tii[47,155] := {67} tii[47,156] := {223} tii[47,157] := {141} tii[47,158] := {84} tii[47,159] := {206} tii[47,160] := {99} tii[47,161] := {227} tii[47,162] := {72} tii[47,163] := {97} tii[47,164] := {220} tii[47,165] := {217} tii[47,166] := {129} tii[47,167] := {205} tii[47,168] := {176} tii[47,169] := {207} tii[47,170] := {160} tii[47,171] := {231} tii[47,172] := {186} tii[47,173] := {188} tii[47,174] := {190} tii[47,175] := {93} tii[47,176] := {180} tii[47,177] := {215} tii[47,178] := {175} tii[47,179] := {221} tii[47,180] := {140} tii[47,181] := {234} tii[47,182] := {157} tii[47,183] := {224} tii[47,184] := {168} tii[47,185] := {238} tii[47,186] := {144} tii[47,187] := {241} tii[47,188] := {213} tii[47,189] := {233} tii[47,190] := {235} tii[47,191] := {219} tii[47,192] := {244} tii[47,193] := {1} tii[47,194] := {3} tii[47,195] := {80} tii[47,196] := {8} tii[47,197] := {48} tii[47,198] := {27} tii[47,199] := {10} tii[47,200] := {16} tii[47,201] := {74} tii[47,202] := {41} tii[47,203] := {29} tii[47,204] := {65} tii[47,205] := {2} tii[47,206] := {79} tii[47,207] := {7} tii[47,208] := {47} tii[47,209] := {26} tii[47,210] := {23} tii[47,211] := {51} tii[47,212] := {49} tii[47,213] := {15} tii[47,214] := {73} tii[47,215] := {34} tii[47,216] := {113} tii[47,217] := {6} tii[47,218] := {25} tii[47,219] := {68} tii[47,220] := {40} tii[47,221] := {50} tii[47,222] := {56} tii[47,223] := {64} tii[47,224] := {46} tii[47,225] := {102} tii[47,226] := {32} tii[47,227] := {110} tii[47,228] := {66} tii[47,229] := {81} tii[47,230] := {90} tii[47,231] := {98} tii[47,232] := {138} tii[47,233] := {71} tii[47,234] := {134} tii[47,235] := {39} tii[47,236] := {60} tii[47,237] := {149} tii[47,238] := {106} tii[47,239] := {91} tii[47,240] := {139} tii[47,241] := {145} tii[47,242] := {58} tii[47,243] := {103} tii[47,244] := {128} tii[47,245] := {121} tii[47,246] := {133} tii[47,247] := {174} tii[47,248] := {108} tii[47,249] := {169} tii[47,250] := {163} tii[47,251] := {200} tii[47,252] := {196} cell#6 , |C| = 48 special orbit = [13, 2, 2] special rep = [[6, 1], [1]] , dim = 48 cell rep = phi[[6, 1],[1]] TII depth = 6 TII multiplicity polynomial = 48*X TII subcells: tii[57,1] := {47} tii[57,2] := {45} tii[57,3] := {41} tii[57,4] := {35} tii[57,5] := {27} tii[57,6] := {17} tii[57,7] := {13} tii[57,8] := {46} tii[57,9] := {6} tii[57,10] := {44} tii[57,11] := {12} tii[57,12] := {42} tii[57,13] := {19} tii[57,14] := {39} tii[57,15] := {24} tii[57,16] := {36} tii[57,17] := {28} tii[57,18] := {32} tii[57,19] := {0} tii[57,20] := {5} tii[57,21] := {43} tii[57,22] := {11} tii[57,23] := {40} tii[57,24] := {18} tii[57,25] := {37} tii[57,26] := {23} tii[57,27] := {33} tii[57,28] := {29} tii[57,29] := {4} tii[57,30] := {10} tii[57,31] := {38} tii[57,32] := {15} tii[57,33] := {34} tii[57,34] := {20} tii[57,35] := {30} tii[57,36] := {25} tii[57,37] := {3} tii[57,38] := {8} tii[57,39] := {31} tii[57,40] := {14} tii[57,41] := {26} tii[57,42] := {21} tii[57,43] := {2} tii[57,44] := {7} tii[57,45] := {22} tii[57,46] := {16} tii[57,47] := {1} tii[57,48] := {9} cell#7 , |C| = 260 special orbit = [11, 2, 2, 1, 1] special rep = [[5, 1], [1, 1]] , dim = 140 cell rep = phi[[5, 1, 1],[1]]+phi[[5, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 20*X+120*X^2 TII subcells: tii[52,1] := {65, 258} tii[52,2] := {124, 230} tii[52,3] := {179, 200} tii[52,4] := {145, 224} tii[52,5] := {85, 255} tii[52,6] := {55, 252} tii[52,7] := {109, 213} tii[52,8] := {28, 240} tii[52,9] := {163, 176} tii[52,10] := {52, 221} tii[52,11] := {118, 214} tii[52,12] := {73, 198} tii[52,13] := {54, 249} tii[52,14] := {100, 170} tii[52,15] := {138} tii[52,16] := {81, 235} tii[52,17] := {133, 187} tii[52,18] := {51, 222} tii[52,19] := {146, 189} tii[52,20] := {72, 197} tii[52,21] := {84, 233} tii[52,22] := {99, 169} tii[52,23] := {137} tii[52,24] := {101, 212} tii[52,25] := {157, 160} tii[52,26] := {71, 199} tii[52,27] := {111, 211} tii[52,28] := {98, 168} tii[52,29] := {136} tii[52,30] := {129, 185} tii[52,31] := {125, 186} tii[52,32] := {97, 171} tii[52,33] := {135} tii[52,34] := {155, 156} tii[52,35] := {139} tii[52,36] := {64, 259} tii[52,37] := {34, 245} tii[52,38] := {33, 246} tii[52,39] := {63, 228} tii[52,40] := {62, 229} tii[52,41] := {91, 206} tii[52,42] := {90, 207} tii[52,43] := {121, 181} tii[52,44] := {120, 182} tii[52,45] := {152, 153} tii[52,46] := {11, 257} tii[52,47] := {8, 223} tii[52,48] := {25, 201} tii[52,49] := {32, 244} tii[52,50] := {96, 208} tii[52,51] := {43, 173} tii[52,52] := {61, 227} tii[52,53] := {122, 183} tii[52,54] := {67, 141} tii[52,55] := {89, 205} tii[52,56] := {150, 154} tii[52,57] := {105} tii[52,58] := {123, 180} tii[52,59] := {24, 256} tii[52,60] := {6, 177} tii[52,61] := {42, 243} tii[52,62] := {20, 148} tii[52,63] := {151, 172} tii[52,64] := {39, 115} tii[52,65] := {66, 226} tii[52,66] := {140, 178} tii[52,67] := {78} tii[52,68] := {104, 204} tii[52,69] := {17, 254} tii[52,70] := {4, 119} tii[52,71] := {36, 242} tii[52,72] := {15, 87} tii[52,73] := {112, 203} tii[52,74] := {49} tii[52,75] := {75, 225} tii[52,76] := {13, 253} tii[52,77] := {2, 56} tii[52,78] := {23} tii[52,79] := {47, 241} tii[52,80] := {7} tii[52,81] := {0, 251} tii[52,82] := {82, 188} tii[52,83] := {10, 239} tii[52,84] := {103, 159} tii[52,85] := {31, 219} tii[52,86] := {128, 132} tii[52,87] := {60, 195} tii[52,88] := {95, 166} tii[52,89] := {5, 250} tii[52,90] := {26, 202} tii[52,91] := {19, 238} tii[52,92] := {134, 147} tii[52,93] := {44, 174} tii[52,94] := {114, 162} tii[52,95] := {38, 217} tii[52,96] := {68, 142} tii[52,97] := {77, 192} tii[52,98] := {106} tii[52,99] := {3, 248} tii[52,100] := {21, 149} tii[52,101] := {14, 237} tii[52,102] := {40, 116} tii[52,103] := {86, 190} tii[52,104] := {79} tii[52,105] := {48, 215} tii[52,106] := {1, 247} tii[52,107] := {16, 88} tii[52,108] := {50} tii[52,109] := {22, 236} tii[52,110] := {27} tii[52,111] := {9, 234} tii[52,112] := {102, 158} tii[52,113] := {30, 220} tii[52,114] := {127, 131} tii[52,115] := {59, 194} tii[52,116] := {94, 165} tii[52,117] := {18, 232} tii[52,118] := {45, 175} tii[52,119] := {37, 218} tii[52,120] := {113, 161} tii[52,121] := {69, 143} tii[52,122] := {76, 191} tii[52,123] := {107} tii[52,124] := {12, 231} tii[52,125] := {41, 117} tii[52,126] := {80} tii[52,127] := {46, 216} tii[52,128] := {53} tii[52,129] := {29, 210} tii[52,130] := {126, 130} tii[52,131] := {58, 196} tii[52,132] := {93, 164} tii[52,133] := {35, 209} tii[52,134] := {70, 144} tii[52,135] := {74, 193} tii[52,136] := {108} tii[52,137] := {83} tii[52,138] := {57, 184} tii[52,139] := {92, 167} tii[52,140] := {110} cell#8 , |C| = 280 special orbit = [9, 2, 2, 2, 2] special rep = [[4, 1, 1], [1, 1]] , dim = 280 cell rep = phi[[4, 1, 1],[1, 1]] TII depth = 5 TII multiplicity polynomial = 280*X TII subcells: tii[44,1] := {278} tii[44,2] := {218} tii[44,3] := {156} tii[44,4] := {76} tii[44,5] := {273} tii[44,6] := {212} tii[44,7] := {150} tii[44,8] := {264} tii[44,9] := {206} tii[44,10] := {263} tii[44,11] := {58} tii[44,12] := {125} tii[44,13] := {201} tii[44,14] := {275} tii[44,15] := {260} tii[44,16] := {43} tii[44,17] := {178} tii[44,18] := {101} tii[44,19] := {232} tii[44,20] := {20} tii[44,21] := {117} tii[44,22] := {181} tii[44,23] := {194} tii[44,24] := {36} tii[44,25] := {46} tii[44,26] := {258} tii[44,27] := {152} tii[44,28] := {62} tii[44,29] := {105} tii[44,30] := {222} tii[44,31] := {65} tii[44,32] := {135} tii[44,33] := {138} tii[44,34] := {195} tii[44,35] := {35} tii[44,36] := {77} tii[44,37] := {221} tii[44,38] := {151} tii[44,39] := {60} tii[44,40] := {103} tii[44,41] := {176} tii[44,42] := {94} tii[44,43] := {91} tii[44,44] := {177} tii[44,45] := {154} tii[44,46] := {59} tii[44,47] := {102} tii[44,48] := {133} tii[44,49] := {134} tii[44,50] := {108} tii[44,51] := {57} tii[44,52] := {124} tii[44,53] := {250} tii[44,54] := {27} tii[44,55] := {200} tii[44,56] := {213} tii[44,57] := {52} tii[44,58] := {272} tii[44,59] := {169} tii[44,60] := {83} tii[44,61] := {128} tii[44,62] := {9} tii[44,63] := {255} tii[44,64] := {100} tii[44,65] := {180} tii[44,66] := {66} tii[44,67] := {230} tii[44,68] := {26} tii[44,69] := {174} tii[44,70] := {173} tii[44,71] := {254} tii[44,72] := {189} tii[44,73] := {97} tii[44,74] := {50} tii[44,75] := {132} tii[44,76] := {111} tii[44,77] := {144} tii[44,78] := {90} tii[44,79] := {15} tii[44,80] := {216} tii[44,81] := {137} tii[44,82] := {217} tii[44,83] := {130} tii[44,84] := {191} tii[44,85] := {95} tii[44,86] := {30} tii[44,87] := {112} tii[44,88] := {142} tii[44,89] := {69} tii[44,90] := {10} tii[44,91] := {171} tii[44,92] := {172} tii[44,93] := {147} tii[44,94] := {38} tii[44,95] := {123} tii[44,96] := {199} tii[44,97] := {244} tii[44,98] := {85} tii[44,99] := {268} tii[44,100] := {207} tii[44,101] := {120} tii[44,102] := {164} tii[44,103] := {51} tii[44,104] := {248} tii[44,105] := {179} tii[44,106] := {249} tii[44,107] := {139} tii[44,108] := {227} tii[44,109] := {82} tii[44,110] := {168} tii[44,111] := {167} tii[44,112] := {182} tii[44,113] := {127} tii[44,114] := {61} tii[44,115] := {210} tii[44,116] := {211} tii[44,117] := {185} tii[44,118] := {104} tii[44,119] := {198} tii[44,120] := {265} tii[44,121] := {238} tii[44,122] := {159} tii[44,123] := {202} tii[44,124] := {119} tii[44,125] := {242} tii[44,126] := {243} tii[44,127] := {223} tii[44,128] := {163} tii[44,129] := {269} tii[44,130] := {235} tii[44,131] := {279} tii[44,132] := {28} tii[44,133] := {251} tii[44,134] := {53} tii[44,135] := {214} tii[44,136] := {84} tii[44,137] := {170} tii[44,138] := {129} tii[44,139] := {277} tii[44,140] := {197} tii[44,141] := {5} tii[44,142] := {246} tii[44,143] := {87} tii[44,144] := {157} tii[44,145] := {16} tii[44,146] := {209} tii[44,147] := {122} tii[44,148] := {113} tii[44,149] := {31} tii[44,150] := {166} tii[44,151] := {70} tii[44,152] := {274} tii[44,153] := {118} tii[44,154] := {4} tii[44,155] := {241} tii[44,156] := {162} tii[44,157] := {79} tii[44,158] := {13} tii[44,159] := {205} tii[44,160] := {41} tii[44,161] := {270} tii[44,162] := {47} tii[44,163] := {2} tii[44,164] := {237} tii[44,165] := {19} tii[44,166] := {6} tii[44,167] := {0} tii[44,168] := {259} tii[44,169] := {136} tii[44,170] := {67} tii[44,171] := {8} tii[44,172] := {231} tii[44,173] := {93} tii[44,174] := {24} tii[44,175] := {98} tii[44,176] := {190} tii[44,177] := {56} tii[44,178] := {145} tii[44,179] := {3} tii[44,180] := {257} tii[44,181] := {158} tii[44,182] := {17} tii[44,183] := {12} tii[44,184] := {229} tii[44,185] := {78} tii[44,186] := {141} tii[44,187] := {114} tii[44,188] := {32} tii[44,189] := {40} tii[44,190] := {184} tii[44,191] := {71} tii[44,192] := {1} tii[44,193] := {256} tii[44,194] := {80} tii[44,195] := {14} tii[44,196] := {42} tii[44,197] := {18} tii[44,198] := {226} tii[44,199] := {21} tii[44,200] := {7} tii[44,201] := {220} tii[44,202] := {92} tii[44,203] := {96} tii[44,204] := {23} tii[44,205] := {192} tii[44,206] := {55} tii[44,207] := {143} tii[44,208] := {11} tii[44,209] := {219} tii[44,210] := {116} tii[44,211] := {33} tii[44,212] := {39} tii[44,213] := {187} tii[44,214] := {72} tii[44,215] := {44} tii[44,216] := {22} tii[44,217] := {175} tii[44,218] := {54} tii[44,219] := {148} tii[44,220] := {75} tii[44,221] := {276} tii[44,222] := {86} tii[44,223] := {245} tii[44,224] := {121} tii[44,225] := {208} tii[44,226] := {165} tii[44,227] := {271} tii[44,228] := {37} tii[44,229] := {196} tii[44,230] := {240} tii[44,231] := {161} tii[44,232] := {63} tii[44,233] := {153} tii[44,234] := {204} tii[44,235] := {106} tii[44,236] := {266} tii[44,237] := {115} tii[44,238] := {34} tii[44,239] := {236} tii[44,240] := {73} tii[44,241] := {45} tii[44,242] := {25} tii[44,243] := {253} tii[44,244] := {131} tii[44,245] := {140} tii[44,246] := {49} tii[44,247] := {228} tii[44,248] := {89} tii[44,249] := {183} tii[44,250] := {252} tii[44,251] := {29} tii[44,252] := {64} tii[44,253] := {155} tii[44,254] := {225} tii[44,255] := {107} tii[44,256] := {68} tii[44,257] := {74} tii[44,258] := {48} tii[44,259] := {215} tii[44,260] := {88} tii[44,261] := {186} tii[44,262] := {110} tii[44,263] := {267} tii[44,264] := {160} tii[44,265] := {239} tii[44,266] := {203} tii[44,267] := {262} tii[44,268] := {99} tii[44,269] := {193} tii[44,270] := {234} tii[44,271] := {146} tii[44,272] := {109} tii[44,273] := {81} tii[44,274] := {247} tii[44,275] := {126} tii[44,276] := {224} tii[44,277] := {149} tii[44,278] := {261} tii[44,279] := {233} tii[44,280] := {188}