TII subcells for the Sp(4,R) x SO(3,2) block of Sp4 # cell#0 , |C| = 1 special orbit = [4] special rep = [[2], []] , dim = 1 cell rep = phi[[2],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[3,1] := {0} cell#1 , |C| = 1 special orbit = [4] special rep = [[2], []] , dim = 1 cell rep = phi[[2],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[3,1] := {0} cell#2 , |C| = 3 special orbit = [2, 2] special rep = [[1], [1]] , dim = 2 cell rep = phi[[1, 1],[]]+phi[[1],[1]] TII depth = 1 TII multiplicity polynomial = X+X^2 TII subcells: tii[2,1] := {0, 2} tii[2,2] := {1} cell#3 , |C| = 3 special orbit = [2, 2] special rep = [[1], [1]] , dim = 2 cell rep = phi[[1, 1],[]]+phi[[1],[1]] TII depth = 1 TII multiplicity polynomial = X+X^2 TII subcells: tii[2,1] := {0, 2} tii[2,2] := {1} cell#4 , |C| = 3 special orbit = [2, 2] special rep = [[1], [1]] , dim = 2 cell rep = phi[[1, 1],[]]+phi[[1],[1]] TII depth = 1 TII multiplicity polynomial = X+X^2 TII subcells: tii[2,1] := {0, 2} tii[2,2] := {1} cell#5 , |C| = 1 special orbit = [1, 1, 1, 1] special rep = [[], [1, 1]] , dim = 1 cell rep = phi[[],[1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}