#### Green Polynomials for C3 #### W-rep key: # x[1] = [[], [1, 1, 1]] , orbit = [1, 1, 1, 1, 1, 1] , A-rep = [] # x[2] = [[1, 1, 1], []] , orbit = [2, 1, 1, 1, 1] , A-rep = [] # x[3] = [[1], [1, 1]] , orbit = [2, 2, 1, 1] , A-rep = [1] # x[4] = [[], [2, 1]] , orbit = [2, 2, 1, 1] , A-rep = [-1] # x[5] = [[1, 1], [1]] , orbit = [2, 2, 2] , A-rep = [] # x[6] = [[1], [2]] , orbit = [3, 3] , A-rep = [] # x[7] = [[2, 1], []] , orbit = [4, 1, 1] , A-rep = [] # x[8] = [[2], [1]] , orbit = [4, 2] , A-rep = [1] # x[9] = [[], [3]] , orbit = [4, 2] , A-rep = [-1] # x[10] = [[3], []] , orbit = [6] , A-rep = [] ### Green Polynomials by Orbit orbit #1 : [1, 1, 1, 1, 1, 1] dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 21*V[0] Z_G(x)_0 = C3 # Green Polys by orbit reps #1.1 : x[1] : [1, 1, 1, 1, 1, 1],[] : [[3], []] Qxi[C3,1,1] = (x[1])*q^9 + (x[3])*q^8 + (x[4]+x[5])*q^7 + (x[2]+x[3]+x[6])*q^6 + (x[4]+x[5]+x[8])*q^5 + (x[3]+x[6]+x[7])*q^4 + (x[5]+x[8]+x[9])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[C3,1,1] = (x[1])*q^9 + (x[3])*q^8 + (x[4]+x[5])*q^7 + (x[2]+x[3]+x[6])*q^6 + (x[4]+x[5]+x[8])*q^5 + (x[3]+x[6]+x[7])*q^4 + (x[5]+x[8]+x[9])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] orbit #2 : [2, 1, 1, 1, 1] dim = 6 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[1]+V[2]+10*V[0] Z_G(x)_0 = O1+Sp4 # Green Polys by orbit reps #2.1 : x[2] : [2, 1, 1, 1, 1],[] : [[1, 1, 1], []] Qxi[C3,2,1] = (x[2])*q^6 + (x[5])*q^5 + (x[3]+x[7])*q^4 + (x[5]+x[8])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = q^6-1 Qxc[C3,2,1] = (x[2])*q^6 + (x[5])*q^5 + (x[3]+x[7])*q^4 + (x[5]+x[8])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] orbit #3 : [2, 2, 1, 1] dim = 10 A(O) = Z2 , |A(O)_0| = 2 g_s = 4*V[1]+3*V[2]+4*V[0] Z_G(x)_0 = Sp2+O2 # Green Polys by orbit reps #3.1 : x[3] : [2, 2, 1, 1],[1] : [[1], [1, 1]] Qxi[C3,3,1] = (x[3])*q^4 + (x[5]+x[8])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] #3.2 : x[4] : [2, 2, 1, 1],[-1] : [[], [2, 1]] Qxi[C3,3,2] = (x[4])*q^4 + (x[6])*q^3 + (x[9])*q^2 # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = 1/2*q*(q+1)*(q^2+1)*(q^6-1) Qxc[C3,3,1] = (x[3]+x[4])*q^4 + (x[5]+x[6]+x[8])*q^3 + (x[6]+x[7]+x[9])*q^2 + (x[8])*q + x[10] #3.2 : c = (1) |O_x_c^F| = 1/2*q*(q-1)*(q^2+1)*(q^6-1) Qxc[C3,3,2] = (x[3]-x[4])*q^4 + (x[5]-x[6]+x[8])*q^3 + (x[6]+x[7]-x[9])*q^2 + (x[8])*q + x[10] orbit #4 : [2, 2, 2] dim = 12 A(O) = 1 , |A(O)_0| = 1 g_s = 6*V[2]+3*V[0] Z_G(x)_0 = O3 # Green Polys by orbit reps #4.1 : x[5] : [2, 2, 2],[] : [[1, 1], [1]] Qxi[C3,4,1] = (x[5])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = q^2*(q^4-1)*(q^6-1) Qxc[C3,4,1] = (x[5])*q^3 + (x[6]+x[7])*q^2 + (x[8])*q + x[10] orbit #5 : [3, 3] dim = 14 A(O) = 1 , |A(O)_0| = 1 g_s = 3*V[4]+V[2]+3*V[0] Z_G(x)_0 = Sp2 # Green Polys by orbit reps #5.1 : x[6] : [3, 3],[] : [[1], [2]] Qxi[C3,5,1] = (x[6])*q^2 + (x[8]+x[9])*q + x[10] # Green Polys by conj class in A(O) #5.1 : c = () |O_x_c^F| = q^4*(q^4-1)*(q^6-1) Qxc[C3,5,1] = (x[6])*q^2 + (x[8]+x[9])*q + x[10] orbit #6 : [4, 1, 1] dim = 14 A(O) = 1 , |A(O)_0| = 1 g_s = V[6]+2*V[3]+V[2]+3*V[0] Z_G(x)_0 = O1+Sp2 # Green Polys by orbit reps #6.1 : x[7] : [4, 1, 1],[] : [[2, 1], []] Qxi[C3,6,1] = (x[7])*q^2 + (x[8])*q + x[10] # Green Polys by conj class in A(O) #6.1 : c = () |O_x_c^F| = q^4*(q^4-1)*(q^6-1) Qxc[C3,6,1] = (x[7])*q^2 + (x[8])*q + x[10] orbit #7 : [4, 2] dim = 16 A(O) = Z2 , |A(O)_0| = 2 g_s = V[6]+V[4]+3*V[2] Z_G(x)_0 = 2*O1 # Green Polys by orbit reps #7.1 : x[8] : [4, 2],[1] : [[2], [1]] Qxi[C3,7,1] = (x[8])*q + x[10] #7.2 : x[9] : [4, 2],[-1] : [[], [3]] Qxi[C3,7,2] = (x[9])*q # Green Polys by conj class in A(O) #7.1 : c = () |O_x_c^F| = 1/2*q^4*(q^2-1)*(q^4-1)*(q^6-1) Qxc[C3,7,1] = (x[8]+x[9])*q + x[10] #7.2 : c = (1) |O_x_c^F| = 1/2*q^4*(q^2-1)*(q^4-1)*(q^6-1) Qxc[C3,7,2] = (x[8]-x[9])*q + x[10] orbit #8 : [6] dim = 18 A(O) = 1 , |A(O)_0| = 1 g_s = V[10]+V[6]+V[2] Z_G(x)_0 = O1 # Green Polys by orbit reps #8.1 : x[10] : [6],[] : [[3], []] Qxi[C3,8,1] = x[10] # Green Polys by conj class in A(O) #8.1 : c = () |O_x_c^F| = q^6*(q^2-1)*(q^4-1)*(q^6-1) Qxc[C3,8,1] = x[10]