\\ Left Cell Data for C3 (CC 2012, B. Binegar) \\ \\ This file contains a table of data for the 14 left cells of the Weyl \\ group W of C3. Each line below corresponds to a particular left cell \\ of W. The datums held in the (colon-delimited) columns are as follows: \\ Column Contents \\ 1 KLatlas index (order of discovery by KLatlas, counting from 0) \\ 2 number of Weyl group elements in the left cell \\ 3 Weyl group elements contained in the left cell (as enumerated by KLatlas, counting from 0) \\ 4 KLatlas indices of the left cells immediately below the left cell in the W-graph of W \\ 5 representation of W carried by left cell (in terms of partitions for the classical Weyl groups and \\ or R. Carter's notation for the irreducible representations of the exceptional Weyl groups) \\ 6 special representation of W attached to the cell \\ 7 special nilpotent orbit attached to the left cell (in terms of partitions for the nilpotent orbits of \\ classical groups or Bala-Carter notation for the nilpotent orbits of the exceptional groups \\ 8 KLatlas block index of the unique Duflo involution contained in the left cell \\ 9 KLatlas cell index of the unique Duflo involution contained in the left cell \\ 10 reduced word expression for the unique Duflo involution contained in the left cell \\ 11 A-value of the unique Duflo involution contained in the left cell \\ 12 tau-infinity invariant of primitive ideal attached to the left cell \\ 0 : 14 : 0 : [0, 0] : phi[[3],[]] : phi[[3],[]] : [6] : 0 : 0 : e : 0 : [{{}}, {}, {}] 1 : 14 : 1 : [1, 0] : phi[[2, 1],[]]+phi[[2],[1]] : phi[[2],[1]] : [4, 2] : 1 : 0 : 1 : 1 : [{{1}}, {{2}}, {{1}, {3}}] 2 : 14 : 2 : [2, 0] : phi[[2, 1],[]]+phi[[2],[1]] : phi[[2],[1]] : [4, 2] : 2 : 0 : 2 : 1 : [{{2}}, {{1}, {3}}, {{2}}] 3 : 14 : 3 : [3, 0] : phi[[2],[1]]+phi[[],[3]] : phi[[2],[1]] : [4, 2] : 3 : 0 : 3 : 1 : [{{3}}, {{2}}, {{1}, {3}}] 4 : 14 : 7 : [4, 0] : phi[[1],[2]] : phi[[1],[2]] : [3, 3] : 7 : 0 : 31 : 2 : [{{1, 3}}, {{2}}, {{3}, {1, 3}}] 5 : 14 : 18 : [5, 1] : phi[[1],[2]] : phi[[1],[2]] : [3, 3] : 18 : 1 : 2312 : 2 : [{{2}}, {{3}, {1, 3}}, {{2}}] 6 : 14 : 10 : [6, 0] : phi[[1, 1],[1]] : phi[[1, 1],[1]] : [2, 2, 2] : 10 : 0 : 212 : 3 : [{{1, 2}}, {{1, 3}}, {{2}, {1, 2}}] 7 : 14 : 37 : [7, 2] : phi[[1],[2]] : phi[[1],[2]] : [3, 3] : 37 : 2 : 323123 : 2 : [{{3}}, {{2}}, {{3}, {1, 3}}] 8 : 14 : 29 : [8, 1] : phi[[1, 1],[1]] : phi[[1, 1],[1]] : [2, 2, 2] : 29 : 1 : 32123 : 3 : [{{1, 3}}, {{2}, {1, 2}}, {{1, 3}}] 9 : 14 : 40 : [9, 2] : phi[[1, 1],[1]] : phi[[1, 1],[1]] : [2, 2, 2] : 40 : 2 : 2321232 : 3 : [{{2}}, {{1, 3}}, {{2}, {1, 2}}] 10 : 14 : 23 : [10, 0] : phi[[1],[1, 1]]+phi[[],[2, 1]] : phi[[1],[1, 1]] : [2, 2, 1, 1] : 23 : 0 : 3232 : 4 : [{{2, 3}}, {{1, 3}}, {{1, 2}, {2, 3}}] 11 : 14 : 35 : [11, 1] : phi[[1],[1, 1]]+phi[[],[2, 1]] : phi[[1],[1, 1]] : [2, 2, 1, 1] : 35 : 1 : 312321 : 4 : [{{1, 3}}, {{1, 2}, {2, 3}}, {{1, 3}}] 12 : 14 : 44 : [12, 3] : phi[[1, 1, 1],[]]+phi[[1],[1, 1]] : phi[[1],[1, 1]] : [2, 2, 1, 1] : 44 : 3 : 23212321 : 4 : [{{1, 2}}, {{1, 3}}, {{1, 2}, {2, 3}}] 13 : 14 : 47 : [13, 0] : phi[[],[1, 1, 1]] : phi[[],[1, 1, 1]] : [1, 1, 1, 1, 1, 1] : 47 : 0 : 323212321 : 9 : [{{1, 2, 3}}, {}, {}]