TII subcells for the Sp(6,R) x SO(5,2) block of Sp6 # cell#0 , |C| = 1 special orbit = [6] special rep = [[3], []] , dim = 1 cell rep = phi[[3],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[6,1] := {0} cell#1 , |C| = 1 special orbit = [6] special rep = [[3], []] , dim = 1 cell rep = phi[[3],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[6,1] := {0} cell#2 , |C| = 5 special orbit = [4, 2] special rep = [[2], [1]] , dim = 3 cell rep = phi[[2, 1],[]]+phi[[2],[1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[5,1] := {0, 4} tii[5,2] := {1, 2} tii[5,3] := {3} cell#3 , |C| = 5 special orbit = [4, 2] special rep = [[2], [1]] , dim = 3 cell rep = phi[[2, 1],[]]+phi[[2],[1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[5,1] := {0, 4} tii[5,2] := {1, 2} tii[5,3] := {3} cell#4 , |C| = 5 special orbit = [4, 2] special rep = [[2], [1]] , dim = 3 cell rep = phi[[2, 1],[]]+phi[[2],[1]] TII depth = 1 TII multiplicity polynomial = X+2*X^2 TII subcells: tii[5,1] := {0, 4} tii[5,2] := {1, 3} tii[5,3] := {2} cell#5 , |C| = 3 special orbit = [2, 2, 2] special rep = [[1, 1], [1]] , dim = 3 cell rep = phi[[1, 1],[1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[3,1] := {2} tii[3,2] := {0} tii[3,3] := {1} cell#6 , |C| = 3 special orbit = [2, 2, 2] special rep = [[1, 1], [1]] , dim = 3 cell rep = phi[[1, 1],[1]] TII depth = 1 TII multiplicity polynomial = 3*X TII subcells: tii[3,1] := {2} tii[3,2] := {0} tii[3,3] := {1} cell#7 , |C| = 4 special orbit = [2, 2, 1, 1] special rep = [[1], [1, 1]] , dim = 3 cell rep = phi[[1, 1, 1],[]]+phi[[1],[1, 1]] TII depth = 1 TII multiplicity polynomial = 2*X+X^2 TII subcells: tii[2,1] := {0, 3} tii[2,2] := {1} tii[2,3] := {2}