TII subcells for the Sp(2,2) x SO(5,4) block of Sp8 # cell#0 , |C| = 10 special orbit = [4, 4] special rep = [[2], [2]] , dim = 6 cell rep = phi[[2],[2]]+phi[[1],[3]] TII depth = 1 TII multiplicity polynomial = 2*X+4*X^2 TII subcells: tii[8,1] := {9} tii[8,2] := {6, 7} tii[8,3] := {0, 3} tii[8,4] := {8} tii[8,5] := {4, 5} tii[8,6] := {1, 2} cell#1 , |C| = 8 special orbit = [3, 3, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {5} tii[4,2] := {7} tii[4,3] := {3} tii[4,4] := {1} tii[4,5] := {6} tii[4,6] := {4} tii[4,7] := {2} tii[4,8] := {0} cell#2 , |C| = 8 special orbit = [3, 3, 1, 1] special rep = [[1], [2, 1]] , dim = 8 cell rep = phi[[1],[2, 1]] TII depth = 2 TII multiplicity polynomial = 8*X TII subcells: tii[4,1] := {5} tii[4,2] := {7} tii[4,3] := {3} tii[4,4] := {1} tii[4,5] := {6} tii[4,6] := {4} tii[4,7] := {2} tii[4,8] := {0} cell#3 , |C| = 8 special orbit = [2, 2, 2, 2] special rep = [[1, 1], [1, 1]] , dim = 6 cell rep = phi[[1, 1],[1, 1]]+phi[[],[2, 2]] TII depth = 1 TII multiplicity polynomial = 4*X+2*X^2 TII subcells: tii[3,1] := {5} tii[3,2] := {3} tii[3,3] := {2, 6} tii[3,4] := {1} tii[3,5] := {4} tii[3,6] := {0, 7} cell#4 , |C| = 7 special orbit = [2, 2, 1, 1, 1, 1] special rep = [[1], [1, 1, 1]] , dim = 4 cell rep = phi[[1],[1, 1, 1]]+phi[[],[2, 1, 1]] TII depth = 1 TII multiplicity polynomial = X+3*X^2 TII subcells: tii[2,1] := {6} tii[2,2] := {4, 5} tii[2,3] := {2, 3} tii[2,4] := {0, 1} cell#5 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}