TII subcells for the PSp(10,R) x Spin(7,4) block of PSp10 # cell#0 , |C| = 1 special orbit = [10] special rep = [[5], []] , dim = 1 cell rep = phi[[5],[]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[16,1] := {0} cell#1 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {1, 8} tii[15,2] := {0, 7} tii[15,3] := {2, 6} tii[15,4] := {3, 5} tii[15,5] := {4} cell#2 , |C| = 9 special orbit = [8, 2] special rep = [[4], [1]] , dim = 5 cell rep = phi[[4, 1],[]]+phi[[4],[1]] TII depth = 1 TII multiplicity polynomial = X+4*X^2 TII subcells: tii[15,1] := {1, 8} tii[15,2] := {2, 7} tii[15,3] := {0, 6} tii[15,4] := {3, 4} tii[15,5] := {5} cell#3 , |C| = 15 special orbit = [6, 4] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3, 2],[]]+phi[[3],[2]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {1, 11} tii[14,2] := {9, 10} tii[14,3] := {13} tii[14,4] := {14} tii[14,5] := {0, 7} tii[14,6] := {2, 3} tii[14,7] := {6} tii[14,8] := {4, 5} tii[14,9] := {8} tii[14,10] := {12} cell#4 , |C| = 15 special orbit = [6, 4] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3, 2],[]]+phi[[3],[2]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {2, 11} tii[14,2] := {5, 13} tii[14,3] := {12} tii[14,4] := {14} tii[14,5] := {0, 8} tii[14,6] := {1, 7} tii[14,7] := {4} tii[14,8] := {3, 10} tii[14,9] := {6} tii[14,10] := {9} cell#5 , |C| = 15 special orbit = [6, 4] special rep = [[3], [2]] , dim = 10 cell rep = phi[[3, 2],[]]+phi[[3],[2]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[14,1] := {2, 11} tii[14,2] := {5, 13} tii[14,3] := {12} tii[14,4] := {14} tii[14,5] := {0, 8} tii[14,6] := {1, 7} tii[14,7] := {4} tii[14,8] := {3, 10} tii[14,9] := {6} tii[14,10] := {9} cell#6 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {13} tii[13,2] := {8} tii[13,3] := {14} tii[13,4] := {6} tii[13,5] := {11} tii[13,6] := {1} tii[13,7] := {4} tii[13,8] := {5} tii[13,9] := {10} tii[13,10] := {0} tii[13,11] := {3} tii[13,12] := {2} tii[13,13] := {7} tii[13,14] := {9} tii[13,15] := {12} cell#7 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {12} tii[13,2] := {14} tii[13,3] := {13} tii[13,4] := {0} tii[13,5] := {9} tii[13,6] := {1} tii[13,7] := {8} tii[13,8] := {2} tii[13,9] := {5} tii[13,10] := {3} tii[13,11] := {4} tii[13,12] := {11} tii[13,13] := {7} tii[13,14] := {6} tii[13,15] := {10} cell#8 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {11} tii[13,3] := {4} tii[13,4] := {7} tii[13,5] := {13} tii[13,6] := {8} tii[13,7] := {12} tii[13,8] := {6} tii[13,9] := {10} tii[13,10] := {3} tii[13,11] := {2} tii[13,12] := {9} tii[13,13] := {5} tii[13,14] := {0} tii[13,15] := {1} cell#9 , |C| = 30 special orbit = [4, 4, 2] special rep = [[2, 1], [2]] , dim = 20 cell rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[10,1] := {13, 29} tii[10,2] := {23} tii[10,3] := {8, 18} tii[10,4] := {4, 26} tii[10,5] := {16} tii[10,6] := {20} tii[10,7] := {3, 22} tii[10,8] := {9, 28} tii[10,9] := {2, 24} tii[10,10] := {11} tii[10,11] := {5, 27} tii[10,12] := {17} tii[10,13] := {15} tii[10,14] := {21} tii[10,15] := {6, 14} tii[10,16] := {10} tii[10,17] := {0, 19} tii[10,18] := {12} tii[10,19] := {1, 25} tii[10,20] := {7} cell#10 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {4, 33} tii[8,2] := {11, 34} tii[8,3] := {8, 28} tii[8,4] := {19, 30} tii[8,5] := {10, 22} tii[8,6] := {20} tii[8,7] := {23, 32} tii[8,8] := {27} tii[8,9] := {0, 14} tii[8,10] := {1, 29} tii[8,11] := {2, 17} tii[8,12] := {3, 26} tii[8,13] := {5, 24} tii[8,14] := {6, 16} tii[8,15] := {13} tii[8,16] := {7, 31} tii[8,17] := {15} tii[8,18] := {9, 18} tii[8,19] := {12, 25} tii[8,20] := {21} cell#11 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {11} tii[13,3] := {10} tii[13,4] := {0} tii[13,5] := {13} tii[13,6] := {3} tii[13,7] := {12} tii[13,8] := {5} tii[13,9] := {8} tii[13,10] := {1} tii[13,11] := {2} tii[13,12] := {9} tii[13,13] := {6} tii[13,14] := {4} tii[13,15] := {7} cell#12 , |C| = 30 special orbit = [4, 4, 2] special rep = [[2, 1], [2]] , dim = 20 cell rep = phi[[2, 2],[1]]+phi[[2, 1],[2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[10,1] := {19, 28} tii[10,2] := {29} tii[10,3] := {6, 7} tii[10,4] := {8, 22} tii[10,5] := {14} tii[10,6] := {21} tii[10,7] := {11, 12} tii[10,8] := {15, 26} tii[10,9] := {5, 17} tii[10,10] := {20} tii[10,11] := {9, 23} tii[10,12] := {25} tii[10,13] := {24} tii[10,14] := {27} tii[10,15] := {1, 2} tii[10,16] := {4} tii[10,17] := {0, 13} tii[10,18] := {10} tii[10,19] := {3, 18} tii[10,20] := {16} cell#13 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {7, 15} tii[12,2] := {4, 14} tii[12,3] := {8, 13} tii[12,4] := {11} tii[12,5] := {1, 12} tii[12,6] := {2, 10} tii[12,7] := {9} tii[12,8] := {0, 6} tii[12,9] := {3} tii[12,10] := {5} cell#14 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {12} tii[13,3] := {8} tii[13,4] := {1} tii[13,5] := {13} tii[13,6] := {4} tii[13,7] := {11} tii[13,8] := {6} tii[13,9] := {9} tii[13,10] := {0} tii[13,11] := {3} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {2} tii[13,15] := {5} cell#15 , |C| = 15 special orbit = [6, 2, 2] special rep = [[3, 1], [1]] , dim = 15 cell rep = phi[[3, 1],[1]] TII depth = 3 TII multiplicity polynomial = 15*X TII subcells: tii[13,1] := {14} tii[13,2] := {12} tii[13,3] := {8} tii[13,4] := {1} tii[13,5] := {13} tii[13,6] := {4} tii[13,7] := {11} tii[13,8] := {6} tii[13,9] := {9} tii[13,10] := {0} tii[13,11] := {3} tii[13,12] := {10} tii[13,13] := {7} tii[13,14] := {2} tii[13,15] := {5} cell#16 , |C| = 16 special orbit = [6, 2, 1, 1] special rep = [[3], [1, 1]] , dim = 10 cell rep = phi[[3, 1, 1],[]]+phi[[3],[1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+6*X^2 TII subcells: tii[12,1] := {2, 14} tii[12,2] := {8, 9} tii[12,3] := {12, 13} tii[12,4] := {15} tii[12,5] := {0, 1} tii[12,6] := {6, 7} tii[12,7] := {11} tii[12,8] := {4, 5} tii[12,9] := {10} tii[12,10] := {3} cell#17 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {8, 28} tii[8,2] := {7, 34} tii[8,3] := {14, 25} tii[8,4] := {11, 33} tii[8,5] := {19, 20} tii[8,6] := {24} tii[8,7] := {18, 30} tii[8,8] := {23} tii[8,9] := {0, 15} tii[8,10] := {6, 21} tii[8,11] := {1, 22} tii[8,12] := {3, 27} tii[8,13] := {2, 29} tii[8,14] := {12, 13} tii[8,15] := {17} tii[8,16] := {5, 32} tii[8,17] := {10} tii[8,18] := {4, 26} tii[8,19] := {9, 31} tii[8,20] := {16} cell#18 , |C| = 25 special orbit = [4, 4, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+5*X^2 TII subcells: tii[9,1] := {10, 19} tii[9,2] := {20} tii[9,3] := {23} tii[9,4] := {5, 14} tii[9,5] := {1, 9} tii[9,6] := {16} tii[9,7] := {7} tii[9,8] := {21} tii[9,9] := {18} tii[9,10] := {13} tii[9,11] := {22} tii[9,12] := {24} tii[9,13] := {6, 15} tii[9,14] := {12} tii[9,15] := {0, 4} tii[9,16] := {17} tii[9,17] := {2} tii[9,18] := {3} tii[9,19] := {11} tii[9,20] := {8} cell#19 , |C| = 25 special orbit = [4, 4, 1, 1] special rep = [[2], [2, 1]] , dim = 20 cell rep = phi[[2, 2, 1],[]]+phi[[2],[2, 1]] TII depth = 2 TII multiplicity polynomial = 15*X+5*X^2 TII subcells: tii[9,1] := {10, 19} tii[9,2] := {20} tii[9,3] := {23} tii[9,4] := {5, 14} tii[9,5] := {1, 9} tii[9,6] := {16} tii[9,7] := {7} tii[9,8] := {21} tii[9,9] := {18} tii[9,10] := {13} tii[9,11] := {22} tii[9,12] := {24} tii[9,13] := {6, 15} tii[9,14] := {12} tii[9,15] := {0, 4} tii[9,16] := {17} tii[9,17] := {2} tii[9,18] := {3} tii[9,19] := {11} tii[9,20] := {8} cell#20 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {22, 33} tii[8,2] := {13, 26} tii[8,3] := {28, 34} tii[8,4] := {5, 20} tii[8,5] := {25, 32} tii[8,6] := {30} tii[8,7] := {11, 23} tii[8,8] := {16} tii[8,9] := {9, 10} tii[8,10] := {15, 31} tii[8,11] := {3, 19} tii[8,12] := {7, 27} tii[8,13] := {2, 12} tii[8,14] := {18, 29} tii[8,15] := {24} tii[8,16] := {6, 21} tii[8,17] := {17} tii[8,18] := {0, 4} tii[8,19] := {1, 14} tii[8,20] := {8} cell#21 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {8, 34} tii[8,2] := {7, 29} tii[8,3] := {13, 33} tii[8,4] := {12, 24} tii[8,5] := {19, 31} tii[8,6] := {25} tii[8,7] := {18, 30} tii[8,8] := {26} tii[8,9] := {0, 16} tii[8,10] := {6, 32} tii[8,11] := {1, 22} tii[8,12] := {3, 28} tii[8,13] := {2, 15} tii[8,14] := {11, 27} tii[8,15] := {20} tii[8,16] := {5, 23} tii[8,17] := {14} tii[8,18] := {4, 10} tii[8,19] := {9, 17} tii[8,20] := {21} cell#22 , |C| = 35 special orbit = [4, 2, 2, 2] special rep = [[2, 1], [1, 1]] , dim = 20 cell rep = phi[[2, 1, 1],[1]]+phi[[2, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 5*X+15*X^2 TII subcells: tii[8,1] := {8, 34} tii[8,2] := {7, 29} tii[8,3] := {13, 33} tii[8,4] := {12, 24} tii[8,5] := {19, 31} tii[8,6] := {25} tii[8,7] := {18, 30} tii[8,8] := {26} tii[8,9] := {0, 16} tii[8,10] := {6, 32} tii[8,11] := {1, 22} tii[8,12] := {3, 28} tii[8,13] := {2, 15} tii[8,14] := {11, 27} tii[8,15] := {20} tii[8,16] := {5, 23} tii[8,17] := {14} tii[8,18] := {4, 10} tii[8,19] := {9, 17} tii[8,20] := {21} cell#23 , |C| = 10 special orbit = [2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1]] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {9} tii[4,2] := {2} tii[4,3] := {7} tii[4,4] := {4} tii[4,5] := {5} tii[4,6] := {6} tii[4,7] := {8} tii[4,8] := {0} tii[4,9] := {1} tii[4,10] := {3} cell#24 , |C| = 30 special orbit = [3, 3, 2, 2] special rep = [[1, 1], [2, 1]] , dim = 20 cell rep = phi[[1, 1],[2, 1]]+phi[[1],[2, 2]] TII depth = 2 TII multiplicity polynomial = 10*X+10*X^2 TII subcells: tii[6,1] := {18} tii[6,2] := {24} tii[6,3] := {14, 15} tii[6,4] := {20, 21} tii[6,5] := {25} tii[6,6] := {28, 29} tii[6,7] := {3} tii[6,8] := {7} tii[6,9] := {6} tii[6,10] := {8, 9} tii[6,11] := {13} tii[6,12] := {16, 17} tii[6,13] := {4, 5} tii[6,14] := {22, 23} tii[6,15] := {12} tii[6,16] := {10, 11} tii[6,17] := {19} tii[6,18] := {26, 27} tii[6,19] := {0} tii[6,20] := {1, 2} cell#25 , |C| = 14 special orbit = [4, 2, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[7,1] := {7, 13} tii[7,2] := {10, 11} tii[7,3] := {12} tii[7,4] := {5, 6} tii[7,5] := {9} tii[7,6] := {8} tii[7,7] := {0, 1} tii[7,8] := {4} tii[7,9] := {2} tii[7,10] := {3} cell#26 , |C| = 10 special orbit = [2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1]] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {9} tii[4,2] := {2} tii[4,3] := {8} tii[4,4] := {3} tii[4,5] := {6} tii[4,6] := {5} tii[4,7] := {7} tii[4,8] := {0} tii[4,9] := {1} tii[4,10] := {4} cell#27 , |C| = 10 special orbit = [2, 2, 2, 2, 2] special rep = [[1, 1, 1], [1, 1]] , dim = 10 cell rep = phi[[1, 1, 1],[1, 1]] TII depth = 2 TII multiplicity polynomial = 10*X TII subcells: tii[4,1] := {9} tii[4,2] := {2} tii[4,3] := {8} tii[4,4] := {3} tii[4,5] := {6} tii[4,6] := {5} tii[4,7] := {7} tii[4,8] := {0} tii[4,9] := {1} tii[4,10] := {4} cell#28 , |C| = 15 special orbit = [2, 2, 2, 2, 1, 1] special rep = [[1, 1], [1, 1, 1]] , dim = 10 cell rep = phi[[1, 1, 1, 1],[1]]+phi[[1, 1],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 5*X+5*X^2 TII subcells: tii[3,1] := {2, 14} tii[3,2] := {5, 12} tii[3,3] := {9} tii[3,4] := {7, 13} tii[3,5] := {10} tii[3,6] := {6} tii[3,7] := {0, 8} tii[3,8] := {1, 11} tii[3,9] := {4} tii[3,10] := {3} cell#29 , |C| = 14 special orbit = [4, 2, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[7,1] := {0, 13} tii[7,2] := {1, 8} tii[7,3] := {4} tii[7,4] := {3, 12} tii[7,5] := {7} tii[7,6] := {11} tii[7,7] := {2, 10} tii[7,8] := {6} tii[7,9] := {9} tii[7,10] := {5} cell#30 , |C| = 14 special orbit = [4, 2, 1, 1, 1, 1] special rep = [[2], [1, 1, 1]] , dim = 10 cell rep = phi[[2, 1, 1, 1],[]]+phi[[2],[1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 6*X+4*X^2 TII subcells: tii[7,1] := {0, 13} tii[7,2] := {1, 8} tii[7,3] := {4} tii[7,4] := {3, 12} tii[7,5] := {7} tii[7,6] := {11} tii[7,7] := {2, 10} tii[7,8] := {6} tii[7,9] := {9} tii[7,10] := {5} cell#31 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+X^2 TII subcells: tii[2,1] := {0, 5} tii[2,2] := {1} tii[2,3] := {4} tii[2,4] := {2} tii[2,5] := {3} cell#32 , |C| = 6 special orbit = [2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1]] , dim = 5 cell rep = phi[[1, 1, 1, 1, 1],[]]+phi[[1],[1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 4*X+X^2 TII subcells: tii[2,1] := {0, 5} tii[2,2] := {1} tii[2,3] := {4} tii[2,4] := {2} tii[2,5] := {3}